## **Electronic Supplementary Information (ESI)**

## Luminescent monometallic Cu(I) triphenylphosphine complexes based on the methylated 5-trifluoromethyl-3-(2'-pyridyl)-1,2,4-triazole ligands

Jing-Lin Chen,<sup>ab</sup>\* Zong-Hao Guo,<sup>a</sup> Yan-Sheng Luo,<sup>a</sup> Lu Qiu,<sup>a</sup> Li-Hua He,<sup>a</sup> Sui-Jun Liu,<sup>a</sup> He-Rui Wen,<sup>a</sup> and Jin-Yun Wang<sup>b</sup>\*

<sup>a</sup> School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China

<sup>b</sup> State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.R. China

\*Authors to whom correspondence should be addressed. E-mail: gzchenjinglin@126.com (J.-L. Chen); jy\_wang@fjirsm.ac.cn (J.-Y. Wang).



Figure S1 <sup>1</sup>H NMR spectra of 1 in  $CD_2Cl_2$ .



Figure S2 <sup>1</sup>H NMR spectra of 2 in  $CD_2Cl_2$ .



Figure S3 <sup>1</sup>H NMR spectra of 3 in  $CD_2Cl_2$ .















Figure S9  $^{31}$ P NMR spectrum of 4 in CD<sub>2</sub>Cl<sub>2</sub>.



Figure S10 <sup>31</sup>P NMR spectrum of 5 in CD<sub>2</sub>Cl<sub>2</sub>.

| orbital                           |            | nergy (eV) | MO contribution (%) |                  |                                                       |  |
|-----------------------------------|------------|------------|---------------------|------------------|-------------------------------------------------------|--|
|                                   |            |            | Cu (s/p/d)          | PPh <sub>3</sub> | <i>p</i> -mpftz                                       |  |
| LUMO+8                            |            | -0.28      | 8.56 (2/97/1) 89.85 |                  | 1.59                                                  |  |
| LUN                               | 1O+5       | -0.53      | 9.69 (6/91/3)       | 41.71            | 48.59                                                 |  |
| LUN                               | 1O+3       | -0.72      | 4.86 (15/74/11)     | 91.07            | 4.08                                                  |  |
| LUMO+2                            |            | -0.76      | 6.81 (44/53/4)      | 91.74            | 1.46                                                  |  |
| LU                                | MO         | -1.16      | 6.29 (11/76/13)     | 11.13            | 82.58                                                 |  |
| НО                                | MO         | -5.85      | 29.44 (0/22/78)     | 59.05            | 11.51                                                 |  |
| HOM                               | AO-1       | -6.34      | 38.92 (7/16/77)     | 35.12            | 25.95                                                 |  |
| HOM                               | МО-2       | -6.53      | 33.18 (7/10/83)     | 14.95            | 51.87                                                 |  |
| HON                               | мо-з       | -6.59      | 21.69 (3/19/78)     | 13.04            | 65.26                                                 |  |
|                                   |            |            |                     |                  |                                                       |  |
| state                             | E/nm (eV)  | O.S.       | transition          |                  | assignment                                            |  |
| $S_1$                             | 333 (3.72) | 0.1159     | HOMO→LUMO           | (90%)            | <sup>1</sup> LLCT/ <sup>1</sup> MLCT/ <sup>1</sup> IL |  |
| $S_2$                             | 309 (4.01) | 0.0277     | HOMO-1→LUM          | O (53%)          | <sup>1</sup> IL/ <sup>1</sup> MLCT/ <sup>1</sup> LLCT |  |
|                                   |            |            | HOMO-2→LUM          | O (26%)          |                                                       |  |
| $S_6$                             | 294 (4.22) | 0.0444     | HOMO-2→LUM          | O (37%)          | <sup>1</sup> IL/ <sup>1</sup> MLCT/ <sup>1</sup> LLCT |  |
|                                   |            |            | HOMO-1→LUMO (31%)   |                  |                                                       |  |
|                                   |            |            | HOMO-3→LUMO (10%)   |                  |                                                       |  |
| S <sub>10</sub> 278 (4.47) 0.1184 |            | 0.1184     | HOMO-3→LUMO (47%)   |                  | <sup>1</sup> IL/ <sup>1</sup> MLCT/ <sup>1</sup> LLCT |  |
|                                   |            |            | HOMO→LUMO           | +5 (24%)         |                                                       |  |
|                                   |            |            | HOMO-2→LUMO (15%)   |                  |                                                       |  |
| $S_{15}$                          | 264 (4.70) | 0.1119     | HOMO→LUMO           | +8 (64%)         | <sup>1</sup> IL/ <sup>1</sup> MLCT/ <sup>1</sup> LLCT |  |
|                                   |            | HOMO-1→LUM | O+2 (21%)           |                  |                                                       |  |

**Table S1** Partial molecular orbital compositions (%) by SCPA approach (C-squared population analysis proposed by Ros and Schuit) and the absorption transitions for complex 1 in  $CH_2Cl_2$  media calculated by TDDFT method at the M06 level.





Figure S11 Plots of the frontier molecular orbitals involved in the absorption transitions for complex 1 in  $CH_2Cl_2$  media by TDDFT method at the M06 level (isovalue = 0.025). The red and green parts represent different phases, respectively. For clarity, the hydrogen atoms are omitted.

| ort                   | oital e    | nergy (eV) |                      | MO contri        | bution (%)                                            |
|-----------------------|------------|------------|----------------------|------------------|-------------------------------------------------------|
|                       |            |            | Cu (s/p/d)           | PPh <sub>3</sub> | <i>m</i> -mpftz                                       |
| LUN                   | AO+5       | -0.55      | 15.85 (4/95/1)       | 51.95            | 32.19                                                 |
| LUN                   | AO+4       | -0.66      | 3.93 (31/68/1)       | 73.95            | 22.11                                                 |
| LUN                   | AO+2       | -0.78      | 5.74 (35/58/7)       | 81.52            | 12.73                                                 |
| LU                    | MO         | -1.20      | 6.43 (3/85/12)       | 8.66             | 84.91                                                 |
| НО                    | OMO        | -6.03      | 26.18 (0/19/81)      | 60.88            | 12.95                                                 |
| HON                   | мо-2       | -6.48      | 20.08 (6/15/79)      | 12.42            | 67.50                                                 |
| НОМО-3                |            | -6.52      | 35.63 (3/10/87) 9.71 |                  | 54.66                                                 |
|                       |            |            |                      |                  |                                                       |
| state                 | E/nm (eV)  | O.S.       | transition           |                  | assignment                                            |
| <b>S</b> <sub>1</sub> | 320 (3.87) | 0.0853     | HOMO→LUMO (869       | %)               | <sup>1</sup> LLCT/ <sup>1</sup> MLCT/ <sup>1</sup> IL |
| $S_6$                 | 286 (4.34) | 0.2226     | HOMO-2→LUMO (4       | 2%)              | <sup>1</sup> IL/ <sup>1</sup> MLCT                    |
|                       |            |            | HOMO-3→LUMO (2       | 20%)             |                                                       |
|                       |            |            | HOMO→LUMO+2 (20%)    |                  |                                                       |
| S <sub>22</sub>       | 254 (4.88) | 0.1349     | HOMO-3→LUMO+2        | 2 (23%)          | <sup>1</sup> LLCT/ <sup>1</sup> MLCT/ <sup>1</sup> IL |
|                       |            |            | HOMO-2→LUMO+4        | (19%)            |                                                       |
|                       |            |            | HOMO-2→LUMO+2        | (10%)            |                                                       |

**Table S2** Partial molecular orbital compositions (%) by SCPA approach (C-squared population analysis proposed by Ros and Schuit) and the absorption transitions for complex **2** in  $CH_2Cl_2$  media calculated by TDDFT method at the M06 level.





Figure S12 Plots of the frontier molecular orbitals involved in the absorption transitions for complex 2 in  $CH_2Cl_2$  media by TDDFT method at the M06 level (isovalue = 0.025). The red and green parts represent different phases, respectively. For clarity, the hydrogen atoms are omitted.

orbital energy (eV) MO contribution (%) Cu(s/p/d)PPh<sub>3</sub> *o*-mpftz LUMO+3 -0.59 4.63 (5/91/4) 46.04 49.33 LUMO -1.18 6.00 (2/83/15) 14.58 79.42 HOMO -5.79 27.37 (0/23/77) 64.96 7.67 HOMO-1 -6.28 42.73 (5/16/79) 27.22 30.04 HOMO-2 -6.43 10.96 (11/15/74) 10.00 79.04 HOMO-3 -6.61 39.14 (5/14/81) 25.34 35.52 state E/nm (eV) O.S. transition assignment  $S_1$ <sup>1</sup>LLCT/<sup>1</sup>MLCT/<sup>1</sup>IL 339 (3.65) 0.1249 HOMO→LUMO (96%) <sup>1</sup>IL/<sup>1</sup>MLCT/<sup>1</sup>LLCT 296 (4.19) 0.0737 HOMO-2→LUMO (62%)  $S_5$ HOMO-1 $\rightarrow$ LUMO (10%) <sup>1</sup>IL/<sup>1</sup>MLCT/<sup>1</sup>LLCT  $S_8$ 286 (4.34) 0.1118 HOMO-3→LUMO (47%) HOMO-2→LUMO (22%) HOMO→LUMO+3 (13%)

**Table S3** Partial molecular orbital compositions (%) by SCPA approach (C-squared population analysis proposed by Ros and Schuit) and the absorption transitions for complex **3** in  $CH_2Cl_2$  media calculated by TDDFT method at the M06 level.



Figure S13 Plots of the frontier molecular orbitals involved in the absorption transitions for complex 3 in  $CH_2Cl_2$  media by TDDFT method at the M06 level (isovalue = 0.025). The red and green parts represent different phases, respectively. For clarity, the hydrogen atoms are omitted.

| orbital               | ene        | rgy (eV) | MO contribution (%) |                                          |                                       |
|-----------------------|------------|----------|---------------------|------------------------------------------|---------------------------------------|
|                       |            |          | Cu (s/p/d)          | PPh <sub>3</sub>                         | <i>p</i> -mpftzH                      |
| LUN                   | 1O+6       | -0.86    | 18.58 (57/42/1)     | 78.21                                    | 3.21                                  |
| LUN                   | 4O+5       | -0.91    | 7.65 (7/91/2)       | 87.94                                    | 4.42                                  |
| LUN                   | 4O+3       | -1.05    | 5.04 (3/84/12)      | 91.36                                    | 3.60                                  |
| LUN                   | 4O+2       | -1.13    | 9.73 (46/50/4)      | 83.17                                    | 7.10                                  |
| LUN                   | 1O+1       | -1.45    | 7.31 (8/88/4)       | 15.90                                    | 76.79                                 |
| LU                    | MO         | -2.37    | 1.25 (22/38/40)     | 4.59                                     | 94.17                                 |
| НО                    | MO         | -6.52    | 25.35 (0/46/54)     | 71.97                                    | 2.68                                  |
| HON                   | MO-1       | -6.80    | 34.87 (30/12/58)    | 55.97                                    | 9.16                                  |
|                       |            |          |                     |                                          |                                       |
| state                 | E/nm (eV)  | O.S.     | transition          | assign                                   | nment                                 |
| <b>S</b> <sub>1</sub> | 379 (3.27) | 0.0320   | HOMO→LUMO (         | (98%) <sup>1</sup> LLC                   | T/ <sup>1</sup> MLCT                  |
| $S_2$                 | 357 (3.47) | 0.0139   | HOMO-1→LUM0         | D(94%) <sup>1</sup> LLC                  | T/ <sup>1</sup> MLCT                  |
| $S_4$                 | 294 (4.22) | 0.0220   | HOMO→LUMO+          | -1 (94%) <sup>1</sup> LLC                | T/ <sup>1</sup> MLCT/ <sup>1</sup> IL |
| <b>S</b> <sub>9</sub> | 276 (4.50) | 0.1124   | HOMO→LUMO+          | -3 (60%) <sup>1</sup> IL/ <sup>1</sup> M | ALCT                                  |
| $S_{15}$              | 266 (4.65) | 0.1342   | HOMO→LUMO+          | -5 (65%) <sup>1</sup> IL/ <sup>1</sup> M | ALCT                                  |
|                       |            |          | HOMO-1→LUM0         | D+3 (19%)                                |                                       |
| $\mathbf{S}_{18}$     | 264 (4.69) | 0.1346   | HOMO→LUMO+          | -6 (59%) <sup>1</sup> IL/ <sup>1</sup> M | ИLСТ                                  |
|                       |            |          | HOMO-1→LUM0         | D+2 (19%)                                |                                       |

**Table S4** Partial molecular orbital compositions (%) by SCPA approach (C-squared population analysis proposed by Ros and Schuit) and the absorption transitions for complex 4 in  $CH_2Cl_2$  media calculated by TDDFT method at the M06 level.





Figure S14 Plots of the frontier molecular orbitals involved in the absorption transitions for complex 4 in  $CH_2Cl_2$  media by TDDFT method at the M06 level (isovalue = 0.025). The red and green parts represent different phases, respectively. For clarity, the hydrogen atoms except for the ones bonded to N atoms are omitted.

| orbital               | ener       | rgy (eV) | MO contribution (% | o)               |                                                       |
|-----------------------|------------|----------|--------------------|------------------|-------------------------------------------------------|
|                       |            |          | Cu (s/p/d)         | PPh <sub>3</sub> | <i>m</i> -mpftzH                                      |
| LUMC                  | 0+5 -0.9   | 0        | 1.73 (2/78/19)     | 93.52            | 4.75                                                  |
| LUMC                  | )+3 -1.1   | 0        | 9.16 (4/93/3)      | 87.67            | 3.17                                                  |
| LUMC                  | )+2 -1.1   | 4        | 5.66 (21/70/9)     | 92.67            | 1.67                                                  |
| LUMC                  | )+1 -1.4   | 4        | 7.14 (17/79/4)     | 9.38             | 83.48                                                 |
| LUMC                  | -2.2       | 6        | 1.37 (3/57/39)     | 4.00             | 94.62                                                 |
| HOMO                  | -6.5       | 3        | 23.79 (1/38/61)    | 73.76            | 2.45                                                  |
| HOMO                  | D-1 -6.8   | 4        | 37.00 (27/15/58)   | 52.85            | 10.16                                                 |
|                       |            |          |                    |                  |                                                       |
| state                 | E/nm (eV)  | O.S.     | transition         |                  | assignment                                            |
| <b>S</b> <sub>1</sub> | 366 (3.39) | 0.0424   | HOMO→LUMO (9       | 98%)             | <sup>1</sup> LLCT/ <sup>1</sup> MLCT                  |
| $S_2$                 | 348 (3.57) | 0.0064   | HOMO-1→LUMO        | 0 (90%)          | <sup>1</sup> LLCT/ <sup>1</sup> MLCT/ <sup>1</sup> IL |
| $S_5$                 | 281 (4.41) | 0.0878   | HOMO→LUMO+2        | 2 (61%)          | <sup>1</sup> IL/ <sup>1</sup> MLCT/ <sup>1</sup> LLCT |
|                       |            |          | HOMO-1→LUMO        | +1 (24%)         |                                                       |
| $S_6$                 | 279 (4.44) | 0.0656   | HOMO-1→LUMO        | 0+1 (54%)        | <sup>1</sup> LLCT/ <sup>1</sup> MLCT/ <sup>1</sup> IL |
|                       |            |          | HOMO→LUMO+2        | 2 (16%)          |                                                       |
|                       |            |          | HOMO→LUMO+2        | 3 (14%)          |                                                       |
| $S_{13}$              | 266 (4.66) | 0.2406   | HOMO→LUMO+:        | 5 (63%)          | <sup>1</sup> IL/ <sup>1</sup> MLCT                    |
|                       |            |          | HOMO-1→LUMO        | 0+2 (12%)        |                                                       |

**Table S5** Partial molecular orbital compositions (%) by SCPA approach (C-squared population analysis proposed by Ros and Schuit) and the absorption transitions for complex **5** in CH<sub>2</sub>Cl<sub>2</sub> media calculated by TDDFT method at the M06 level.





Figure S15 Plots of the frontier molecular orbitals involved in the absorption transitions for complex 5 in  $CH_2Cl_2$  media by TDDFT method at the M06 level (isovalue = 0.025). The red and green parts represent different phases, respectively. For clarity, the hydrogen atoms except for the ones bonded to N atoms are omitted.

| orbital | energy (eV) |                  | MO contribu      | tion (%)         |
|---------|-------------|------------------|------------------|------------------|
|         | 1           | Cu (s/p/d)       | PPh <sub>3</sub> | <i>p</i> -mpftz  |
| LUMO    | -1.55       | 4.59 (5/72/23)   | 7.27             | 88.14            |
| НОМО    | -5.83       | 26.47 (0/21/79)  | 54.62            | 18.90            |
| HOMO-1  | -6.15       | 7.69 (4/35/61)   | 10.71            | 81.59            |
|         | 2           | Cu (s/p/d)       | PPh <sub>3</sub> | <i>m</i> -mpftz  |
| LUMO    | -1.55       | 4.96 (9/71/20)   | 7.09             | 87.96            |
| НОМО    | -5.92       | 13.99 (1/11/88)  | 30.39            | 55.63            |
| HOMO-1  | -6.10       | 17.44 (1/33/66)  | 42.34            | 40.22            |
| НОМО-3  | -6.47       | 47.68 (3/10/88)  | 10.68            | 41.65            |
|         | 3           | Cu (s/p/d)       | PPh <sub>3</sub> | o-mpftz          |
| LUMO    | -1.56       | 4.87 (8/69/23)   | 8.68             | 86.46            |
| НОМО    | -5.86       | 24.73 (0/22/77)  | 58.59            | 16.68            |
|         | 4           | Cu (s/p/d)       | PPh <sub>3</sub> | <i>p</i> -mpftzH |
| LUMO    | -2.31       | 2.25 (5/33/62)   | 4.85             | 92.89            |
| НОМО    | -5.78       | 22.21 (0/26/74)  | 70.39            | 7.40             |
| HOMO-1  | -6.76       | 28.56 (29/22/50) | 62.73            | 8.71             |
| НОМО-2  | -7.20       | 57.35 (1/7/93)   | 16.10            | 26.56            |
| HOMO-14 | -7.97       | 34.65 (1/0/99)   | 39.20            | 26.14            |
|         | 5           | Cu (s/p/d)       | PPh <sub>3</sub> | <i>m</i> -mpftzH |
| LUMO    | -2.44       | 3.06 (3/45/52)   | 4.37             | 92.56            |
| НОМО    | -5.89       | 27.90 (0/16/84)  | 59.53            | 12.57            |

**Table S6** Partial molecular orbital compositions (%) by SCPA approach (C-squared population analysis proposed by Ros and Schuit) in the lowest triplet state for complexes 1-5, respectively, in CH<sub>2</sub>Cl<sub>2</sub> media calculated by TDDFT method at the M06 level.

| complex | state          | E/nm (eV)  | O.S.   | transition         | assignment                                            |
|---------|----------------|------------|--------|--------------------|-------------------------------------------------------|
| 1       | T <sub>1</sub> | 515 (2.41) | 0.0000 | HOMO→LUMO (74%)    | <sup>3</sup> LLCT/ <sup>3</sup> MLCT/ <sup>3</sup> IL |
|         |                |            |        | HOMO-1→LUMO (13%)  |                                                       |
| 2       | T <sub>1</sub> | 535 (2.32) | 0.0000 | HOMO-1→LUMO (39%)  | <sup>3</sup> IL/ <sup>3</sup> LLCT/ <sup>3</sup> MLCT |
|         |                |            |        | HOMO→LUMO (36%)    |                                                       |
|         |                |            |        | HOMO-3→LUMO (14%)  |                                                       |
| 3       | T <sub>1</sub> | 518 (2.40) | 0.0000 | HOMO→LUMO (81%)    | <sup>3</sup> LLCT/ <sup>3</sup> MLCT/ <sup>3</sup> IL |
| 1       | T <sub>1</sub> | 567 (2.19) | 0.0000 | HOMO-1→LUMO (52%)  | <sup>3</sup> LLCT/ <sup>3</sup> MLCT/ <sup>3</sup> IL |
|         |                |            |        | HOMO-2→LUMO (18%)  |                                                       |
|         |                |            |        | HOMO-14→LUMO (14%) |                                                       |
| 5       | $T_1$          | 576 (2.15) | 0.0000 | HOMO→LUMO (94%)    | <sup>3</sup> LLCT/ <sup>3</sup> MLCT/ <sup>3</sup> IL |

**Table S7** The emission transitions for complexes 1-5 in CH<sub>2</sub>Cl<sub>2</sub> media calculated by TDDFT method at the M06 level.



**Figure S16** The optimized structure, plots of frontier molecular orbitals (isovalue = 0.025) involved in the emission transitions, and the charge density difference (CDD) map (isovalue = 0.0006) between lowest-energy triplet state T<sub>1</sub> and the ground state S<sub>0</sub> for complex **1** in CH<sub>2</sub>Cl<sub>2</sub> media calculated by TDDFT method at the M06 level. The red and green parts represent different phases. And the purple and blue parts display the electron accumulation and depletion region, respectively. For clarity, the hydrogen atoms are omitted.



**Figure S17** The optimized structure, plots of frontier molecular orbitals (isovalue = 0.025) involved in the emission transitions, and the charge density difference (CDD) map (isovalue = 0.0006) between lowest-energy triplet state T<sub>1</sub> and the ground state S<sub>0</sub> for complex **2** in CH<sub>2</sub>Cl<sub>2</sub> media calculated by TDDFT method at the M06 level. The red and green parts represent different phases. And the purple and blue parts display the electron accumulation and depletion region, respectively. For clarity, the hydrogen atoms are omitted.



**Figure S18** The optimized structure, plots of frontier molecular orbitals (isovalue = 0.025) involved in the emission transitions, and the charge density difference (CDD) map (isovalue = 0.0006) between lowest-energy triplet state T<sub>1</sub> and the ground state S<sub>0</sub> for complex **3** in CH<sub>2</sub>Cl<sub>2</sub> media calculated by TDDFT method at the M06 level. The red and green parts represent different phases. And the purple and blue parts display the electron accumulation and depletion region, respectively. For clarity, the hydrogen atoms are omitted.



**Figure S19** The optimized structure, plots of frontier molecular orbitals (isovalue = 0.025) involved in the emission transitions, and the charge density difference (CDD) map (isovalue = 0.0006) between lowest-energy triplet state T<sub>1</sub> and the ground state S<sub>0</sub> for complex **4** in CH<sub>2</sub>Cl<sub>2</sub> media calculated by TDDFT method at the M06 level. The red and green parts represent different phases. And the purple and blue parts display the electron accumulation and depletion region, respectively. For clarity, the hydrogen atoms except for the ones bonded to N atoms are omitted.



**Figure S20** The optimized structure, plots of frontier molecular orbitals (isovalue = 0.025) involved in the emission transitions, and the charge density difference (CDD) map (isovalue = 0.0006) between lowest-energy triplet state  $T_1$  and the ground state  $S_0$  for complex **5** in CH<sub>2</sub>Cl<sub>2</sub> media calculated by TDDFT method at the M06 level. The red and green parts represent different phases. And the purple and blue parts display the electron accumulation and depletion region, respectively. For clarity, the hydrogen atoms except for the ones bonded to N atoms are omitted.







Figure S22 The ESI mass spectra of 4–5.



Figure S23 The PXRD patterns of 1–5.