Unsaturation In Binuclear Heterometalic Carbonyls: The Cyclopentadienyliron Manganese Carbonyl CpFeMn(CO)_n System as a Hybrid of the Cp₂Fe₂(CO)_n and Mn₂(CO)_n Systems

Xiuli Feng^a, Nan Li^{*a}, Liqiang Lv^b and R. Bruce King^{*c}

^a State Key Laboratory of Explosion Science and Technology, School of

Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, P. R.

China

^b College of Chemical Engineering, Shijiazhuang University, Shijiazhuang 050035, P. R. China

^c Department of Chemistry and Center for Computational Chemistry, University of Georgia, Athens, Georgia 30606, USA

Supporting Information

Tables **S1 to S13** Coordinates of CpFeMn(CO)_{*n*} (n = 7, 6, 5).

Table **S14** Harmonic vibrational frequencies of $CpFeMn(CO)_n$ (n = 7, 6, 5).

Figure **S1** to **S3** Optimized geometries (bond lengths in Å) at the BP86 level of theory for CpFeMn(CO)_{*n*} (n = 7, 6, 5).

Tables **S15** to **S17** Total energies (*E*, in Hartree), relative energies (ΔE , in kcal·mol⁻¹), Fe-Mn bond distances (Å), numbers of imaginary vibrational frequencies (N_{imag}) and spin expectation values $\langle S^2 \rangle$ for the CpFeMn(CO)_n (n = 7, 6, 5) structures.

Figure S4 The structure of CpFe(CO)₂Mn(CO)₅.

Table S18 Comparison of theoretical intramolecular distances (in Å) and angles (deg) of $CpFe(CO)_2Mn(CO)_5$ with the experimental X-ray structural data.

Figure S5 Optimized geometries (bond lengths in Å) for the experimentally known heterobimetallic compound CpFeMn(CO)₇ at the M06-L and BP86 level of theory using the the empirical dispersion correction by Grimme's DFT-D3 method.

Figure S6 Optimized geometries (bond lengths in Å) for the experimentally known heterobimetallic compound CpFeMn(CO)₇ using the DFT methods: (a) M06-L (up) and M06-L-D3 (below), (b) BP86 (up) and BP86-D3 (below).

Figure S7 Bond paths for optimized $CpFeMn(CO)_n$ (n = 7, 6, 5) structures at the M06-L level of theory. Red dots are bond critical points, yellow dots are ring critical points, and green dots are cage critical points.

Figure S8 NCI isosurfaces of the 6CO-1S at the M06-L level of theory. The cutoff value is 0.09 au. The surfaces describe the reduced density gradient at an isovalue of 0.4 au. The surfaces are colored on a blue-green-red scale ranging from -0.04 to +0.02 au.

Table S19 Topological data at the bond critical point for $Mn-C_{cp}$ segment in 6CO-1S at the M06-L level of theory. All values are in au.

Table S20 Wiberg Bond Indices (WBI) of the Fe-Mn, Fe-Mn bond lengths and the

natural charges on the Fe and Mn atoms in the CpFeMn(CO)_n (n = 7, 6, 5) structures from NBO analysis using the BP86 method.

Table S21 The ADCH atomic charges on the Fe and Mn atoms in the CpFeMn(CO)_{*n*} (n = 7, 6, 5) structures at the M06-L level of theory.

Table S22 The CDA results of the CpFeMn(CO)_{*n*} (n = 7, 6, 5) structures at the M06-L/DZP level of theory: calculated donation $d(A \rightarrow B)$, back-donation $b(A \leftarrow B)$, repulsive polarization $r(A \leftrightarrow B)$, and the donation/back-donation (d/b) ratio.

Table S23 The v(CO) vibrational frequencies (cm⁻¹) for the CpFeMn(CO)_n (n = 7, 6, 5) structures by M06-L and BP86 methods (infrared intensities in parentheses are in kcal·mol⁻¹).

Table S24 Energies (ΔE , in kcal·mol⁻¹) for reactions of CpFeMn(CO)_n using the BP86 method.

Table S25 Energies (ΔE , in kcal·mol⁻¹) for reactions of CpFeMn(CO)_n at the M06-L level of theory using the empirical dispersion correction by Grimme's DFT-D3 method.

Table S26 Energies (ΔE , in kcal·mol⁻¹) for reactions of CpFeMn(CO)_n at the BP86 level of theory using the empirical dispersion correction by Grimme's DFT-D3 method.

The description of the DZP basis set

Complete Gaussian reference.

Literature References

• .		M06-L		•		BP86	
Atom	Х	Y	Z	Atom	Х	Y	Z
С	0.981176	-2.718360	1.144974	С	-3.067331	-0.718099	1.032329
С	1.802380	-1.653099	0.713390	С	-2.057573	-1.715412	0.824272
С	1.802380	-1.653099	-0.713390	С	-1.841152	-1.826987	-0.585280
С	0.981176	-2.718360	-1.144974	С	-2.688008	-0.893579	-1.242318
С	0.448973	-3.372807	0.000000	С	-3.453630	-0.201010	-0.237781
Н	0.759627	-2.963427	2.173272	Н	-3.456582	-0.397047	1.995401
Н	2.343711	-0.974370	1.353861	Н	-1.564182	-2.297723	1.596987
Н	2.343711	-0.974370	-1.353861	Н	-1.151757	-2.509218	-1.073341
Н	0.759627	-2.963427	-2.173272	Н	-2.742955	-0.729046	-2.315326
Н	-0.215452	-4.222688	0.000000	Н	-4.196698	0.571318	-0.417944
Fe	-0.153634	-1.395415	0.000000	Fe	-1.416201	0.177196	0.084362
Mn	0.097206	1.436474	0.000000	Mn	1.422988	-0.132435	-0.072626
С	1.917980	1.302715	0.000000	С	1.131561	-1.899944	0.285198
С	-1.753362	1.414258	0.000000	С	1.623196	1.684489	-0.309982
С	0.156891	3.228968	0.000000	С	3.124499	-0.438723	-0.536020
С	0.155277	1.105312	-1.809082	С	0.725603	-0.321520	-1.760579
С	0.155277	1.105312	1.809082	С	1.735653	0.095040	1.727070
Ο	3.064586	1.244867	0.000000	0	1.017174	-3.026164	0.528211
0	0.196597	4.376695	0.000000	0	4.219812	-0.645115	-0.852360
0	-2.897102	1.416522	0.000000	0	1.808830	2.814490	-0.446252
Ο	0.248662	0.890807	-2.932216	0	0.387534	-0.471604	-2.858981
Ο	0.248662	0.890807	2.932216	0	1.977753	0.209501	2.849885
Ο	-2.171730	-1.212055	-2.085114	0	-1.412039	2.566980	-1.579327
0	-2.171730	-1.212055	2.085114	0	-0.860523	1.715133	2.489461
С	-1.371613	-1.245211	1.259825	С	-1.004394	1.084325	1.523603
С	-1.371613	-1.245211	-1.259825	С	-1.353361	1.611376	-0.921953

Table S1 Theoretical Cartesian coordinates (in Å) of CpFeMn(CO)₇ **7CO-1S** using the M06-L and BP86 methods

		M06-L		. .		BP86	
Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	1.686061	-2.078161	0.709969	С	-1.720319	2.140479	0.716991
С	1.686061	-2.078161	-0.709969	С	-1.720319	2.140479	-0.716991
С	0.618423	-2.891475	-1.154079	С	-0.637215	2.945927	-1.163617
С	-0.048530	-3.382425	0.000000	С	0.046479	3.428010	0.000000
С	0.618423	-2.891475	1.154079	С	-0.637215	2.945927	1.163617
Н	2.367035	-1.526943	1.341625	Н	-2.422479	1.606536	1.352291
Н	2.367035	-1.526943	-1.341625	Н	-2.422479	1.606536	-1.352291
Н	0.334305	-3.067178	-2.180077	Н	-0.353046	3.127938	-2.196322
Н	-0.920347	-4.020097	0.000000	Н	0.922186	4.073090	0.000000
Н	0.334305	-3.067178	2.180077	Η	-0.353046	3.127938	2.196322
F	-0.162407	-1.315479	0.000000	Fe	0.162321	1.328670	0.000000
М	0.100784	1.309776	0.000000	Mn	-0.096518	-1.313619	0.000000
С	-0.206263	-0.113608	-1.482225	С	0.222575	0.123320	-1.470941
С	0.300920	2.488827	1.362655	С	-0.293692	-2.500876	1.355591
С	0.300920	2.488827	-1.362655	С	-0.293692	-2.500876	-1.355591
С	-1.724162	1.632691	0.000000	С	1.714498	-1.679803	0.000000
С	1.914530	1.014674	0.000000	С	-1.914965	-1.080496	0.000000
С	-0.206263	-0.113608	1.482225	С	0.222575	0.123320	1.470941
С	-1.918397	-1.418113	0.000000	С	1.909966	1.468007	0.000000
0	-0.305941	-0.161035	-2.646938	Ο	0.348656	0.161391	-2.643741
0	0.424479	3.225754	-2.231054	Ο	-0.417866	-3.260781	-2.217320
0	0.424479	3.225754	2.231054	Ο	-0.417866	-3.260781	2.217320
0	-2.841467	1.871932	0.000000	Ο	2.826781	-1.983399	0.000000
0	3.052073	0.869813	0.000000	Ο	-3.069603	-1.005480	0.000000
Ο	-3.061393	-1.531381	0.000000	Ο	3.059920	1.616722	0.000000
0	-0.305941	-0.161035	2.646938	Ο	0.348656	0.161391	2.643741

Table S2 Theoretical Cartesian coordinates (in Å) of CpFeMn(CO) $_7$ 7CO-2S using the M06-L and BP86 methods

		M06-L	-			BP86	
Atom	Х	Y	Z	Atom	Х	Y	Z
С	2.804767	0.005802	-1.771553	С	-2.840436	0.509224	1.730242
С	1.458994	-0.442488	-1.903906	С	-1.509936	0.047393	1.999417
С	1.314153	-1.598739	-1.102366	С	-1.407615	-1.286672	1.510970
С	2.545040	-1.843753	-0.455542	С	-2.662988	-1.641679	0.931712
С	3.480345	-0.854245	-0.881266	С	-3.561431	-0.534782	1.080570
Н	3.226800	0.877612	-2.249641	Η	-3.231003	1.493928	1.976864
Н	0.687256	0.017768	-2.502599	Н	-0.719632	0.617151	2.479711
Н	0.398843	-2.151877	-0.954270	Η	-0.517515	-1.908450	1.535364
Н	2.743310	-2.643028	0.242900	Η	-2.898438	-2.594320	0.462948
Н	4.506248	-0.765154	-0.559597	Η	-4.590388	-0.489169	0.734882
Fe	1.839830	0.060766	0.102461	Fe	-1.856964	0.043095	-0.115086
Mn	-1.895036	0.051610	0.156593	Mn	1.906052	0.038442	-0.137573
С	-2.248400	-0.752421	-1.389549	С	2.349009	-0.512661	1.496317
С	-0.000350	0.249134	0.639647	С	-0.008400	0.189611	-0.611200
С	-3.596858	0.435765	0.723056	С	3.572884	0.293165	-0.843661
С	-1.862189	-1.642824	0.876388	С	1.859401	-1.743849	-0.576097
С	-1.697616	1.582275	-0.845696	С	1.829559	1.716662	0.603160
С	1.940850	1.821591	0.172260	С	-2.123319	1.677127	-0.710419
С	2.325113	-0.127785	1.787634	С	-2.221846	-0.675490	-1.678774
Ο	-2.442595	-1.279269	-2.399920	0	2.634090	-0.874438	2.567170
Ο	-4.657878	0.680603	1.082153	0	4.619791	0.460284	-1.306563
Ο	-0.531654	0.759318	1.607163	0	0.524325	0.542826	-1.658255
Ο	-1.835239	-2.736646	1.222795	Ο	1.850424	-2.887151	-0.758860
Ο	-1.540295	2.470287	-1.555435	0	1.800219	2.732743	1.157237
0	2.651925	-0.258517	2.877336	0	-2.487057	-1.151109	-2.698605
0	2.005083	2.964307	0.209628	0	-2.324610	2.748226	-1.096078

Table S3 Theoretical Cartesian coordinates (in Å) of CpFeMn(CO) $_7$ 7CO-3S using the M06-L and BP86 methods

•		M06-L				BP86	
Atom	Х	Y	Ζ	Atom	Х	Y	Z
С	-3.520094	-0.900216	0.767563	С	-3.624524	-0.850926	0.710755
С	-2.390085	-1.772519	0.666594	С	-2.508224	-1.763591	0.698349
С	-2.003416	-1.824375	-0.690389	С	-2.044720	-1.871869	-0.643634
С	-2.847333	-0.959426	-1.428166	С	-2.834860	-1.008523	-1.461438
С	-3.801218	-0.406791	-0.519315	С	-3.823545	-0.391206	-0.616368
Н	-4.047410	-0.650050	1.675506	Н	-4.200212	-0.558680	1.585123
Н	-1.920866	-2.306040	1.479392	Н	-2.100737	-2.288877	1.558079
Η	-1.168762	-2.381517	-1.088531	Н	-1.210492	-2.480692	-0.981307
Η	-2.788089	-0.768245	-2.488517	Н	-2.721725	-0.861117	-2.531902
Η	-4.580815	0.295881	-0.772563	Н	-4.579292	0.321334	-0.937767
Fe	-1.847676	0.152380	0.032695	Fe	-1.856885	0.153521	0.027311
Mn	1.898710	-0.102972	-0.219221	Mn	1.910133	-0.099277	-0.201202
С	1.643988	-1.893406	0.091978	С	1.719550	-1.890205	0.127187
С	1.924398	1.740581	-0.163704	С	2.014096	1.737766	-0.188776
С	3.529391	-0.285311	-1.040896	С	3.519989	-0.299889	-1.047995
С	-1.309405	0.769698	1.607486	С	-1.391082	0.768618	1.616461
С	-1.936873	1.760133	-0.693433	С	-1.952676	1.757364	-0.695264
Ο	1.466811	-2.990377	0.385716	0	1.621567	-3.006564	0.424638
Ο	4.5399651.	-0.401708	-1.570265	0	4.524847	-0.430762	-1.606523
Ο	922109	2.878811	-0.026047	0	2.112218	2.885757	-0.090251
Ο	-2.004116	2.797619	-1.175364	0	-2.047924	2.807011	-1.171980
Ο	-0.963263	1.157764	2.627001	0	-1.124741	1.165147	2.668889
Ο	0.402170	-0.086871	-1.722874	0	0.396585	-0.101487	-1.703666
С	-0.014817	0.029467	-0.585809	С	-0.015288	0.026771	-0.554812
0	2.748124	0.023116	2.588639	0	2.803210	0.063428	2.602259
С	2.422692	-0.025240	1.483215	С	2.449960	0.002051	1.495671

Table S4 Theoretical Cartesian coordinates (in Å) of CpFeMn(CO)₇ **7CO-4S** using the M06-L and BP86 methods

		M06-L		• •		BP86	
Atom	Х	Y	Ζ	Atom	Х	Y	Z
С	1.430889	-2.655147	0.705359	С	-2.602134	-0.711426	-1.565351
С	1.659694	-1.326747	1.153612	С	-1.251126	-1.163162	-1.700966
С	1.751439	-0.484610	0.000000	С	-0.395048	-0.000005	-1.717984
С	1.659694	-1.326747	-1.153612	С	-1.251130	1.163148	-1.700973
С	1.430889	-2.655147	-0.705359	С	-2.602136	0.711409	-1.565355
Н	1.268414	-3.512935	1.339731	Η	-3.476556	-1.349525	-1.468472
Н	1.706947	-1.000005	2.180719	Η	-0.923219	-2.197721	-1.737923
Н	2.094320	0.585944	0.000000	Η	0.704348	-0.000004	-2.027989
Н	1.706947	-1.000005	-2.180719	Η	-0.923227	2.197707	-1.737935
Н	1.268414	-3.512935	-1.339731	Η	-3.476560	1.349505	-1.468479
Fe	0.050641	-1.339417	0.000000	Fe	-1.374176	-0.000002	0.038117
Mn	0.281644	1.251102	0.000000	Mn	1.269528	0.000001	-0.231874
С	1.478705	1.523010	0.000000	С	1.578009	0.000008	1.523529
С	0.802461	2.968851	0.000000	С	2.984163	0.000002	-0.762385
С	0.172271	1.154559	-1.836834	С	1.231659	1.833058	-0.120827
С	0.172271	1.154559	1.836834	С	1.231663	-1.833054	-0.120816
0	1.113558	4.076065	0.000000	0	4.095780	0.000001	-1.094851
0	2.619940	1.655952	0.000000	0	1.770856	0.000012	2.665744
0	0.035375	1.125470	-2.973985	0	1.278424	2.980506	0.011381
0	0.035375	1.125470	2.973985	0	1.278457	-2.980502	0.011396
0	2.044037	-1.532052	-2.112354	0	-1.832021	2.104591	2.005583
0	2.044037	-1.532052	2.112354	Ο	-1.832023	-2.104585	2.005595
С	1.265435	-1.456592	1.267936	С	-1.627809	-1.261527	1.232888
С	1.265435	-1.456592	-1.267936	С	-1.627812	1.261528	1.232881

Table S5 Theoretical Cartesian coordinates (in Å) of $CpFeMn(CO)_6$ 6CO-1S using the M06-L and BP86 methods

• ·		M06-L		• •		BP86	
Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	0.982155	2.885639	0.710344	С	-2.917407	1.010164	0.685491
С	-0.362816	2.903078	1.146267	С	-2.926618	-0.331570	1.166891
С	-1.198543	2.903629	0.000000	С	-2.931684	-1.210509	0.039260
С	-0.362816	2.903078	1.146267	С	-2.929245	-0.404414	-1.141525
С	0.982155	2.885639	0.710344	С	-2.919064	0.965087	-0.745726
Н	1.857366	2.850371	1.341895	Η	-2.890941	1.909784	1.295194
Н	-0.698236	2.878125	2.172255	Н	-2.903779	-0.635891	2.210223
Η	-2.278287	2.898711	0.000000	Η	-2.925933	-2.297043	0.073595
Н	-0.698236	2.878125	2.172255	Н	-2.908917	-0.773583	-2.163770
Н	1.857366	2.850371	1.341895	Η	-2.894363	1.824446	-1.411044
Fe	-0.010440	1.137582	0.000000	Fe	-1.141280	-0.007066	-0.001113
Mn	0.009746	1.170759	0.000000	Mn	1.178344	0.006150	0.000863
С	-0.818964	0.056096	1.382119	С	-0.063166	-0.776103	1.401427
С	0.778194	2.159045	1.331665	С	2.176045	0.733094	-1.341467
С	-1.516787	2.177654	0.000000	С	2.190085	-1.510909	0.040712
С	-0.818964	0.056096	1.382119	С	-0.067720	-0.847960	-1.359718
С	0.778194	2.159045	1.331665	С	2.175105	0.806027	1.301123
0	-1.420932	0.117324	2.376319	0	-0.123245	-1.351286	2.423411
0	-2.475932	2.802483	0.000000	Ο	2.832800	-2.470656	0.066119
0	1.260892	2.770976	2.170319	Ο	2.808991	1.192789	-2.191861
0	-1.420932	0.117324	2.376319	Ο	-0.121741	-1.475312	-2.350894
0	1.260892	2.770976	2.170319	Ο	2.806766	1.312722	2.125429
0	2.761545	0.159950	0.000000	Ο	-0.150410	2.768869	-0.074432
С	1.602119	0.058297	0.000000	С	-0.067443	1.597969	-0.042971

Table S6 Theoretical Cartesian coordinates (in Å) of $CpFeMn(CO)_6$ 6CO-2T using the M06-L and BP86 methods

• •		M06-L		A .		BP86	
Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	3.085339	-0.723022	-0.872305	С	3.091930	-0.745304	-0.934925
С	2.163267	-1.707035	-0.405783	С	2.200126	-1.742650	-0.410931
С	1.859303	-1.418904	0.948249	С	1.976539	-1.458754	0.972407
С	2.570761	-0.257181	1.323521	С	2.714027	-0.289718	1.310985
С	3.343207	0.163663	0.195098	С	3.413387	0.147445	0.126845
Η	3.502611	-0.660420	-1.865319	Η	3.454208	-0.680733	-1.957155
Н	1.758875	-2.523104	-0.985044	Η	1.769679	-2.569595	-0.969323
Н	1.179028	-1.971558	1.578986	Η	1.341694	-2.026580	1.647472
Η	2.532712	0.226132	2.287808	Η	2.745340	0.187913	2.286400
Н	3.985805	1.030457	0.158044	Η	4.062773	1.016388	0.055778
Fe	1.335695	0.190894	-0.284263	Fe	1.354183	0.185977	-0.241874
Mn	1.361342	-0.115929	-0.138145	Mn	-1.379634	-0.103645	-0.140351
С	1.030394	-1.924100	-0.118025	С	-1.115980	-1.916354	-0.111466
С	1.711725	1.705779	-0.054684	С	-1.740380	1.707470	-0.035448
С	3.134661	-0.437019	-0.101002	С	-3.158252	-0.399245	-0.171707
С	0.982010	-0.079984	1.596942	С	-1.069086	-0.087277	1.605574
Ο	0.857603	-3.054553	-0.035854	0	-1.009903	-3.065163	-0.023701
Ο	4.261199	-0.652116	-0.040337	0	-4.299324	-0.599241	-0.157446
Ο	1.988377	2.807873	0.064775	0	-2.048771	2.810374	0.099569
Ο	0.739361	-0.064101	2.724190	0	-0.904733	-0.084248	2.756739
Ο	1.221656	3.067710	0.137816	0	1.342806	3.076801	0.139436
Ο	0.758691	0.069208	-2.308990	0	-0.695343	0.107589	-2.331155
С	0.181609	0.155184	-1.591504	С	0.196066	0.169427	-1.537344
С	1.224481	1.929500	-0.030973	С	1.296715	1.924864	-0.002860

Table S7 Theoretical Cartesian coordinates (in Å) of CpFeMn(CO) $_6$ 6CO-3S using the M06-L and BP86 methods

		M06-L		A 4		BP86	
Atom	Х	Y	Z	Atom	Х	Y	Z
С	1.370480	2.446873	0.705415	С	1.381934	2.527248	0.709492
С	0.112186	2.946892	1.139618	С	0.092869	2.980982	1.148532
С	-0.666316	3.273577	0.000000	С	-0.700191	3.287095	0.000000
С	0.112186	2.946892	-1.139618	С	0.092869	2.980982	-1.148532
С	1.370480	2.446873	-0.705415	С	1.381934	2.527248	-0.709492
Н	2.174935	2.110928	1.341274	Η	2.204261	2.222930	1.350711
Н	-0.204333	3.046101	2.167470	Η	-0.225139	3.079970	2.183762
Н	-1.666911	3.676382	0.000000	Η	-1.721357	3.657491	0.000000
Н	-0.204333	3.046101	-2.167470	Η	-0.225139	3.079970	-2.183762
Н	2.174935	2.110928	-1.341274	Η	2.204261	2.222930	-1.350711
Fe	-0.229577	1.243348	0.000000	Fe	-0.203466	1.230282	0.000000
Mn	0.189537	-1.192386	0.000000	Mn	0.169990	-1.215901	0.000000
С	-1.202576	0.498635	1.264214	С	-1.194616	0.505274	1.263062
С	0.703552	-2.329345	-1.274094	С	0.712390	-2.345083	-1.263442
С	-1.513878	-1.936278	0.000000	С	-1.513279	-1.989915	0.000000
С	-1.202576	0.498635	-1.264214	С	-1.194616	0.505274	-1.263062
С	0.703552	-2.329345	1.274094	С	0.712390	-2.345083	1.263442
0	-1.908594	0.212532	2.135712	0	-1.928815	0.258757	2.135893
0	-2.504916	-2.508761	0.000000	0	-2.492312	-2.604025	0.000000
0	1.038566	-3.028352	-2.122363	0	1.074600	-3.046438	-2.113619
0	-1.908594	0.212532	-2.135712	0	-1.928815	0.258757	-2.135893
0	1.038566	-3.028352	2.122363	0	1.074600	-3.046438	2.113619
0	2.916452	-0.014262	0.000000	Ο	2.895475	-0.029427	0.000000
С	1.810319	-0.341832	0.000000	С	1.769255	-0.331124	0.000000

Table S8 Theoretical Cartesian coordinates (in Å) of CpFeMn(CO) $_6$ 6CO-4S using the M06-L and BP86 methods

		M06-L		• •		BP86	
Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	1.625800	-1.694514	1.157324	С	1.489598	-2.122960	1.164134
С	1.972936	-0.927454	0.000000	С	2.042909	-1.487866	0.000000
С	1.625800	-1.694514	-1.157324	С	1.489598	-2.122960	-1.164134
С	0.985544	-2.864896	-0.719569	С	0.554006	-3.090823	-0.726029
С	0.985544	-2.864896	0.719569	С	0.554006	-3.090823	0.726029
Η	1.767124	-1.389305	2.183242	Н	1.711911	-1.870057	2.197159
Н	2.523976	0.006297	0.000000	Н	2.811906	-0.718158	0.000000
Η	1.767124	-1.389305	-2.183242	Н	1.711911	-1.870057	-2.197159
Н	0.574444	-3.638029	-1.350316	Н	-0.047869	-3.734016	-1.362737
Η	0.574444	-3.638029	1.350316	Н	-0.047869	-3.734016	1.362737
Fe	-0.078452	-1.223911	0.000000	Fe	-0.081376	-1.205934	0.000000
Mn	0.123362	1.188989	0.000000	Mn	0.177281	1.253606	0.000000
С	0.795501	2.184254	-1.362410	С	0.822366	2.304674	-1.327786
С	-1.364416	2.141081	0.000000	С	-1.336193	2.146784	0.000000
С	-0.521766	-0.045734	-1.452153	С	-0.318908	-0.008197	-1.476075
С	0.795501	2.184254	1.362410	С	0.822366	2.304674	1.327786
Ο	1.186349	2.825954	-2.230562	0	1.222487	2.989713	-2.171303
0	-2.351605	2.729609	0.000000	0	-2.355435	2.703145	0.000000
0	-0.935398	-0.091494	-2.544735	Ο	-0.622809	-0.065920	-2.616560
Ο	1.186349	2.825954	2.230562	Ο	1.222487	2.989713	2.171303
0	-2.707301	-2.479185	0.000000	Ο	-2.906884	-1.948938	0.000000
Ο	-0.935398	-0.091494	2.544735	0	-0.622809	-0.065920	2.616560
С	-0.521766	-0.045734	1.452153	С	-0.318908	-0.008197	1.476075
С	-1.677906	-1.973416	0.000000	С	-1.792929	-1.636626	0.000000

Table S9 Theoretical Cartesian coordinates (in Å) of CpFeMn(CO) $_6$ 6CO-5S using the M06-L and BP86 methods

Atom		M06-L		Ato		BP86	
Atom	Х	Y	Ζ	m	Х	Y	Ζ
С	0.648243	-2.600290	1.139238	С	-2.633692	1.163335	0.634021
С	1.464922	-2.373931	0.000000	С	-2.382426	0.050906	1.499622
С	0.648243	-2.600290	-1.139238	С	-2.608806	-1.132130	0.729832
С	-0.654664	-2.983341	-0.702344	С	-3.026113	-0.747787	-0.593767
С	-0.654664	-2.983341	0.702344	С	-3.042907	0.664247	-0.652665
Н	0.946671	-2.465532	2.168575	Н	-2.519197	2.212552	0.896037
Н	2.502128	-2.076284	0.000000	Н	-2.070991	0.096452	2.539164
Н	0.946671	-2.465532	-2.168575	Н	-2.468326	-2.153765	1.074936
Н	-1.499149	-3.185912	-1.343454	Н	-3.244210	-1.428470	-1.412567
Н	-1.499149	-3.185912	1.343454	Н	-3.279139	1.269879	-1.523567
Fe	-0.120773	-1.079250	0.000000	Fe	-1.071130	0.002221	-0.118871
Mn	0.033346	1.119218	0.000000	Mn	1.121911	-0.000204	0.037833
С	-0.326872	2.398769	1.212005	С	2.407682	-1.201656	-0.317169
С	-0.326872	2.398769	-1.212005	С	1.321960	-0.007044	1.807833
С	-0.782371	-0.194432	-1.454925	С	-0.201088	-1.437520	-0.829847
С	1.807970	1.309249	0.000000	С	2.408539	1.203251	-0.307004
0	-0.554186	3.198850	-2.004911	0	1.429416	-0.012024	2.964553
0	-0.554186	3.198850	2.004911	0	3.223004	-1.996418	-0.538845
0	-1.257467	-0.120840	-2.512653	0	-0.119471	-2.485398	-1.347918
0	2.955794	1.393834	0.000000	0	3.224432	1.999348	-0.521751
0	-1.257467	-0.120840	2.512653	0	-0.115856	2.490184	-1.343067
С	-0.782371	-0.194432	1.454925	С	-0.201272	1.441924	-0.826352

Table S10 Theoretical Cartesian coordinates (in Å) of $CpFeMn(CO)_5$ 5CO-1S using the M06-L and BP86 methods

A 4		M06-L		A 4		BP86	
Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	0.861012	2.981467	0.711775	С	0.904069	2.896710	0.715720
С	-0.481452	2.862846	1.149118	С	-0.455807	2.866093	1.159747
С	-1.305606	2.786766	0.000000	С	-1.289947	2.834912	0.000000
С	-0.481452	2.862846	-1.149118	С	-0.455807	2.866093	-1.159747
С	0.861012	2.981467	-0.711775	С	0.904069	2.896710	-0.715720
Н	1.727756	3.042985	1.353037	Н	1.781319	2.896809	1.357398
Н	-0.809680	2.807561	2.176038	Н	-0.790153	2.836274	2.193365
Н	-2.377346	2.648091	0.000000	Н	-2.375861	2.763125	0.000000
Н	-0.809680	2.807561	-2.176038	Н	-0.790153	2.836274	-2.193365
Н	1.727756	3.042985	-1.353037	Н	1.781319	2.896809	-1.357398
Fe	0.082471	1.131259	0.000000	Fe	-0.021538	1.113257	0.000000
Mn	0.027995	-1.183503	0.000000	Mn	0.068017	-1.200938	0.000000
С	0.439774	-2.437430	-1.237355	С	0.398187	-2.455982	-1.265400
С	0.439774	-2.437430	1.237355	С	0.398187	-2.455982	1.265400
С	0.449802	0.035834	-1.522760	С	0.501723	0.079534	-1.485082
С	-1.725532	-1.514613	0.000000	С	-1.693573	-1.447269	0.000000
0	0.715459	-3.228034	-2.021241	Ο	0.616953	-3.257442	-2.070504
0	0.715459	-3.228034	2.021241	Ο	0.616953	-3.257442	2.070504
0	0.756945	0.127646	-2.645949	Ο	0.868191	0.165227	-2.604101
0	-2.863026	-1.689204	0.000000	Ο	-2.848271	-1.579650	0.000000
0	0.756945	0.127646	2.645949	Ο	0.868191	0.165227	2.604101
С	0.449802	0.035834	1.522760	С	0.501723	0.079534	1.485082

Table S11 Theoretical Cartesian coordinates (in Å) of $CpFeMn(CO)_5$ 5CO-2T using the M06-L and BP86 methods

		M06-L	5			BP86	
Atom	Х	Y	Z	Atom	Х	Y	Ζ
С	2.879924	-0.863045	-0.885908	С	3.106535	-0.542945	-0.831278
С	1.850300	-1.753395	-0.457649	С	2.222913	-1.645267	-0.565443
С	1.539181	-1.453932	0.894973	С	1.793494	-1.563687	0.799584
С	2.354783	-0.374366	1.300310	С	2.388951	-0.406186	1.374534
С	3.194269	-0.017464	0.197565	С	3.207575	0.217963	0.364953
Н	3.323871	-0.828991	-1.868743	Н	3.600299	-0.328366	-1.774768
Н	1.374250	-2.512055	-1.060385	Н	1.925894	-2.408090	-1.280557
Η	0.795008	-1.948725	1.500554	Н	1.127599	-2.257740	1.304019
Η	2.335827	0.103662	2.267983	Н	2.248427	-0.054498	2.392862
Η	3.918900	0.782558	0.188886	Н	3.786812	1.129006	0.493423
Fe	1.200552	0.203806	-0.326343	Fe	1.199922	0.164764	-0.290288
Mn	-1.376240	0.146890	-0.171483	Mn	-1.303552	-0.024097	-0.161456
С	-1.578375	-1.578538	-0.030527	С	-2.264337	-1.496217	-0.211966
С	-3.155159	0.438465	-0.087536	С	-2.800345	0.914417	0.069845
С	-1.016883	0.245858	1.556055	С	-0.927698	-0.189764	1.544378
0	-1.654486	-2.727656	0.062288	0	-2.841130	-2.507868	-0.232024
0	-4.288196	0.613435	-0.009025	0	-3.742157	1.573224	0.241108
Ο	-0.790935	0.290490	2.687748	0	-0.757950	-0.316060	2.691672
Ο	1.174271	3.049623	0.285988	0	0.892670	3.017599	0.273459
Ο	-0.963361	0.505728	-2.241702	Ο	-0.821370	0.245794	-2.384895
С	0.047432	0.361029	-1.613889	С	0.116488	0.188587	-1.643721
С	1.155439	1.925287	0.036827	С	0.966639	1.879224	0.054839

Table S12 Theoretical Cartesian coordinates (in Å) of $CpFeMn(CO)_5$ 5CO-3S using the M06-L and BP86 methods

		M06-L		• •		BP86	
Atom	Х	Y	Ζ	Atom	Х	Y	Z
С	-3.041422	0.377771	0.578901	С	-3.131039	0.205534	0.558937
С	-2.043705	-0.129771	1.472112	С	-2.100357	-0.212226	1.483187
С	-1.593803	-1.381296	0.971786	С	-1.528728	-1.432107	0.993613
С	-2.263172	-1.611454	-0.256610	С	-2.157937	-1.726989	-0.254504
С	-3.159181	-0.522498	-0.490696	С	-3.148964	-0.714386	-0.513753
Н	-3.564640	1.315717	0.685833	Η	-3.749664	1.093853	0.655687
Н	-1.708124	0.345722	2.381511	Η	-1.835700	0.288924	2.410499
Н	-0.880223	-2.037574	1.445436	Η	-0.782338	-2.040131	1.495387
Н	-2.105188	-2.448842	-0.919957	Η	-1.920687	-2.562544	-0.908610
Н	-3.785635	-0.399496	-1.361466	Η	-3.775133	-0.652441	-1.400542
Fe	-1.193980	0.149179	-0.365667	Fe	-1.217517	0.156603	-0.350618
Mn	1.217831	-0.098278	-0.100869	Mn	1.239508	-0.074111	-0.065220
С	2.220680	-1.560564	-0.162657	С	2.248468	-1.518075	-0.212389
С	0.247817	-0.171160	-1.662501	С	0.258505	-0.086084	-1.607763
С	2.665443	0.910484	-0.376287	С	2.669586	0.919440	-0.417618
С	1.166255	-0.015019	1.708475	С	1.313431	0.023290	1.746786
С	-0.654784	1.807663	-0.042342	С	-0.880706	1.862057	-0.023188
0	2.824362	-2.541442	-0.192034	Ο	2.862595	-2.501875	-0.308083
Ο	-0.639273	-0.010793	-2.437677	Ο	-0.588172	0.060160	-2.444562
Ο	3.564564	1.602105	-0.570638	Ο	3.571006	1.608930	-0.668120
0	1.098679	0.000432	2.857174	Ο	1.362272	0.064966	2.905620
Ο	-0.426241	2.896927	0.262752	Ο	-0.772987	2.984157	0.261934

Table S13 Theoretical Cartesian coordinates (in Å) of $CpFeMn(CO)_5$ 5CO-4S using the M06-L and BP86 methods

	M06-L	BP86
	12.1 (A", 0.1)	9.8 (A, 0.2)
	54.5 (A', 0.2)	39.1 (A, 0.3)
	69.2 (A", 0.1)	50.2 (A, 0.0)
	70.4 (A', 0.1)	54.1 (A, 0.2)
	71.5 (A", 0.1)	63.7 (A, 0.1)
	80.2 (A", 0.2)	71.9 (A, 0.0)
	85.5 (A', 0.2)	78.2 (A, 0.1)
	93.6 (A", 0.0)	89.3 (A, 0.1)
	97.1 (A', 0.9)	97.2 (A, 0.3)
	100.1 (A", 0.4)	100.8 (A, 0.6)
	106.5 (A', 0.0)	102.2 (A, 0.5)
	111.2 (A', 0.1)	102.8 (A, 0.1)
	112.0 (A", 0.0)	108.4 (A, 0.4)
	114.0 (A', 0.9)	115.2 (A, 0.5)
	128.5 (A", 0.1)	125.9 (A, 0.2)
	140.1 (A', 3.0)	132.2 (A, 3.2)
	166.8 (A', 0.7)	162.9 (A, 0.7)
	360.5 (A', 1.8)	333.0 (A, 3.2)
	376.5 (A", 3.7)	357.4 (A, 3.3)
CnFeMn(CO) ₇	392.6 (A", 0.1)	385.3 (A, 0.5)
7CO-18	413.6 (A', 0.4)	388.5 (A, 0.1)
700 15	414.0 (A", 0.0)	397.6 (A, 6.9)
	427.4 (A', 7.8)	420.7 (A, 0.3)
	433.0 (A', 0.7)	439.6 (A, 5.3)
	438.4 (A', 1.2)	442.8 (A, 2.9)
	457.6 (A", 0.1)	447.6 (A, 0.7)
	472.7 (A', 19.9)	466.4 (A, 5.5)
	473.4 (A", 8.0)	493.9 (A, 5.8)
	484.0 (A', 13.3)	496.5 (A, 8.3)
	506.6 (A', 0.1)	507.9 (A, 2.1)
	514.4 (A", 0.1)	509.1 (A, 8.4)
	515.9 (A', 13.2)	523.3 (A, 16.5)
	559.6 (A", 3.8)	552.0 (A, 6.8)
	573.4 (A", 35.0)	563.3 (A, 4.1)
	580.5 (A", 0.9)	571.1 (A, 24.4)
	584.3 (A', 63.8)	578.5 (A, 35.5)
	597.4 (A', 62.2)	581.5 (A, 34.4)
	616.3 (A", 2.8)	586.9 (A, 9.8)
	618.1 (A', 54.5)	592.6 (A, 48.9)
	648.6 (A', 33.8)	640.0 (A, 30.6)
	673.0 (A', 111.7)	673.5 (A, 110.5)

Table S14 Theoretical harmonic vibrational frequencies (cm⁻¹) and IR intensities (km/mol) of CpFeMn(CO)_n (n = 7, 6, 5) by M06-L and BP86 methods

	689.3 (A", 98.8)	680.8 (A, 94.1)
	693.0 (A', 242.1)	684.8 (A, 247.8)
	833.7 (A", 0.0)	818.5 (A, 12.7)
	833.8 (A', 1.0)	822.8 (A, 2.8)
	848.4 (A', 14.7)	826.0 (A, 26.5)
	855.2 (A', 27.5)	835.1 (A, 11.8)
	873.9 (A", 5.8)	844.3 (A. 7.2)
	934.3 (A", 0.3)	903.1 (A, 0.6)
	934.5 (A'. 3.3)	911.3 (A. 1.0)
	1027.0 (A'. 3.2)	991.0 (A, 5.0)
	1040.5 (A". 3.9)	1004.3 (A. 4.2)
	1083 8 (A" 0 0)	1050 8 (A 0 2)
	1086 6 (A' 2 7)	1052 4 (A 2 5)
	11487(A' 48)	1111 7 (A 1 6)
	1277.8(A'', 0.0)	1244 6 (A 0 0)
	14063(A' 34)	1350 5 (A 2 0)
	1408.7(A'' 0.8)	1355 5 (A, 0.6)
	1462.7(A' 4.2)	1407 8 (A 3 1)
	14645(A" 22)	14190(A, 67)
	2022.7(A", 32.6)	1948 4 (A 13 3)
	2022.7 (A' 178.9)	1968 2 (A 367 6)
	$2033.1(A^{+}, 176.3)$	1972 6 (A 793 4)
	2045.0(11, 702.0) 2055.4(A'' 1767.2)	1979 8 (A 929 8)
	$2053.4 (\Lambda', 1707.2)$ 2064 2 (Λ' 279 4)	$1992.7(\Delta 1428.8)$
	2069.2(A', 279.4) 2069.2(A', 1431.6)	2005 4 (A 487 2)
	21421(A', 1431.0)	2003.4 (11, 407.2) 2072 5 (A 477.7)
	2172.1(A, 737.0) 2226.0(A', 0.3)	2072.3(A, 477.7) 3153 $A(A, 0.2)$
	$3220.9(\mathbf{A}, 0.3)$ $3220.8(\mathbf{A}'', 0.2)$	$3159.7(\Lambda, 0.2)$
	3229.8 (A', 0.2)	3139.7 (A, 0.0)
	3243.6 (A', 0.3)	3170.8(A, 0.9)
	3249.3 (A, 0.9)	5172.4(A, 0.2) 2194 1 (A, 0.1)
	3237.9(A, 0.0)	260(A'', 0.4)
	10.0 (A, 0.0)	20.9 (A, 0.4)
	43.0(A, 0.1) 56.3 (A", 0.0)	39.1 (A, 0.2)
	50.5(A, 0.0)	49.4 (A, 0.0)
	72.4(A', 0.4)	74.7(A!, 0.4)
	73.4 (A, 0.0) 70.2 (A'', 0.0)	74.7 (A, 0.0) 86.7 (A", 0.2)
CpFeMn(CO) ₇	/9.2 (A , 0.0)	80.7 (A, 0.2)
7CO-2S	83.3 (A, 0.2)	92.1(A, 0.2)
	89.4 (A, 0.2)	92.7 (A, 0.0)
	90.5 (A , 0.1)	90.1 (A , 0.0)
	9/.3 (A, 0.3)	$\frac{9}{102}$ (A, 0.2)
	99.3 (A, U.O) 102.4 (AL 0.8)	102.5 (A, 0.2)
	102.4 (A', 0.8)	104.4 (A', 0.7)
	111.9 (A', 0.0)	107.3 (A', 0.3)

148.5 (A', 0.3)	145.8 (A', 0.3)
199.8 (A", 1.3)	201.1 (A", 1.4)
215.4 (A', 0.8)	215.5 (A', 1.0)
238.5 (A', 1.1)	238.9 (A', 1.4)
318.4 (A", 0.8)	305.9 (A", 0.1)
344.9 (A', 4.6)	311.5 (A', 6.0)
373.4 (A", 8.4)	353.0 (A", 10.5)
393.1 (A', 8.3)	379.9 (A', 0.5)
399.9 (A", 0.3)	398.3 (A", 0.2)
405.3 (A', 8.5)	404.6 (A', 17.4)
423.7 (A', 0.8)	423.2 (A', 0.3)
425.1 (A', 2.7)	432.7 (A", 0.4)
437.1 (A", 1.0)	439.5 (A', 1.3)
468.2 (A', 20.0)	477.7 (A", 0.0)
479.8 (A", 2.7)	484.2 (A', 5.5)
480.2 (A', 28.8)	491.3 (A', 22.1)
497.3 (A", 10.3)	494.9 (A", 6.9)
518.7 (A', 1.4)	509.4 (A", 10.3)
522.8 (A", 11.1)	523.8 (A', 10.3)
552.5 (A', 17.9)	537.2 (A', 17.6)
555.4 (A', 43.9)	553.7 (A', 26.4)
581.8 (A", 3.0)	564.7 (A", 3.1)
589.8 (A', 5.2)	575.6 (A", 0.1)
590.6 (A", 6.8)	578.1 (A', 5.9)
614.9 (A', 37.3)	595.0 (A', 10.4)
619.7 (A", 11.2)	596.9 (A", 13.6)
638.9 (A', 419.6)	634.5 (A', 421.5)
651.7 (A', 178.1)	648.2 (A', 162.5)
680.9 (A', 242.0)	677.6 (A', 268.7)
683.3 (A", 86.3)	682.4 (A", 86.0)
835.4 (A", 1.9)	814.0 (A", 3.4)
837.6 (A', 5.1)	816.3 (A', 67.3)
838.1 (A", 3.5)	823.0 (A", 1.7)
846.6 (A', 44.9)	823.8 (A', 0.3)
880.5 (A', 5.4)	861.1 (A', 4.9)
929.3 (A", 0.2)	905.3 (A", 0.2)
942.7 (A', 2.9)	917.7 (A', 3.1)
1031.3 (A', 2.6)	995.5 (A', 3.4)
1038.5 (A", 5.9)	1006.8 (A", 7.7)
1082.1 (A', 2.0)	1052.0 (A', 1.9)
1084.9 (A", 0.5)	1053.5 (A", 0.5)
1152.6 (A', 1.8)	1115.7 (A', 0.5)
1278.2 (A", 0.0)	1246.1 (A", 0.0)
1407.7 (A', 0.7)	1353.4 (A', 0.8)

	1409.1 (A", 0.0)	1354.0 (A", 0.1)
	1459.7 (A', 3.7)	1408.0 (A', 5.9)
	1472.3 (A", 1.1)	1425.7 (A", 2.3)
	1892.5 (A", 860.3)	1821.8 (A", 779.7)
	1916.7 (A', 20.4)	1844.0 (A', 12.4)
	2041.8 (A', 650.4)	1970.5 (A', 631.1)
	2060.9 (A', 516.0)	1988.4 (A', 625.6)
	2063.1 (A", 950.6)	1992.4 (A", 851.4)
	2075.0 (A', 1203.7)	2001.8 (A', 933.8)
	2141.9 (A', 649.3)	2067.7 (A', 622.8)
	3226.8 (A', 0.5)	3152.3 (A', 0.4)
	3227.7 (A", 0.0)	3155.7 (A", 0.0)
	3240.7 (A', 0.6)	3166.5 (A', 0.4)
	3249.5 (A", 0.1)	3172.8 (A", 0.5)
	3256.0 (A', 0.1)	3180.1 (A', 0.1)
	21.3 (A, 0.2)	15.2 (A, 0.2)
	35.8 (A, 0.0)	27.9 (A, 0.1)
	39.4 (A, 0.1)	35.2 (A, 0.0)
	42.4 (A, 0.1)	38.8 (A, 0.3)
	59.4 (A, 0.2)	56.2 (A, 0.4)
	70.6 (A, 0.4)	71.5 (A, 0.4)
	73.1 (A, 0.1)	74.4 (A, 0.1)
	75.0 (A, 0.1)	78.1 (A, 0.1)
	83.5 (A, 0.0)	86.2 (A, 0.0)
	92.3 (A, 0.5)	95.4 (A, 0.4)
	94.9 (A, 0.6)	98.3 (A, 0.4)
	100.8 (A, 0.1)	106.4 (A, 0.1)
	122.9 (A, 0.1)	120.4 (A, 0.2)
	130.0 (A, 0.1)	130.6 (A, 0.1)
CpFeMn(CO) ₇	170.6 (A, 0.0)	171.1 (A, 0.0)
7CO-38	192.3 (A, 1.1)	188.7 (A, 0.3)
	304.9 (A, 0.6)	295.6 (A, 2.1)
	353.3 (A. 0.9)	336.1 (A. 4.4)
	367.9 (A, 3.4)	349.9 (A, 0.4)
	376.7 (A. 0.7)	362.0 (A. 2.7)
	389.4 (A. 8.0)	374.1 (A. 0.4)
	401 1 (A 15 8)	395 5 (A 26 0)
	428 4 (A 4 7)	434 3 (A 2 2)
	439.2 (A. 6.6)	444.3 (A. 2.2)
	449 8 (A 4 5)	4457 (A 0 2)
	456.8 (A. 5.9)	451.5 (A. 3.1)
	465.2 (A. 16.0)	475.9 (A, 4.1)
	471.9 (A. 1.3)	476.5 (A. 5 4)
	502.3 (A, 3.8)	501.7 (A, 1.9)

	506.1 (A, 2.4)	504.2 (A, 12.5)
	514.1 (A, 19.3)	523.9 (A, 11.3)
	543.5 (A, 4.4)	534.0 (A, 2.4)
	553.6 (A, 9.7)	545.0 (A, 3.3)
	578.8 (A, 19.0)	571.2 (A, 13.1)
	591.4 (A, 60.9)	580.0 (A, 5.4)
	601.6 (A, 85.3)	580.7 (A, 50.7)
	612.1 (A, 7.9)	589.8 (A, 62.4)
	616.4 (A, 7.1)	602.0 (A, 27.0)
	642.4 (A, 38.5)	635.5 (A, 23.8)
	655.3 (A, 73.5)	647.9 (A, 87.1)
	674.0 (A. 73.3)	668.5 (A. 63.0)
	692.2 (A. 78.3)	686.0 (A. 66.0)
	742.2 (A. 398.6)	723.1 (A. 411.9)
	834.1 (A. 7.3)	813.6 (A. 43.9)
	840.3 (A. 1.7)	820.8 (A. 4.3)
	843.2 (A. 17.1)	825.1 (A. 0.9)
	853.6 (A. 43.3)	828.3 (A. 41.9)
	880 9 (A 7 7)	8596(A 70)
	940 6 (A 1 1)	913 5 (A 0 3)
	941 0 (A 1 2)	917 2 (A 1 5)
	10285(A 4 0)	999 0 (A 4 6)
	1020.5 (A, A, C)	1003 9 (A 6 3)
	1083.2(A 10)	1051 9 (A, 0.2)
	1083 6 (A 0 4)	1053 6 (A 1 4)
	1152 4 (A 1 1)	11149(A 0 2)
	1278 5 (A 0 0)	1246 5 (A, 0, 0)
	1406 0 (A 4 5)	1351 1 (A 1 6)
	1408.2(A + 1.4)	1353 4 (A 6 4)
	14619(A 22)	1411 6 (A 5 1)
	1474 8 (A 2 2)	1421 9 (A 2 5)
	1647.9(A, 140.1)	1571 1 (A 138 1)
	2004 9 (A 714 3)	1938 2 (A 657 2)
	2007 4 (A 1110 2)	1958.3 (A 1064.4)
	2050 4 (A 587 0)	1981 1 (A 515 (I)
	2072 4 (A 954 1)	1995 5 (A 907 2)
	2072.4 (11, 754.1) $2000 5 (\Delta 1230 9)$	2027 3 (A 1092 3)
	$2106.2 (\Delta - 307.4)$	$2027.5(\Lambda, 10)2.5)$
	2120.2 (A, 507.7) $2227.2 (\Delta 0.3)$	2032.1 (A, 2)1.0) $3153.5 (\Delta 0.3)$
	3227.2(A, 0.5)	3156 9 (A, 0.0)
	3242 4 (A 0 2)	31714(A 0 0)
	3246.8(A, 0.1)	31739(A, 0.2)
	32556(A, 0, 3)	3183 0 (A 0 2)
$CnEeMn(CO)_{7}$	89(A 0 2)	$127(\Delta 0.3)$
	0.7(11, 0.2)	12.7(11, 0.3)

7CO-4S	31.7 (A, 0.1)	30.6 (A, 0.2)
	39.8 (A, 0.1)	36.4 (A, 0.1)
	54.6 (A, 0.1)	40.7 (A, 0.2)
	57.2 (A, 0.0)	55.0 (A, 0.0)
	69.9 (A, 0.0)	69.3 (A, 0.0)
	73.7 (A, 0.3)	75.6 (A, 0.3)
	76.0 (A, 0.5)	80.0 (A, 0.6)
	85.8 (A, 0.3)	86.6 (A, 0.1)
	91.8 (A, 0.4)	92.7 (A, 0.2)
	93.3 (A, 0.4)	97.5 (A, 0.5)
	97.9 (A, 0.2)	102.4 (A, 0.0)
	120.2 (A, 0.1)	120.5 (A, 0.5)
	124.3 (A, 0.7)	124.1 (A, 0.3)
	173.2 (A, 0.2)	170.8 (A, 0.0)
	183.3 (A, 1.2)	180.8 (A, 0.7)
	296.7 (A, 0.6)	289.2 (A, 0.5)
	351.8 (A. 0.5)	335.5 (A. 9.1)
	366.5 (A. 11.0)	344.6 (A. 1.7)
	382.6 (A. 10.8)	364.3 (A. 17.6)
	387.9 (A. 12.5)	378.0 (A. 15.0)
	402.0 (A, 4.1)	383.7 (A. 3.6)
	427.9 (A. 5.6)	439.0 (A, 0.3)
	444.4 (A, 1.3)	443.9 (A, 2.9)
	451.8 (A. 4.8)	447.0 (A. 1.3)
	457.2 (A. 15.2)	458.5 (A. 2.7)
	464.7 (A, 4.3)	472.0 (A, 4.5)
	469.8 (A, 1.7)	475.6 (A, 5.1)
	498.5 (A, 13.1)	500.1 (A, 2.1)
	503.9 (A, 1.7)	508.5 (A, 15.7)
	514.8 (A, 7.4)	510.2 (A, 7.4)
	541.5 (A, 6.9)	530.9 (A, 3.6)
	545.8 (A, 8.8)	538.1 (A, 8.9)
	572.3 (A, 44.3)	570.3 (A, 15.0)
	577.3 (A, 35.0)	574.8 (A, 34.2)
	609.1 (A, 0.8)	582.1 (A, 5.9)
	615.8 (A, 45.0)	586.6 (A, 3.4)
	619.7 (A, 29.1)	605.1 (A, 56.3)
	640.5 (A, 10.7)	635.3 (A, 3.9)
	656.0 (A, 103.7)	650.8 (A, 122.0)
	671.6 (A, 53.6)	664.9 (A, 36.4)
	691.1 (A, 71.8)	685.2 (A, 57.7)
	749.7 (A, 493.0)	731.1 (A, 537.6)
	835.6 (A, 9.7)	816.9 (A, 40.2)
	838.0 (A, 6.2)	822.2 (A, 3.0)

	851.7 (A, 25.2)	829.1 (A, 14.2)
	855.8 (A, 3.1)	835.0 (A, 3.0)
	867.9 (A, 13.2)	841.2 (A, 7.3)
	928.7 (A, 1.4)	905.6 (A, 1.1)
	948.3 (A, 3.0)	911.6 (A, 2.6)
	1023.7 (A, 5.0)	988.7 (A, 6.0)
	1042.1 (A, 3.5)	1006.3 (A, 5.3)
	1082.3 (A, 0.4)	1051.1 (A, 1.4)
	1086.9 (A, 1.8)	1052.3 (A, 0.5)
	1148.9 (A, 1.6)	1110.8 (A, 0.4)
	1279.4 (A, 0.0)	1245.7 (A, 0.0)
	1404.3 (A, 2.7)	1349.0 (A, 2.1)
	1407.8 (A, 0.8)	1352.4 (A, 1.7)
	1459.9 (A, 1.8)	1407.1 (A, 3.8)
	1476.6 (A, 3.4)	1424.2 (A, 5.9)
	1636.9 (A, 138.4)	1565.3 (A, 132.4)
	2016.3 (A, 620.7)	1948.2 (A, 581.9)
	2025.8 (A, 1122.5)	1957.1 (A, 1034.8)
	2050.2 (A, 547.0)	1981.0 (A, 503.3)
	2068.8 (A, 909.1)	1992.0 (A, 861.4)
	2095.5 (A, 837.8)	2022.7 (A, 752.9)
	2126.8 (A, 611.4)	2053.3 (A, 553.1)
	3230.0 (A, 0.1)	3155.0 (A, 0.1)
	3232.1 (A, 0.1)	3160.1 (A, 0.1)
	3245.4 (A, 0.4)	3170.3 (A, 0.1)
	3248.0 (A, 0.0)	3172.2 (A, 0.4)
	3256.9 (A, 0.1)	3181.7 (A, 0.1)
	40.8 (A', 0.3)	34.6 (A, 0.1)
	45.5 (A", 0.0)	35.5 (A, 0.1)
	64.5 (A", 0.1)	60.5 (A, 0.0)
	76.9 (A', 0.0)	68.2 (A, 0.2)
	82.3 (A", 0.1)	80.9 (A, 0.0)
	83.0 (A', 0.1)	82.5 (A, 0.0)
	90.1 (A', 0.3)	93.1 (A, 0.1)
$CnE_{2}Mn(CO)$	95.0 (A", 0.1)	93.3 (A, 0.3)
CD 1S	98.7 (A", 0.4)	99.9 (A, 2.0)
000-15	100.8 (A', 2.0)	102.1 (A, 0.3)
	106.2 (A', 0.7)	106.0 (A, 0.4)
	133.7 (A", 0.2)	129.7 (A, 0.3)
	156.4 (A", 0.0)	161.1 (A, 0.0)
	186.3 (A', 3.0)	168.1 (A, 3.3)
	213.2 (A', 0.4)	217.9 (A, 0.2)
	348.5 (A', 5.3)	328.8 (A, 5.2)
	404.5 (A", 0.6)	375.7 (A, 2.2)

418.1 (A", 0.5)	402.8 (A, 1.3)
425.7 (A', 0.7)	410.5 (A, 0.0)
429.9 (A', 0.8)	427.3 (A, 1.0)
435.2 (A', 2.6)	434.3 (A, 0.0)
435.9 (A", 0.9)	444.2 (A, 1.4)
457.6 (A", 4.5)	448.1 (A, 0.0)
473.7 (A", 25.8)	493.7 (A, 0.8)
497.1 (A', 0.6)	500.3 (A, 23.9)
499.0 (A", 1.0)	500.4 (A, 1.2)
506.3 (A', 3.2)	506.6 (A, 2.9)
509.8 (A', 12.2)	515.6 (A, 13.4)
549.2 (A', 9.6)	538.9 (A, 8.8)
586.4 (A", 42.1)	574.4 (A, 0.2)
593.1 (A", 0.4)	579.2 (A, 9.9)
602.4 (A', 184.7)	589.8 (A, 24.2)
607.0 (A", 1.7)	589.8 (A, 140.7)
636.5 (A', 2.1)	612.5 (A, 0.9)
648.6 (A', 78.1)	644.5 (A, 85.3)
655.1 (A'', 57.0)	648.1 (A, 57.9)
658.7 (A', 30.2)	650.6 (A, 27.7)
697.2 (A', 97.3)	694.0 (A, 97.7)
814.3 (A", 7.3)	791.9 (A, 9.1)
829.3 (A', 22.5)	806.3 (A, 36.9)
840.3 (A', 11.4)	820.8 (A, 8.1)
851.3 (A'', 5.8)	830.1 (A, 3.7)
878.3 (A', 11.3)	852.2 (A, 9.1)
911.9 (A", 0.4)	888.2 (A, 2.2)
947.9 (A", 3.7)	890.6 (A, 1.3)
1028.7 (A', 0.9)	993.9 (A, 1.2)
1062.4 (A'', 5.6)	1029.1 (A, 7.2)
1083.4 (A', 2.9)	1052.8 (A, 3.4)
1134.8 (A', 14.9)	1097.8 (A, 5.6)
1149.9 (A', 39.0)	1132.5 (A, 40.5)
1248.0 (A", 0.1)	1210.2 (A, 0.2)
1374.4 (A'', 0.9)	1312.4 (A, 0.7)
1397.9 (A', 0.0)	1343.1 (A, 0.1)
1435.2 (A'', 2.8)	1384.8 (A, 4.4)
1460.2 (A', 4.2)	1406.9 (A, 7.3)
2022.2 (A", 1.3)	1953.1 (A, 0.6)
2033.4 (A', 262.1)	1966.0 (A, 409.8)
2049.8 (A', 573.4)	1977.1 (A, 1809.3)
2052.2 (A", 1914.4)	1981.4 (A, 398.0)
2057.8 (A', 1358.2)	1988.7 (A, 1232.8)
2132.4 (A', 462.6)	2059.6 (A, 425.4)

	2741.8 (A', 1.9)	2554.4 (A, 0.6)
	3232.0 (A", 0.2)	3156.6 (A, 0.2)
	3240.3 (A', 0.3)	3165.3 (A, 0.2)
	3247.7 (A", 0.0)	3172.2 (A, 0.3)
	3255.1 (A', 0.4)	3178.2 (A, 0.4)
	23.9 (A", 0.0)	2.4 (A, 0.0)
	45.8 (A", 0.0)	46.8 (A, 0.0)
	60.8 (A', 0.2)	59.5 (A, 0.2)
	61.0 (A", 0.1)	59.6 (A, 0.2)
	77.2 (A', 0.6)	83.5 (A, 0.1)
	78.3 (A", 0.4)	84.1 (A, 0.1)
	84.7 (A', 0.8)	89.1 (A, 0.7)
	86.2 (A', 0.2)	89.6 (A, 0.3)
	86.5 (A", 0.7)	90.2 (A, 0.7)
	114.2 (A', 0.0)	122.0 (A, 0.0)
	123.3 (A", 0.1)	130.6 (A, 0.0)
	175.7 (A', 0.0)	180.7 (A, 0.1)
	176.2 (A", 0.0)	181.6 (A, 0.0)
	202.4 (A', 1.9)	206.4 (A, 0.4)
	246.6 (A', 2.4)	243.7 (A, 0.1)
	313.8 (A', 0.2)	298.0 (A, 1.6)
	318.5 (A", 0.1)	301.4 (A, 1.0)
	345.8 (A", 3.7)	338.6 (A, 3.8)
	353.8 (A', 3.8)	345.9 (A, 4.2)
$CpFeMn(CO)_6$	376.4 (A', 4.4)	381.0 (A, 5.1)
6CO-21	392.4 (A", 0.0)	389.2 (A, 0.0)
	418.5 (A', 30.7)	427.8 (A, 21.9)
	454.6 (A", 9.2)	452.5 (A, 5.7)
	455.5 (A', 0.0)	455.5 (A, 5.2)
	456.1 (A", 3.4)	458.0 (A, 0.6)
	457.1 (A', 15.5)	459.0 (A, 2.0)
	463.6 (A', 69.2)	464.2 (A, 0.2)
	479.8 (A", 0.2)	475.2 (A, 55.6)
	495.4 (A", 2.8)	494.4 (A, 1.5)
	499.2 (A', 2.5)	497.0 (A. 1.4)
	545.4 (A', 66.0)	539.0 (A. 5.7)
	547.9 (A", 5.0)	539.3 (A, 7.9)
	550.6 (A'. 117.7)	554.2 (A. 188.9)
	607.7 (A", 2.5)	580.4 (A, 0.6)
	608.0 (A', 3.1)	582.3 (A. 10.0)
	634.9 (A", 69.4)	629.3 (A, 65.1)
	635.3 (A', 70.4)	629.7 (A, 65.4)
	651.0 (A', 306.1)	648.9 (A, 279.1)
	829.4 (A', 15.0)	808.7 (A, 53.3)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
840.7 (A', 27.0) 823.6 (A, 6.0) 850.0 (A", 2.6) 833.0 (A, 3.2) 920.9 (A", 1.0) 899.1 (A, 1.2) 922.0 (A', 2.9) 901.0 (A, 3.0) 1032.5 (A', 7.6) 999.3 (A, 8.3)
850.0 (A", 2.6) 833.0 (A, 3.2) 920.9 (A", 1.0) 899.1 (A, 1.2) 922.0 (A', 2.9) 901.0 (A, 3.0) 1032.5 (A', 7.6) 999.3 (A, 8.3)
920.9 (A", 1.0) 899.1 (A, 1.2) 922.0 (A', 2.9) 901.0 (A, 3.0) 1032.5 (A', 7.6) 999.3 (A, 8.3)
922.0 (A', 2.9) 1032.5 (A', 7.6) 999.3 (A, 8.3)
1032.5 (A', 7.6) 999.3 (A, 8.3)
1 10344(A'' 6 3) 10015(A 7 2)
10815(A", 0.2) 10505(A, 0.3)
$10010 ((1,02)) \\ 10817 (A' 0 2) \\ 10508 (A 0 2)$
11515(A' 3 9) 11155(A 1 3)
12784(A" 0 0) 12461(A 0 0)
13995(A",0,0) = 12401(A,0,0) = 13471(A,0,0)
14017 (A' 04) 13482 (A 05)
1465 4 (A' 0 5) 1465 4 (A' 0 5)
1469.7 (A" 19) 1418.5 (A 38)
1932 0 (A" 839 6) 1860 3 (A 742 7)
1932.0 (A', 863.1) 1932.9 (A' 863.1) 1860.8 (A, 755.2)
1952.5 (11, 005.1) 1959.7 (A' 54.5) 1886.0 (A. 50.1)
2062 8 (A" 857 2)
2062.0 (A', 807.2) 2063.8 (A' 840.1) 1989.9 (A, 767.1)
2122 5 (A' 1136 2) 2044 7 (A 1058 9)
$\begin{array}{c} 2122.3 (A, 1130.2) \\ 3226.3 (A'', 0.0) \\ 3151.8 (A, 0.0) \\ \end{array}$
3226.8 (A' 0 1) 3151.9 (A 0 1)
$3241 \ 8 \ (A' \ 0 \ 1) $
$3247.7 (A'' 0.2) \qquad 3165.6 (A 0.0)$
3253 2 (A' 0 2) 3176 1 (A 0 3)
$\frac{367(4,0.2)}{367(4,0.4)} = \frac{353(4,0.2)}{353(4,0.2)}$
$\begin{array}{c} 50.7 (1, 0.4) \\ 50.5 (A, 0.1) \\ 37.7 (A, 0.2) \\ 37.7 (A, 0.2) \end{array}$
$\begin{array}{c} 30.3 (1, 0.1) \\ 70.0 (A, 0.0) \\ 47.8 (A, 0.2) \\ 47.8 (A, 0.2) \end{array}$
$\begin{array}{c} 70.0 \ (1, 0.0) \\ 72.3 \ (A \ 0.1) \\ 67.5 \ (A \ 0.1) \\ \end{array}$
$\begin{array}{c} 72.5 (1, 0.1) \\ 77.8 (A, 0.2) \\ 71.6 (A, 0.2) \\ 71.6 (A, 0.2) \end{array}$
843(A 0 3)
92.9(A, 0.1) $86.3(A, 0.0)$
990(A 04) 990(A 01)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$100.2 (1, 0.3) \\ 122 6 (A 0 4) \\ 116 7 (A 0 7)$
$122.0 (A, 0.7) \\ 130 3 (A 17) \\ 121 8 (A 07)$
$1303(11,117) \\ 1466(A,0,0) \\ 1417(A,0,0) \\$
$11000 (11, 0.0) \\ 182 8 (A 12) \\ 167 0 (A 0.4) \\ 167 0 (A $
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

406.3 (A, 1.5)	376.2 (A, 2.3)
415.4 (A, 3.7)	408.6 (A, 0.7)
422.5 (A, 2.4)	412.3 (A, 0.8)
426.3 (A, 3.3)	427.8 (A, 0.2)
435.9 (A, 1.0)	439.5 (A, 2.1)
456.3 (A, 30.1)	455.2 (A, 5.0)
473.7 (A, 9.0)	482.9 (A, 12.6)
487.2 (A, 3.9)	489.2 (A, 9.2)
506.9 (A, 9.1)	504.7 (A, 16.9)
508.9 (A, 5.1)	507.9 (A, 6.8)
518.1 (A, 7.4)	520.0 (A, 7.0)
545.6 (A, 6.6)	534.9 (A, 3.4)
586.3 (A, 75.2)	573.8 (A, 61.3)
599.6 (A, 17.9)	580.7 (A, 33.7)
603.5 (A, 14.1)	581.8 (A, 14.7)
614.1 (A, 10.0)	587.9 (A, 7.0)
630.2 (A, 60.1)	615.0 (A, 56.3)
650.0 (A, 76.7)	641.9 (A, 62.2)
650.9 (A, 34.7)	642.3 (A, 22.6)
661.4 (A, 158.8)	656.8 (A, 138.5)
693.9 (A, 93.0)	688.1 (A, 111.4)
835.5 (A, 4.7)	816.9 (A, 29.9)
836.2 (A, 0.6)	821.6 (A, 1.3)
850.8 (A, 15.5)	822.8 (A, 6.4)
855.0 (A, 21.7)	828.5 (A, 14.6)
866.3 (A, 8.3)	844.2 (A, 7.0)
920.0 (A, 2.0)	896.9 (A, 2.0)
933.0 (A, 2.2)	899.7 (A, 1.2)
1022.7 (A, 4.4)	986.0 (A, 5.1)
1038.3 (A, 2.9)	1004.2 (A, 4.4)
1080.1 (A, 1.2)	1048.2 (A, 0.8)
1082.5 (A, 0.9)	1049.2 (A, 1.2)
1146.8 (A, 4.5)	1108.6 (A, 2.1)
1275.6 (A, 0.0)	1242.8 (A, 0.0)
1403.1 (A, 1.0)	1347.6 (A, 0.8)
1406.9 (A, 0.2)	1351.2 (A, 0.0)
1453.4 (A, 1.6)	1401.1 (A, 3.8)
1470.2 (A, 2.5)	1419.2 (A, 4.3)
1834.6 (A, 346.5)	1777.7 (A, 307.8)
2020.3 (A, 572.6)	1954.3 (A, 511.9)
2036.7 (A, 541.3)	1964.6 (A, 539.8)
2048.8 (A, 494.5)	1976.4 (A, 575.9)
2060.9 (A, 1656.8)	1986.8 (A, 1408.5)
2132.2 (A, 546.4)	2058.5 (A, 519.2)

	3228.4 (A, 0.1)	3154.3 (A, 0.1)
	3229.5 (A, 0.2)	3155.3 (A, 0.1)
	3243.1 (A, 1.1)	3166.9 (A, 0.6)
	3246.2 (A, 0.7)	3170.4 (A, 0.3)
	3254.8 (A, 0.4)	3178.7 (A, 0.5)
	32.8 (A", 0.0)	30.9 (A", 0.0)
	41.1 (A", 0.3)	45.0 (A", 0.2)
	63.8 (A", 0.0)	50.8 (A', 3.9)
	65.5 (A', 1.9)	57.0 (A", 0.0)
	81.2 (A', 0.2)	78.1 (A", 0.5)
	81.8 (A", 0.5)	79.5 (A', 0.5)
	84.4 (A', 2.6)	84.5 (A', 1.7)
	92.8 (A', 0.6)	89.7 (A", 0.0)
	94.3 (A", 0.3)	95.3 (A', 0.4)
	110.3 (A', 1.1)	104.4 (A", 0.1)
	122.3 (A", 0.0)	108.5 (A', 0.8)
	135.7 (A", 0.1)	135.6 (A", 0.1)
	148.1 (A', 1.2)	148.0 (A', 1.3)
	173.4 (A', 1.2)	166.3 (A', 1.9)
	193.1 (A', 0.4)	189.5 (A', 0.2)
	354.2 (A', 4.3)	325.7 (A', 6.2)
	378.5 (A", 1.0)	340.8 (A", 1.2)
	402.2 (A', 1.2)	378.8 (A', 0.6)
	402.8 (A", 0.2)	393.8 (A", 2.3)
CpFeMn(CO) ₆	407.6 (A', 12.1)	402.8 (A', 16.2)
6CO-4S	423.8 (A", 2.5)	412.9 (A", 3.2)
	433.3 (A', 6.5)	428.9 (A", 0.9)
	435.2 (A", 0.5)	441.2 (A', 5.0)
	487.4 (A", 14.3)	463.9 (A", 13.2)
	491.6 (A', 15.2)	488.8 (A', 109.2)
	494.9 (A', 65.8)	504.9 (A', 12.6)
	512.5 (A", 3.2)	514.5 (A", 1.0)
	519.7 (A', 48.2)	523.4 (A'. 19.0)
	562.3 (A', 110.1)	551.3 (A', 59.5)
	576 3 (A" 21 7)	563 3 (A" 1 8)
	579 5 (A" 3 2)	568 6 (A' 35 2)
	586 6 (A' 38 5)	573 4 (A" 14 0)
	614 5 (A' 15 8)	583 8 (A" 0 7)
	615.6 (A". 1.5)	590.2 (A'. 30.6)
	6260(A'' 439)	612 6 (A' 13 2)
	627.2 (A', 19.4)	620.3 (A", 42 7)
	650 1 (A' 46 5)	642 8 (A' 46 9)
	702 8 (A' 97 3)	695 3 (A' 98 3)
	831.0 (A', 7.7)	810.3 (A', 11.0)

	833.2 (A", 0.1)	814.7 (A', 41.7)
	843.1 (A', 2.5)	818.3 (A", 0.0)
	846.3 (A', 29.2)	825.3 (A', 0.2)
	881.3 (A", 4.3)	860.6 (A", 3.6)
	931.7 (A", 0.5)	907.3 (A", 0.7)
	931.8 (A', 5.5)	908.4 (A', 5.1)
	1028.0 (A", 4.5)	992.0 (A", 5.7)
	1039.0 (A', 3.5)	1006.8 (A', 4.9)
	1082.0 (A'. 1.5)	1051.1 (A', 1.0)
	1083.6 (A", 0.1)	1051.6 (A", 0.1)
	1151.5 (A', 2.5)	1114.0 (A', 0.5)
	1277.3 (A". 0.0)	1244.6 (A", 0.0)
	1407.6 (A'. 3.8)	1352.1 (A". 0.1)
	1409.1 (A", 0.0)	1352.5 (A'. 3.7)
	1455.0 (A", 3.9)	1403.6 (A". 6.6)
	1472.6 (A'. 1.0)	1424.3 (A'. 2.1)
	1991 0 (A" 446 4)	1923 9 (A' 763 3)
	2005.6 (A'. 877.6)	1923.9 (A", 366.3)
	2013 6 (A' 97 8)	1946 0 (A' 103 0)
	2039.4 (A", 1149.7)	1963.4 (A". 1074.4)
	2052.9 (A', 904.8)	1976.6 (A', 867.2)
	2122.7 (A'. 818.6)	2043.5 (A', 752.4)
	3227.2 (A', 0.1)	3152.9 (A', 0.1)
	3228.8 (A", 0.3)	3155.0 (A". 0.1)
	3243.0 (A", 0.5)	3168.0 (A", 0.0)
	3250.1 (A', 0.4)	3173.1 (A', 0.4)
	3256.9 (A', 0.4)	3181.0 (A', 0.2)
	31.1 (A', 0.1)	24.3 (A", 0.1)
	36.4 (A", 0.2)	35.9 (A', 0.1)
	48.6 (A", 0.0)	50.0 (A", 0.0)
	72.1 (A", 0.1)	70.7 (A", 0.0)
	78.2 (A', 0.5)	82.1 (A', 2.0)
	82.3 (A", 0.4)	84.5 (A', 0.2)
	82.6 (A', 0.8)	84.6 (A", 0.5)
$CnE_{2}Mn(CO)$	87.1 (A', 1.2)	88.6 (A', 0.7)
CD 5S	92.6 (A", 0.1)	98.9 (A", 0.1)
000-55	98.3 (A', 0.0)	104.8 (A', 0.2)
	116.7 (A", 0.2)	128.9 (A", 0.0)
	125.8 (A', 0.2)	138.2 (A', 0.5)
	201.3 (A", 1.2)	225.9 (A', 0.6)
	226.6 (A', 0.2)	228.2 (A", 1.4)
	245.3 (A', 0.1)	235.8 (A', 0.0)
	315.6 (A", 0.7)	307.6 (A", 1.3)
	360.6 (A', 0.3)	340.8 (A", 9.0)

361.3 (A", 8.9)	346.8 (A', 2.1)
410.7 (A", 0.2)	380.1 (A', 1.1)
411.7 (A', 0.8)	401.3 (A", 0.0)
416.1 (A', 4.5)	422.0 (A', 7.1)
428.2 (A", 0.7)	434.9 (A", 0.1)
455.5 (A', 5.1)	445.2 (A', 4.4)
471.9 (A", 6.5)	464.3 (A", 5.2)
476.2 (A', 23.5)	483.0 (A', 17.0)
509.6 (A", 0.3)	496.7 (A", 0.8)
509.9 (A', 6.9)	510.3 (A', 2.7)
532.0 (A", 22.9)	528.6 (A", 9.5)
538.7 (A', 2.5)	532.6 (A', 2.4)
552.5 (A', 9.5)	550.1 (A', 15.1)
587.7 (A', 40.7)	576.2 (A", 3.2)
595.9 (A', 187.0)	580.7 (A', 3.8)
596.2 (A", 15.9)	584.2 (A", 17.1)
606.8 (A", 6.9)	590.2 (A', 45.5)
612.8 (A', 4.1)	601.3 (A', 105.9)
646.9 (A', 324.4)	644.0 (A", 39.6)
652.1 (A", 39.0)	647.0 (A', 343.1)
689.0 (A', 95.6)	685.9 (A', 114.3)
823.7 (A', 8.7)	811.1 (A', 25.7)
829.1 (A", 2.3)	818.1 (A", 3.1)
840.3 (A", 2.7)	820.3 (A", 2.2)
845.9 (A', 42.9)	825.1 (A', 30.6)
853.2 (A', 1.5)	843.8 (A', 4.6)
919.6 (A", 2.0)	899.5 (A", 1.5)
923.2 (A', 1.6)	903.9 (A', 0.5)
1010.3 (A', 5.4)	980.3 (A', 4.4)
1026.1 (A", 1.9)	1004.7 (A", 4.6)
1076.0 (A", 3.3)	1049.0 (A", 1.2)
1077.4 (A', 0.2)	1049.2 (A', 0.6)
1137.8 (A', 2.1)	1107.3 (A', 0.5)
1270.0 (A", 0.0)	1245.1 (A", 0.0)
1385.4 (A", 0.6)	1341.0 (A", 0.4)
1400.9 (A', 3.1)	1349.4 (A', 3.1)
1445.0 (A', 0.8)	1399.9 (A', 3.7)
1475.9 (A", 0.9)	1428.5 (A", 2.4)
1894.8 (A", 813.1)	1814.9 (A", 762.2)
1927.1 (A', 106.4)	1839.7 (A', 49.4)
2038.3 (A', 744.0)	1961.8 (A', 644.4)
2042.1 (A", 976.5)	1974.2 (A", 818.6)
2071.4 (A', 1401.3)	1999.4 (A', 1225.4)
2113.1 (A', 619.8)	2037.3 (A', 612.3)

	3187.1 (A', 2.6)	3148.6 (A', 0.1)
	3230.8 (A", 0.1)	3157.0 (A", 0.1)
	3236.9 (A', 0.1)	3165.8 (A', 0.1)
	3245.7 (A", 0.0)	3171.9 (A", 0.4)
	3254.6 (A', 0.2)	3179.4 (A', 0.2)
	29.5 (A", 0.0)	14.1 (A, 0.0)
	41.3 (A', 0.2)	40.3 (A, 0.2)
	47.6 (A", 0.2)	44.9 (A, 0.3)
	63.9 (A', 0.0)	65.7 (A, 0.0)
	80.6 (A", 0.9)	80.4 (A, 0.9)
	85.9 (A", 0.3)	85.4 (A, 0.1)
	97.0 (A', 0.3)	99.7 (A, 0.5)
	101.5 (A'. 1.0)	101.3 (A. 0.7)
	136.5 (A", 0.0)	132.2 (A. 0.5)
	137.0 (A'. 0.4)	136.3 (A. 0.0)
	196.3 (A'. 0.6)	190.4 (A, 0.9)
	216.9 (A". 0.0)	202.2 (A. 0.1)
	239.3 (A', 0.7)	235.9 (A. 1.1)
	367.7 (A'. 11.2)	339.0 (A. 3.2)
	379.7 (A". 0.0)	350.0 (A. 0.6)
	411.2 (A", 6.1)	392.9 (A. 7.2)
	411.5 (A', 9.4)	398.4 (A, 6.7)
	419.1 (A". 0.8)	412.1 (A. 0.7)
	432.2 (A'. 16.5)	423.2 (A. 22.7)
CpFeMn(CO) ₅	448.6 (A". 1.3)	440.1 (A. 1.6)
5CO-1S	460.1 (A', 41.5)	452.7 (A. 57.9)
	473.8 (A'. 8.6)	474.7 (A. 0.4)
	476.3 (A". 1.9)	476.1 (A. 1.3)
	518.1 (A', 67.3)	518.6 (A. 56.5)
	530.4 (A', 6.8)	526.0 (A. 2.3)
	538.5 (A", 5.5)	535.1 (A. 3.7)
	551.7 (A", 9.8)	544.1 (A. 9.7)
	594.8 (A', 24.3)	571.7 (A. 0.0)
	598.7 (A", 5.4)	582.0 (A. 18.4)
	609 9 (A" 34 4)	586 0 (A 18 0)
	612 5 (A' 9 3)	605 1 (A 33 2)
	653 2 (A' 27 3)	643 4 (A 25 0)
	681 3 (A' 67 9)	673 8 (A 52 7)
	828.8 (A', 3.3)	810.2 (A, 1.0)
	833.8 (A", 0 0)	813.5 (A. 38 0)
	841 3 (A' 7 4)	8194 (A 0 4)
	845 8 (A' 16 7)	822 5 (A 1 6)
	879 1 (A" 3 6)	854 4 (A 3 2)
	922.0 (A', 1.4)	894.0 (A, 0.9)

	922.3 (A", 0.0)	897.1 (A, 0.3)
	1021.0 (A", 4.1)	985.9 (A, 5.1)
	1041.3 (A', 7.0)	1006.9 (A, 8.2)
	1079.2 (A", 0.1)	1048.0 (A, 0.1)
	1082.5 (A', 1.1)	1050.6 (A, 1.1)
	1149.1 (A', 7.1)	1111.1 (A, 2.9)
	1275.1 (A", 0.0)	1243.4 (A, 0.0)
	1400.1 (A", 0.0)	1343.9 (A, 0.1)
	1412.3 (A', 0.1)	1357.0 (A, 0.0)
	1446.6 (A", 2.6)	1396.3 (A, 4.7)
	1478.4 (A', 1.8)	1428.9 (A, 3.4)
	1954.8 (A", 697.4)	1884.4 (A, 595.7)
	1966.8 (A', 425.3)	1898.6 (A, 382.8)
	2026.1 (A', 988.0)	1952.4 (A, 908.8)
	2038.9 (A", 968.7)	1963.7 (A, 868.8)
	2101.3 (A', 958.7)	2024.5 (A, 865.8)
	3225.9 (A', 0.1)	3153.1 (A, 0.1)
	3226.6 (A", 0.0)	3153.2 (A, 0.0)
	3239.6 (A", 0.1)	3164.2 (A, 0.0)
	3246.1 (A', 0.4)	3171.2 (A, 0.3)
	3253.5 (A', 0.0)	3178.5 (A, 0.0)
	21.3 (A", 0.1)	20.6 (A", 0.1)
	24.7 (A', 0.3)	23.5 (A', 0.5)
	30.7 (A", 0.1)	37.2 (A", 0.0)
	77.3 (A', 0.3)	78.1 (A", 0.0)
	78.0 (A", 0.0)	82.1 (A', 0.3)
	87.9 (A", 0.3)	87.3 (A", 0.1)
	89.0 (A', 2.3)	93.3 (A', 1.1)
	97.6 (A', 0.1)	98.7 (A', 0.9)
	108.2 (A', 0.9)	124.3 (A', 0.2)
	131.3 (A", 0.7)	138.1 (A", 0.2)
$CnE_{2}Mn(CO)$	199.9 (A', 3.2)	204.3 (A', 0.0)
5CO 2T	226.4 (A", 2.3)	237.3 (A', 0.5)
500-21	232.9 (A', 1.5)	247.6 (A", 0.1)
	288.9 (A", 4.8)	313.8 (A", 4.8)
	329.3 (A', 0.9)	327.9 (A', 4.0)
	362.3 (A', 6.2)	351.5 (A', 1.1)
	366.8 (A", 2.0)	373.8 (A", 3.5)
	409.6 (A", 0.1)	401.9 (A", 1.3)
	419.2 (A', 21.2)	411.0 (A', 0.6)
	425.1 (A", 0.0)	420.8 (A", 0.0)
	429.1 (A', 0.6)	425.1 (A', 15.0)
	466.3 (A', 15.0)	463.9 (A", 0.6)
	469.5 (A", 2.0)	470.1 (A', 5.5)

	478.3 (A", 5.7)	491.8 (A", 4.5)
	500.0 (A', 7.7)	512.5 (A", 0.0)
	518.2 (A', 1.2)	514.0 (A', 22.8)
	540.2 (A", 0.0)	519.1 (A', 0.7)
	554.7 (A', 25.8)	554.3 (A', 13.8)
	599.7 (A', 3.3)	568.1 (A", 1.0)
	600.7 (A", 0.7)	575.4 (A', 1.8)
	629.7 (A", 47.5)	613.5 (A", 42.1)
	634.0 (A', 33.4)	613.8 (A', 27.2)
	675.3 (A', 121.5)	659.4 (A', 94.2)
	816.5 (A', 36.9)	806.4 (A', 52.0)
	818.1 (A", 2.1)	812.9 (A", 0.9)
	830.4 (A', 20.9)	815.5 (A", 1.8)
	831.7 (A", 0.0)	821.5 (A', 4.7)
	837.5 (A', 8.7)	829.4 (A', 1.5)
	899.4 (A", 0.0)	889.7 (A', 0.6)
	911.1 (A', 0.1)	892.7 (A", 0.4)
	1027.9 (A', 11.8)	996.0 (A', 9.6)
	1033.2 (A", 7.2)	998.5 (A", 6.8)
	1076.3 (A', 2.0)	1044.0 (A", 0.6)
	1078.1 (A", 0.4)	1049.0 (A', 1.9)
	1147.2 (A', 4.8)	1109.4 (A', 1.6)
	1275.7 (A", 0.0)	1243.0 (A", 0.0)
	1388.2 (A', 9.1)	1338.5 (A", 0.5)
	1393.8 (A", 0.1)	1340.4 (A', 1.6)
	1461.8 (A', 2.1)	1410.0 (A", 2.2)
	1463.0 (A", 0.9)	1410.2 (A', 4.5)
	1908.1 (A", 908.4)	1824.1 (A", 761.9)
	1914.2 (A', 135.1)	1835.3 (A', 168.6)
	2031.7 (A', 943.5)	1955.4 (A', 804.1)
	2054.2 (A", 815.7)	1980.5 (A", 772.8)
	2106.2 (A', 1276.6)	2026.5 (A', 1215.0)
	3222.7 (A', 0.1)	3145.7 (A', 0.2)
	3226.5 (A", 0.0)	3155.8 (A", 0.0)
	3240.0 (A', 0.0)	3165.6 (A', 0.0)
	3245.0 (A", 0.0)	3169.5 (A", 0.3)
	3253.5 (A', 0.0)	3178.3 (A', 0.1)
	35.7 (A, 0.2)	16.0 (A, 0.0)
	49.2 (A, 0.6)	24.5 (A, 0.2)
$CpE_0Mp(CO)$	61.1 (A, 0.1)	47.4 (A, 0.6)
5CO 29	72.2 (A, 0.2)	69.6 (A, 0.4)
300-38	76.8 (A, 1.0)	79.0 (A, 0.9)
	93.8 (A, 0.2)	87.3 (A, 0.9)
	98.6 (A, 0.3)	91.7 (A, 0.6)

100.9 (A, 0.9)	100.4 (A, 0.3)
104.8 (A, 0.6)	106.7 (A, 0.5)
119.7 (A, 0.9)	114.1 (A, 0.4)
126.7 (A, 1.2)	119.6 (A, 0.9)
191.0 (A, 3.6)	154.9 (A, 0.2)
283.7 (A, 3.2)	228.9 (A, 5.8)
363.4 (A, 2.7)	348.2 (A, 3.8)
395.7 (A, 3.3)	358.1 (A, 3.8)
406.5 (A, 2.2)	376.7 (A, 6.4)
429.4 (A, 1.2)	411.2 (A, 0.2)
438.9 (A, 10.7)	422.5 (A, 11.0)
447.8 (A, 0.2)	439.1 (A, 2.0)
474.9 (A, 5.6)	450.8 (A, 4.2)
490.9 (A, 6.4)	489.1 (A, 3.7)
508.8 (A, 5.5)	502.5 (A, 1.0)
534.9 (A, 14.8)	528.0 (A, 9.3)
539.3 (A, 7.9)	543.4 (A, 3.4)
548.6 (A, 3.3)	556.4 (A, 4.9)
598.5 (A, 82.4)	571.7 (A, 68.1)
604.8 (A, 4.2)	585.7 (A, 6.0)
612.9 (A, 8.0)	587.3 (A, 68.2)
628.0 (A, 28.4)	621.1 (A, 27.5)
639.3 (A, 42.5)	627.9 (A, 42.9)
648.0 (A, 28.5)	645.1 (A, 42.5)
676.7 (A, 113.6)	649.8 (A, 12.4)
716.4 (A, 53.0)	707.1 (A, 82.9)
835.8 (A, 1.8)	813.6 (A, 27.8)
837.2 (A, 5.6)	821.2 (A, 0.4)
848.0 (A, 17.4)	824.0 (A, 22.4)
861.4 (A, 21.2)	826.1 (A, 1.5)
866.4 (A, 8.4)	847.6 (A, 6.3)
915.7 (A, 1.3)	895.0 (A, 2.6)
934.4 (A, 1.3)	901.5 (A, 0.2)
1020.9 (A, 4.0)	985.2 (A, 5.4)
1041.0 (A, 3.1)	1005.1 (A, 4.8)
1080.5 (A, 0.7)	1049.1 (A, 0.8)
1081.8 (A, 1.2)	1049.6 (A, 0.3)
1146.3 (A, 4.0)	1109.0 (A, 1.3)
1276.0 (A, 0.0)	1242.8 (A, 0.0)
1401.9 (A, 0.6)	1346.0 (A, 0.7)
1407.3 (A, 0.5)	1352.2 (A, 0.2)
1450.0 (A, 1.5)	1398.1 (A, 4.5)
1472.6 (A, 2.1)	1421.6 (A, 3.3)
1780.0 (A, 325.3)	1774.6 (A, 295.5)

	1998.6 (A, 604.0)	1925.6 (A, 642.8)
	2018.0 (A, 829.8)	1941.1 (A, 710.7)
	2046.1 (A, 1105.7)	1974.7 (A, 971.1)
	2091.8 (A, 727.6)	2012.3 (A, 638.4)
	3229.6 (A, 0.1)	3154.8 (A, 0.1)
	3230.3 (A, 0.0)	3158.0 (A, 0.1)
	3243.8 (A, 0.6)	3169.1 (A, 0.0)
	3246.5 (A, 0.8)	3172.9 (A, 0.3)
	3255.3 (A, 0.4)	3181.5 (A, 0.3)
	26.4 (A, 0.2)	22.2 (A, 0.1)
	40.5 (A, 0.2)	31.4 (A, 0.2)
	47.2 (A, 0.5)	42.2 (A, 0.5)
	60.7 (A, 0.9)	49.0 (A, 0.6)
	76.6 (A, 0.3)	68.2 (A, 0.2)
	80.6 (A, 0.4)	79.1 (A, 0.2)
	84.8 (A, 0.3)	84.3 (A, 0.6)
	92.8 (A, 0.4)	94.6 (A, 0.5)
	103.2 (A, 0.1)	104.4 (A, 0.2)
	124.6 (A, 0.7)	118.6 (A, 0.4)
	167.0 (A, 0.2)	163.5 (A, 0.3)
	217.5 (A, 0.9)	204.6 (A, 0.9)
	252.7 (A, 1.4)	232.3 (A, 2.7)
	366.7 (A, 0.4)	346.9 (A, 2.8)
	379.0 (A, 3.4)	357.6 (A, 5.1)
	382.2 (A, 2.1)	366.8 (A, 1.5)
	407.3 (A, 1.6)	387.1 (A, 1.6)
$CpFeMn(CO)_5$	420.3 (A, 0.5)	416.4 (A, 0.1)
500-48	441.8 (A, 3.5)	437.3 (A, 4.0)
	452.2 (A, 3.7)	453.6 (A, 5.3)
	476.7 (A, 3.9)	478.8 (A, 8.0)
	485.9 (A, 0.9)	484.4 (A, 0.7)
	512.6 (A, 28.9)	515.2 (A, 24.2)
	524.5 (A, 26.9)	518.6 (A, 5.7)
	530.8 (A, 0.5)	527.8 (A, 8.5)
	558.1 (A, 24.9)	547.3 (A, 23.3)
	565.5 (A, 17.1)	560.4 (A, 6.3)
	598.8 (A, 4.3)	570.9 (A, 2.8)
	607.1 (A, 35.0)	582.0 (A, 6.0)
	613.0 (A, 10.9)	606.8 (A, 99.1)
	622.9 (A, 84.0)	608.7 (A, 53.1)
	691.9 (A, 132.0)	684.0 (A, 115.3)
	702.9 (A, 35.2)	699.4 (A, 26.0)
	825.5 (A, 11.1)	804.3 (A, 32.0)
	829.5 (A, 1.9)	814.1 (A, 4.4)

836.1 (A, 9.5)	816.4 (A, 9.0)
839.5 (A, 16.0)	821.3 (A, 5.4)
869.1 (A, 9.3)	848.0 (A, 6.8)
908.1 (A, 1.4)	887.4 (A, 1.0)
918.7 (A, 0.9)	894.2 (A, 0.2)
1016.2 (A, 6.3)	980.1 (A, 6.5)
1038.7 (A, 3.4)	1005.1 (A, 4.9)
1077.4 (A, 0.6)	1046.4 (A, 0.7)
1080.0 (A, 1.1)	1049.0 (A, 0.8)
1144.8 (A, 4.6)	1106.3 (A, 2.1)
1273.5 (A, 0.0)	1242.0 (A, 0.0)
1396.6 (A, 1.3)	1341.5 (A, 1.1)
1405.6 (A, 0.7)	1350.2 (A, 0.2)
1445.1 (A, 1.8)	1393.1 (A, 4.1)
1477.1 (A, 1.3)	1425.9 (A, 2.5)
1800.3 (A, 499.2)	1735.5 (A, 461.8)
2010.8 (A, 321.0)	1941.1 (A, 379.4)
2020.1 (A, 651.5)	1947.2 (A, 831.6)
2029.1 (A, 1461.5)	1963.0 (A, 1124.9)
2091.3 (A, 780.0)	2016.1 (A, 666.2)
3225.7 (A, 0.0)	3150.3 (A, 0.0)
3228.8 (A, 0.0)	3156.5 (A, 0.0)
3240.4 (A, 0.2)	3164.3 (A, 0.0)
3245.6 (A, 0.3)	3171.1 (A, 0.2)
3253.5 (A, 0.2)	3180.3 (A, 0.2)

Figure S1. Four optimized geometries (bond lengths in Å) for CpFeMn(CO)₇ at the BP86 level of theory. The numbers in parentheses are the relative energies (ΔE in kcal·mol⁻¹). The subsequent figures have the same arrangement.

Table S15 The total energies (*E*, in Hartree), relative energies (ΔE , in kcal·mol⁻¹), Fe-Mn bond distances (Å), the number of imaginary vibrational frequencies (N_{imag}) and spin expectation values $\langle S^2 \rangle$ for the CpFeMn(CO)₇ structures.

Structures	E	ΔE	Fe-Mn	$N_{\rm imag}$	$\langle S^2 \rangle$
7CO-1S (<i>C</i> ₁)	-3402.433502	0.0	2.860	0	0.00
$7\text{CO-2S}(C_s)$	-3402.434350	-0.5	2.655	0	0.00
7CO-3S (<i>C</i> ₁)	-3402.410767	14.3	3.763	0	0.00
7CO-4S (<i>C</i> ₁)	-3402.407940	16.0	3.782	0	0.00

level of theory. **Table S16** The total energies (*E*, in Hartree), relative energies (ΔE , in kcal·mol⁻¹),

Fe-Mn bond distances (Å), the number of imaginary vibrational frequencies (N_{imag})

Figure S2. Optimized geometries for the five CpFeMn(CO)₆ structures at the BP86

1.828

1.779

6CO-4S(Cs, 0.6)

1.85

and spin expectation values $\langle S^2 \rangle$ for the CpFeMn(CO)₆ structures.

2.473

2.004

1.757

6CO-5S(Cs, 1.2)

Structures	E	ΔE	Fe-Mn	$N_{\rm imag}$	$\langle S^2 \rangle$
6CO-1S (<i>C</i> _s)	-3289.032220	0.0	2.657	0	0.00
6CO-2T (C_1)	-3289.032806	-0.4	2.320	0	2.03
6CO-3S (<i>C</i> ₁)	-3289.031110	0.7	2.751	0	0.00
6CO-4S (<i>C</i> _s)	-3289.031230	0.6	2.475	0	0.00
6 CO-5S (<i>C</i> _s)	-3289.030379	1.2	2.473	0	0.00

Figure S3. Four optimized structures for the CpFeMn(CO)₅ structure at the BP86 level of theory.

Table S17 The total energies (*E*, in Hartree), relative energies (ΔE , in kcal·mol⁻¹), Fe-Mn bond distances (Å), the number of imaginary vibrational frequencies (N_{imag}) and spin expectation values $\langle S^2 \rangle$ for the CpFeMn(CO)₅ structures

Structures	E	ΔΕ	Fe-Mn	$N_{ m imag}$	$\langle S^2 \rangle$
5CO-1S (<i>C</i> ₁)	-3175.640899	0.0	2.199	0	0.00
5CO-2T (<i>C</i> _s)	-3175.625594	9.6	2.316	0	2.03
5CO-3S (<i>C</i> ₁)	-3175.630508	6.5	2.514	0	0.00
5CO-4S (C_1)	-3175.614982	16.3	2.484	0	0.00

CpFe(CO)₂Mn(CO)₅ Figure S4. The structure of $CpFe(CO)_2Mn(CO)_5$.

af $CnE_0(CO)$ $Mn(CO)$, with the experimental V ray structural data (ref. 24)					
700.10	$\frac{1}{700} \frac{1}{100} = \frac{1}{100} $				
/0-15	M06-L	BP86	Exp		
Fe-Mn	2.843	2.860	2.840, 2.845 with the average 2.843		
Fe-C(1)	1.759	1.753	1.676, 1.726		
Fe-C(2)	1.759	1.750	1.754, 1.709		
Fe-C average	1.759	1.752	the average 1.716		
Mn-C(3)	1.793	1.790	1.748, 1.750		
Mn-Caxial carbonyl	1.793	1.790	with the average 1.749		
Mn-C(4)	1.826	1.827	1.841, 1.815		
Mn-C(5)	1.840	1.841	1.809, 1.819		
Mn-C(6)	1.851	1.843	1.823, 1.833		
Mn-C(7)	1.840	1.836	1.827,1.833		
Mn-C _{equatorial carbonyl}	1.839	1.837	the average 1.825		
C(1)-O(1)	1.150	1.161	1.217, 1.158		
C(2)-O(2)	1.150	1.163	1.129, 1.170		
C-O (Fe)	1.150	1.162	the average 1.169		
C(3)-O(3)	1.148	1.159	1.194, 1.195		
C-O (Mn, axial)	1.148	1.159	the average 1.195		
C(4)-O(4)	1.148	1.158	1.146, 1.159		
C(5)-O(5)	1.147	1.154	1.148, 1.160		
C(6)-O(6)	1.144	1.153	1.152, 1.153		
C(7)-O(7)	1.147	1.159	1.180, 1.150		
C-O (Mn, equatorial)	1.147	1.156	the average 1.156		
Fe-C(1)-O(1)	176.8	175.0	169.5, 173.5		
Fe-C(2)-O(2)	176.8	173.4	173.1, 173.9		
Mn-C(3)-O(3)	179.9	179.0	177.9, 178.6		
Mn-C(4)-O(4)	178.7	176.4	177.1, 178.6		
Mn-C(5)-O(5)	177.1	177.3	177.8, 177.6		
Mn-C(6)-O(6)	179.2	176.9	179.6, 177.2		
Mn-C(7)-O(7)	177.1	174.5	178.5, 179.1		

Table S18 Comparison of theoretical intramolecular distances (in Å) and angles (deg)

Figure S5. Optimized geometries (bond lengths in Å) for the experimentally known heterobimetallic compound CpFeMn(CO)₇ at the M06-L and BP86 level of theory using the the empirical dispersion correction by Grimme's DFT-D3 method.

Figure S6. Optimized geometries (bond lengths in Å) for the experimentally known heterobimetallic compound CpFeMn(CO)₇ using the DFT methods: (a) M06-L (up) and M06-L-D3 (below), (b) BP86 (up) and BP86-D3 (below).

For presenting clearly the bond distances (in Å) with and without considering the dispersion effects are shown in Figure S6. It indicates that the results optimized by the M06-L method are in excellent agreement with those obtained by the M06-L-D3 method. Thus the difference between the Fe-Mn bond length with and without dispersion is only 0.001 Å. However, the difference between the BP86 and BP86-D3 results is larger than that in M06-L and M06-L-D3, especially the difference in the Fe-Mn bond length of 0.028 Å between the BP86 and BP86-D3 methods. This

Figure S7. Bond paths for optimized $CpFeMn(CO)_n$ (n = 7, 6, 5) structures at the M06-L level of theory. Red dots are bond critical points, yellow dots are ring critical points, and green dots are cage critical points.

Figure S8. NCI isosurfaces of **6CO-1S** at the M06-L level of theory. The cutoff value is 0.09 au. The surfaces describe the reduced density gradient at an isovalue of 0.4 au. The surfaces are colored on a blue-green-red scale ranging from -0.04 to +0.02 au.

Table S19 Topological data at the bond critical point for $Mn-C_{cp}$ segment in 6CO-1S at the M06-L level of theory. All values are in au.

Structures	$ ho_h$	$ abla^2 ho_h$	G_h	V_h	H_h	G_h/ρ_h
6CO-1S (<i>C</i> _s)	0.056	0.133	0.048	-0.063	-0.015	0.857

Structures	Fe-Mn	formal bond	Fe-Mn distance.	Bridging	Natural	charges
(symmetry)	WBI	order	Å	groups	Fe	Mn
7CO-1S (<i>C</i> ₁)	0.34	1	2.860	none	-0.37	-1.15
7CO-2S (<i>C_s</i>)	0.28	1	2.655	2 μ-CO	-0.42	-1.15
7CO-3S (<i>C</i> ₁)	0.12	0	3.763	η²-μ-CO	-0.54	-0.83
7CO-4S (<i>C</i> ₁)	0.12	0	3.782	η ² -μ-CO	-0.55	-0.83
6CO-1S (<i>C</i> _s)	0.42	1	2.657	Mn-H-C	-0.45	-0.82
6CO-2T (<i>C</i> ₁)	0.32	2	2.320	3 μ-CO	-0.10	-1.03
6CO-3S (<i>C</i> ₁)	0.36	1	2.751	η²-μ-CO	-0.35	-0.76
6CO-4S (<i>C</i> _s)	0.52	2	2.475	none	-0.35	-0.70
6CO-5S (<i>C</i> _s)	0.40	1	2.473	2 μ-CO	-0.45	-0.59
5CO-1S (<i>C</i> ₁)	0.82	3	2.199	2 μ-CO	-0.21	-0.61
5CO-2T (<i>C</i> _s)	0.57	2	2.316	2 μ-CO	0.19	-0.73
5CO-3S (<i>C</i> ₁)	0.49	2	2.514	η ² -μ-CO	-0.40	-0.27
5 CO-4S (<i>C</i> ₁)	0.54	2	2.484	η ² -μ-CO	-0.14	-0.57

Table S20. Wiberg Bond Indices (WBI) of the Fe-Mn, Fe-Mn bond lengths and the natural charges on the Fe and Mn atoms in the CpFeMn(CO)_n (n = 7, 6, 5) structures from NBO analysis using the BP86 method.

Structures	ADCH charges		
(symmetry)	Fe	Mn	
7CO-1S (<i>C</i> ₁)	-0.205	-0.171	
7CO-2S (C_s)	-0.169	-0.130	
7CO-3S (<i>C</i> ₁)	-0.166	-0.099	
7CO-4S (C_1)	-0.154	-0.085	
6CO-1S (<i>C</i> _s)	-0.252	-0.077	
6CO-2T (<i>C</i> ₁)	-0.101	-0.108	
6CO-3S (<i>C</i> ₁)	-0.208	-0.098	
6CO-4S (<i>C</i> _s)	-0.200	-0.098	
6 CO-5S (<i>C</i> _s)	-0.180	-0.012	
5CO-1S (<i>C</i> ₁)	-0.188	-0.091	
5CO-2T (<i>C_s</i>)	0.001	-0.092	
5CO-3S (<i>C</i> ₁)	-0.209	0.067	
5 CO-4S (<i>C</i> ₁)	-0.170	-0.118	

Table S21 The ADCH atomic charges on the Fe and Mn atoms in the CpFeMn(CO)_{*n*} (n = 7, 6, 5) structures at the M06-L level of theory.

Table S22 The CDA results of the CpFeMn(CO)_{*n*} (n = 7, 6, 5) structures at the M06-L/DZP level of theory: calculated donation $d(A \rightarrow B)$, back-donation $b(A \leftarrow B)$, repulsive polarization $r(A \leftrightarrow B)$, and the donation/back-donation (d/b) ratio.

	A-B	d	b	d-b	r	d/b
7CO-1S	CO-CpFe(CO) ₂ Mn(CO) ₄	0.189	0.114	0.075	-0.360	1.66
7CO-2S	CO-CpFe(CO)(µ-CO) ₂ Mn(CO) ₃	0.164	0.113	0.051	-0.420	1.45
7CO-3S	$CO-CpFe(CO)_2(\eta^2-\mu-CO)Mn(CO)_3$	0.154	0.103	0.051	-0.308	1.50
7CO-4S	$CO-CpFe(CO)_2(\eta^2-\mu-CO)Mn(CO)_3$	0.187	0.137	0.050	-0.412	1.36
6CO-18	CO-CpFe(CO) ₂ Mn(CO) ₃	0.172	0.130	0.042	-0.402	1.32
6CO-2T	$CO-CpFe(\mu-CO)_3Mn(CO)_2$	0.141	0.103	0.038	-0.350	1.37
6CO-3S	$CO-CpFe(CO)(\eta^2-\mu-CO)Mn(CO)_3$	0.179	0.115	0.064	-0.364	1.56
6CO-4S	CO-CpFe(CO) ₂ Mn(CO) ₃	0.152	0.127	0.025	-0.383	1.20
6CO-5S	$CO-CpFe(CO)(\mu-CO)_2Mn(CO)_2$	0.137	0.117	0.020	-0.434	1.17
5CO-1S	CO-CpFe(µ-CO) ₂ Mn(CO) ₂	0.141	0.131	0.010	-0.414	1.08
5CO-2T	$CO-CpFe(\mu-CO)_2Mn(CO)_2$	0.104	0.113	-0.009	-0.322	0.92
5CO-3S	$CO-CpFe(CO)(\eta^2-\mu-CO)Mn(CO)_2$	0.160	0.105	0.055	-0.352	1.52
5CO-4S	$CO-CpFe(CO)(\eta^2-\mu-CO)Mn(CO)_2$	0.140	0.120	0.020	-0.354	1.17
Ni(CO) ₄ (DZP)	CO-Ni(CO) ₃	0.218	0.155	0.063	-0.123	1.41
Ni(CO) ₄ (TZP)	CO-Ni(CO) ₃	0.126	0.179	-0.053	-0.120	0.70

However, as has recently been demonstrated^{1,2} that the charge decomposition analysis (CDA) could give reasonable estimates of donation and back-donation between the metal fragment and the ligand fragment if their electronic polarization is sufficiently small or absent. And, we also calculated the donation and π -back-donation of Ni(CO)₄ using the M06-L method with DZP and TZP basis sets, respectively. The results show that the amount of CO \rightarrow Ni donation is greater than that of the Mn \rightarrow CO back-donation with DZP basis set which consisting with the previous report³, while the result of TZP is opposite. Thus, the CDA for the CpFeMn(CO)_n (n = 7, 6, 5) structures are calculated at the M06-L/DZP level of theory.

The CDA results given in Table S22 show the amount of CO \rightarrow Mn charge donation (*d*), Mn \rightarrow CO back-donation (*b*), the CO \leftrightarrow Mn repulsive polarization (*r*) and the donation/back-donation ratio (*d/b*). The CDA results show that the CO \rightarrow Mn σ forward bonding is stronger than the concurrent Mn \rightarrow CO back-bonding, corresponding to the observation of the natrure charge on Mn atom. This term *r* is negative, because electronic charge is depleted from the overlapping area of the occupied orbitals, thus reflecting an electron repulsive effect.

The CDA results for the structures of 7CO-1S and 6CO-4S with no bridging CO

groups show that the amount of π -back-donation for 6CO-4S is larger than that in 7CO-1S, which is in agreement with that the v(CO) vibrational frequencies of 6CO-4S is lower than that in 7CO-1S (Table S23). However, other structures with bridging CO groups or an agostic bond, have no such obvious variation of the CO frequencies. But, the amount of *d*-*b* decreases generally as CO groups are lost, and the CO frequencies decrease with the decreasing of the amount of *d*-*b*.

Table S23 The v(CO) vibrational frequencies (cm⁻¹) for the CpFeMn(CO)_n (n = 7, 6, 5) structures by M06-L and BP86 methods (infrared intensities in parentheses are in kcal·mol⁻¹).

neur mer).		
	M06-L	BP86
7CO-18	2023(33),2035 (179),2043(762) 2055(1767),2064 (279),2069(1431) 2142(437)	1948(13),1968(368),1973(793) 1980(930),1993(1429),2005(487) 2072(478)
7CO-28	1893(860),1917(20),2042(650) 2061(516),2063(951), 2075 (1204) 2142 (649)	1822 (780),18448(12),1971(631) 1988(626),1992(851),2002(934) 2068(623)
7CO-38	1643(140),2005(714),2027(1110) 2050(587),2072(954),2100(1240) 2126(307)	1571(138),1938(657),1958(1064) 1981(515),1996(907),2027(1092) 2052(292)
7CO-48	1637(138),2016(621),2026(1123) 2050(547),2069(909),2096(838) 2127(611)	1565(132),1948(582),1957(1035) 1981(503),1992(861),2023(753) 2053(553)
6CO-1S	2022(1),2033(262),2050(573) 2052(1914),2058(1358), 2132(463)	1953(1),1966(410),1977(1809) 1981(398),1989(1233),2060(425)
6CO-2T	1932(840),1933(863),1960(55) 2063(857),2064(840),2123(1136)	1860(743),1861(755),1886(50) 1989(778),1990(767),2045(1059)
6CO-3S	1835(347),2020(573),2037(541) 2049(495),2061(1657), 2132(546)	1778(308),1954(512),1965(540) 1976(575.9),1987(1409),2059(519)
6CO-4S	1991(446),2006(878),201(98) 2039(1150),2053(905),2123(819)	1924(763),1924(366),1946(103) 1963(1074),1977(867),2043.5(752)
6CO-5S	1895(813),1927(106),2038(744) 2042(977),2071(1401), 2113 (620)	1815(762),1840(49),1962(644) 1974(819),1999(1225),2037 (612)
5CO-1S	1955(697),1967(425),2026(988) 2039(969),2101(959)	1884(596),1899(383),1952(909) 1964(869),2025 (866)
5CO-2T	1908(908),1914(135),2032(944) 2054(816),2106 (1277)	1824(762),1835(169),1955(804) 1981(779),2027 (1215)
5CO-3S	1780(325),1999(604),2018(830) 2046(1106),2092(728)	1775(296),1926(643),1941(711) 1975 (971),2012 (638)
5CO-4S	1800(499),2011(321),2020(652) 2029(1461),2091 (780)	1736(462),1941(379),1947(832) 1963 (1125),2016(666)

	ΔE
$CpFeMn(CO)_7(7CO-1S) \rightarrow CpFeMn(CO)_6(6CO-1S) + CO$	32.4
$CpFeMn(CO)_6(6CO-1 S) \rightarrow CpFeMn(CO)_5(5CO-1S) + CO$	26.1
$CpFeMn(CO)_7 \rightarrow CpFe(CO)_2 + Mn(CO)_5$	26.1
$CpFeMn(CO)_6 \rightarrow CpFe(CO)_2 \cdot + Mn(CO)_4 \cdot$	41.0
$CpFeMn(CO)_6 \rightarrow CpFeCO + Mn(CO)_5$	53.0
$2CpFeMn(CO)_6 \rightarrow CpFeMn(CO)_7 + CpFeMn(CO)_5$	-6.3
$2CpFeMn(CO)_7 \rightarrow Cp_2Fe_2(CO)_4 + Mn_2(CO)_{10}$	-9.6

Table S24 Energies (ΔE , in kcal·mol⁻¹) for reactions of CpFeMn(CO)_n using the BP86 method.

Table S25 Energies (ΔE , in kcal·mol⁻¹) for reactions of CpFeMn(CO)_n at the M06-L level of theory using the empirical dispersion correction by Grimme's DFT-D3 method.

Structures	ΔE
$CpFeMn(CO)_7 (7CO-1S) \rightarrow CpFeMn(CO)_6 (6CO-1S) + CO$	33.5
$CpFeMn(CO)_6$ (6CO-1S) \rightarrow $CpFeMn(CO)_5$ (5CO-1S) + CO	30.7
$CpFeMn(CO)_7 \rightarrow CpFe(CO)_2 + Mn(CO)_5$	32.2
$CpFeMn(CO)_6 \rightarrow CpFe(CO)_2 + Mn(CO)_4$	43.5
$CpFeMn(CO)_6 \rightarrow CpFeCO + Mn(CO)_5$	53.1
$2CpFeMn(CO)_6 \rightarrow CpFeMn(CO)_7 + CpFeMn(CO)_5$	-2.8
$2CpFeMn(CO)_7 \rightarrow Cp_2Fe_2(CO)_4 + Mn_2(CO)_{10}$	-5.2

Table S26 Energies (ΔE , in kcal·mol⁻¹) for reactions of CpFeMn(CO)_n at the BP86 level of theory using the empirical dispersion correction by Grimme's DFT-D3 method.

Structures	ΔE
$CpFeMn(CO)_7 (7CO-1S) \rightarrow CpFeMn(CO)_6 (6CO-1S) + CO$	37.5
$CpFeMn(CO)_{6} (6CO-1S) \rightarrow CpFeMn(CO)_{5} (5CO-1S) + CO$	31.5
$CpFeMn(CO)_7 \rightarrow CpFe(CO)_2 + Mn(CO)_5$	40.6
$CpFeMn(CO)_6 \rightarrow CpFe(CO)_2 + Mn(CO)_4$	52.6
$CpFeMn(CO)_6 \rightarrow CpFeCO + Mn(CO)_5$	64.8
$2CpFeMn(CO)_6 \rightarrow CpFeMn(CO)_7 + CpFeMn(CO)_5$	-6.1
$2CpFeMn(CO)_7 \rightarrow Cp_2Fe_2(CO)_4 + Mn_2(CO)_{10}$	-9.0

The description of the DZP basis set

The double- ζ plus polarization (DZP) basis sets were used for all computations. For carbon and oxygen, these DZP basis sets were obtained by adding one set of pure spherical harmonic d functions with orbital exponents $\alpha_d(C) = 0.75$ and $\alpha_d(O) = 0.85$, respectively, to the Huzinaga–Dunning standard contracted DZ sets, designated as $(9s5p1d/4s2p1d)^{4,5}$ For iron and manganese, our loosely contracted DZP basis set (14s11p6d/10s8p3d) uses the Wachters primitive set⁶ augmented by two sets of p functions and one set of d functions, and contracted following Hood, Pitzer, and Schaefer.⁷ For hydrogen, a set of p polarization functions ($\alpha_p(H) = 0.75$) was added to the Huzinaga–Dunning DZ sets.

Complete Gaussian Reference

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.

Literature References

- (1) S. I. Gorelsky, S. Ghosh and E. I. Solomon, *J. Am. Chem. Soc.*, 2006, **128**, 278.
- (2) J. Rusanova, E. Rusanov, S. I. Gorelsky, D. Christendat and R. Popescu, *Inorg. Chem.*,2006, **45**, 6246
- (3) W. Petz, F. Weller, J. Uddin and G. Frenking, *Organometallics*, 1999, **18**, 619.
- (4) S. Huzinaga, J. Chem. Phys., 1965, 42, 1293.
- (5) T. H. Dunning, J. Chem. Phys. 1970, 53, 2823.
- (6) A. J. H. Wachters, J. Chem. Phys. 1970, 52, 1033.
- (7) D. M. Hood, R. M. Pitzer and H. F. Schaefer, J. Chem. Phys. 1979, 71, 705.