Electronic Supplementary Material (ESI) for New J. Chem.

Supporting Information

Structural Diversity in Aroylthiourea Copper Complexes – Formation and Biological Evaluation of $[Cu(I)(\mu-S)SCl]_2$, *cis*-Cu(II)S₂O₂, *trans*-Cu(II)S₂O₂ and Cu(I)S₃ cores

Nagamani Selvakumaran^a, Lakshmanan Sandhiya^b, Nattamai S.P. Bhuvanesh^c, Kittusamy Senthilkumar^b, Ramasamy Karvembu^a*

^aDepartment of Chemistry, National Institute of Technology, Tiruchirappalli-620015, India ^bDepartment of Physics, Bharathiar University, Coimbatore-641046, India, ^cDepartment of Chemistry, Texas A & M University, College Station, TX 77842, USA **Table S1** Selected optimized singlet state (S₀) and triplet state (T₁) geometrical parameters of complex **1** (Bond length, R in Å, Bond angle, θ in degrees and dihedral angle, ϕ in degrees) along with the X-ray crystal diffraction data (For numbering of atoms see Fig. 6).

Geometrical parameters	XRD	Calculated			
		B3LYP		M06-2X	
		\mathbf{S}_0	T_1	\mathbf{S}_0	T_1
R(Cu1-Cu2)	2.670	2.753	2.980	2.843	2.887
R(Cu1-S1)	2.346	2.359	2.378	2.427	2.441
R(Cu1-Cl1)	2.325	2.380	2.369	2.397	2.406
R(Cu1-S4)	2.294	2.495	2.349	2.532	2.485
R(Cu2-S4)	2.356	2.478	2.363	2.550	2.568
R(Cu2-S2)	2.276	2.380	2.345	2.416	2.397
R(Cu2-Cl2)	2.334	2.394	2.363	2.429	2.392
R(Cu2-S3)	2.346	2.442	2.450	2.517	2.493
R(S1-C1)	1.696	1.707	1.709	1.696	1.695
R(S3-C25)	1.707	1.719	1.728	1.714	1.724
R(S2-C13)	1.701	1.701	1.714	1.694	1.699
R(S4-C37)	1.709	1.725	1.787	1.718	1.738
R(C37-N7)	1.399	1.388	1.405	1.392	1.403
R(C37-N8)	1.399	1.335	1.387	1.317	1.406
R(N8-C45)	1.482	1.481	1.467	1.473	1.462
R(N8-C47)	1.482	1.478	1.464	1.480	1.458
R(N7-H43)	0.899	1.032	1.023	1.031	1.020
R(N7-C38)	1.376	1.389	1.369	1.374	1.359
R(C38-O4)	1.222	1.212	1.222	1.208	1.215
R(C13-N4)	1.325	1.340	1.333	1.327	1.328
R(N4-C23)	1.479	1.478	1.485	1.473	1.474
R(N4-C21)	1.481	1.478	1.479	1.472	1.472
R(C13-N3)	1.399	1.403	1.392	1.402	1.397
R(N3-H15)	0.901	1.028	1.024	1.024	1.024
R(N3-C14)	1.389	1.392	1.396	1.387	1.389
R(C14-O2)	1.211	1.214	1.214	1.208	1.206
R(C25-N6)	1.318	1.339	1.335	1.327	1.324
R(C25-N5)	1.392	1.386	1.385	1.384	1.381
R(N6-C33)	1.491	1.480	1.482	1.474	1.476
R(N6-C35)	1.489	1.477	1.478	1.477	1.477
R(N5-C26)	1.378	1.392	1.396	1.385	1.388
R(C26-O3)	1.225	1.213	1.212	1.206	1.205
R(N5-H29)	0.899	1.032	1.032	1.029	1.028

R(C26-C27)	1.490	1.506	1.506	1.503	1.502
R(C1-N2)	1.313	1.338	1.338	1.325	1.324
R(C1-N1)	1.423	1.397	1.395	1.397	1.398
R(N1-H1)	0.900	1.028	1.029	1.023	1.027
R(N1-C2)	1.369	1.390	1.391	1.387	1.384
R(C2-O1)	1.212	1.217	1.217	1.210	1.211
R(C2-C3)	1.495	1.504	1.503	1.497	1.498
R(N2-C11)	1.468	1.476	1.476	1.468	1.468
R(N2-C9)	1.486	1.479	1.479	1.475	1.476
θ(C25-S3-Cu1)	112.5	110.1	111.7	104.2	105.9
θ (S3-Cu2-Cl2)	110.9	111.2	110.9	112.2	115.2
θ (Cl2-Cu2-S2)	119.0	108.2	113.5	103.6	109.3
θ(S2-Cu2-S4)	116.8	113.9	104.4	114.6	103.2
θ(Cu2-S4-C37)	116.5	109.7	110.9	104.9	98.7
θ(C37-S4-Cu1)	108.9	109.7	108.4	106.0	106.5
θ (S4-Cu1-Cl1)	111.5	108.3	114.2	107.7	99.5
θ (Cl1-Cu1-S1)	119.1	116.1	114.3	116.5	112.8
θ(Cu1-S1-C1)	107.5	110.7	112.1	104.3	102.7
θ(S1-Cu1-S3)	116.8	115.7	111.4	103.9	101.3
θ(C25-S3-Cu2)	112.6	111.4	111.4	106.9	106.3
θ(Cu2-S2-C13)	109.8	110.7	106.6	105.1	107.2
θ(S2-C13-N3)	118.6	119.7	119.2	119.6	120.1
θ(S2-C13-N4)	122.8	122.2	121.7	123.0	122.1
θ(S4-C37-N7)	119.3	118.7	119.4	118.0	120.4
θ(S4-C37-N8)	122.9	122.6	114.4	122.5	108.9
θ(S1-C1-N1)	118.4	119.4	119.6	118.9	119.0
θ(S1-C1-N2)	124.6	122.5	122.3	124.7	125.1
θ(S3-C25-N6)	123.2	121.8	121.8	122.1	122.2
θ(S3-C25-N5)	119.1	119.5	119.2	118.8	118.7
φ(C25-S3-Cu2-Cl2)	1.3	7.0	1.7	17.4	0.2
φ(C25-S3-Cu1-S1)	-9.9	-5.9	-6.5	-16.8	-20.3
φ(Cl1-Cu1-S4-C37)	1.8	-13.7	-6.0	-15.9	-31.8
φ(Cl1-Cu1-S1-C1)	2.3	17.6	9.6	37.0	43.8

Orbital Energy (eV)		Contribution (%)			b)	Main bond type
Oronai	Lifergy (CV)	2Cu	4S	2C1	Ligand	Wall bolid type
L+5	-1.059	1.33	4.89	0.23	93.55	$\pi^*(\text{ligand})$
L+4	-1.119	4.60	6.00	0.32	89.08	$\pi^*(\text{ligand})$
L+3	-1.631	5.60	9.31	0.27	84.82	$\pi^*(\text{ligand})$
L+2	-1.746	4.16	9.52	0.62	85.70	$\pi^*(\text{ligand})$
L+1	-1.835	4.77	8.57	0.57	86.09	$\pi^*(\text{ligand})$
L	-1.963	1.63	6.96	0.15	91.26	$\pi^*(\text{ligand})$
Н	-5.417	35.50	39.72	5.11	19.67	$d(Cu) + p(S) + \pi(ligand)$
H-1	-5.512	39.71	40.67	5.94	13.68	$d(Cu) + p(S) + \pi(ligand)$
H-2	-5.612	47.57	27.22	14.99	10.22	$d(Cu) + p(S) + p(Cl) + \pi(ligand)$
H-3	-5.825	40.71	27.45	17.03	14.81	$d(Cu) + p(S) + p(Cl) + \pi(ligand)$
H-4	-5.951	37.81	28.76	18.66	14.78	$d(Cu) + p(S) + p(Cl) + \pi(ligand)$
H-5	-6.180	41.48	26.70	12.85	18.97	$d(Cu) + p(S) + p(Cl) + \pi(ligand)$

Table S2 Frontier molecular orbital compositions (%) for the complex 1 in ground state

Table S3 Atomic charges of selected atoms of the important bonds of the complex 1 (Fornumbering of atoms see Fig. 6).

• .	Atomic Charges		
Atoms	\mathbf{S}_0	T_1	
Cu1	0.756	0.823	
Cu2	0.754	0.918	
Cl1	-0.796	-0.808	
Cl2	-0.801	-0.784	
S 1	-0.321	-0.330	
S2	-0.307	-0.275	
S 3	-0.356	-0.364	
S4	-0.372	-0.355	
C13	0.359	0.375	
C37	0.388	0.195	
C1	0.363	0.365	
C25	0.380	0.396	
N1	-0.686	-0.688	
N2	-0.419	-0.418	
N3	-0.687	-0.681	
N4	-0.413	-0.403	
N5	-0.683	-0.682	
N6	-0.413	-0.403	
N7	-0.687	-0.690	
N8	-0.404	-0.443	

Table S4 DNA binding constant (K_b), quenching constant (K_q) and apparent binding constant

$(K_{\rm app})$ values.				
Complex	$K_{\rm b} \left({\rm M}^{-1} ight)$	$K_{\mathrm{q}}\left(\mathrm{M}^{-1} ight)$	K_{app} (M ⁻¹)	
1	3.59×10^4	$4.50 imes 10^4$	2.25×10^6	
2	3.16×10^4	$4.14 imes 10^4$	$2.07 imes 10^6$	
3	$2.36 imes 10^4$	$3.81 imes 10^4$	1.91×10^{6}	
4	1.96×10^4	3.32×10^4	$1.66 imes 10^6$	

Table S5 Protein binding constant (K_b) , quenching constant (K_q) and number of binding sites (n)

values.			
Complex	$K_{\mathrm{b}}(\mathrm{M}^{-1})$	K_{q} (M ⁻¹)	Ν
1	$1.09 imes 10^6$	$2.21 imes 10^5$	1.18
2	$5.78 imes 10^5$	$1.41 imes 10^5$	1.11
3	3.36×10^5	$1.09 imes 10^4$	1.09
4	1.23×10^{5}	$9.24 imes10^4$	1.03

Table S6 In vitro cytotoxicity of the Cu complexes in MCF7 and A549 cancer cell lines

Compound	IC50 (µM)			
Compound	A549	MCF7		
1	63.73	70.71		
2	103.85	81.69		
3	160.85	155.44		
4	50.00	20.45		
Cyclophosphamide	41.84	11.89		

Fig. S1 Absorption spectrum of 1 in DMF ($\pi \rightarrow \pi^* = 227$ nm, $n \rightarrow \pi^* = 280$ nm and MLCT = 370 nm).

Fig. S2 ¹H NMR spectrum of **1**.

Fig. S4 ¹³C NMR spectrum of 1.

Fig. S6 Energy level plot of HOMO and LUMO for complex 1.

Fig. S7 Isodensity surface plots of the HSOMO and LSOMO and electron spin density of 1 in T_1 state. Blue and green colors show regions of positive and negative spin density values respectively.

Fig. S8 Absorbance titrations of the complexes (2-4) (5 μ M) with CT DNA (0-50 μ M).

Fig. S9 Stern-Volmer plots of absorbance titrations of the complexes (1-4) with CT DNA.

Fig. S10 Fluorescence titrations of the complexes (1-4) (0-50 μ M) with EB bounded CT DNA.

Fig. S11 Stern-Volmer plots of fluorescence titrations of the complexes (1-4) with CT DNA.

Fig. S12 Fluorescence titrations of the complexes (1–4) (2 μ M) with BSA (1 μ M).

Fig. S13 Stern-Volmer plots of the fluorescence titrations of the complexes (1-4) with BSA.

Fig. S14 Plots of the fluorescence titrations of the complexes (1–4) with BSA.

Fig. S15 Synchronous spectra of BSA (1 μ M) as a function of concentration of the complexes (1–4) (0-20 μ M) with $\Delta\lambda = 60$ nm.

Fig. S16 Synchronous spectra of BSA (1 μ M) as a function of concentration of the complexes (1–4) (0-20 μ M) with $\Delta\lambda = 15$ nm.

Fig. S17 Cytotoxicity of the complexes (1–4) after 24 h incubation on A549 cell lines.

Fig. S18 Cytotoxicity of the complexes (1–4) after 24 h incubation on MCF7 cell lines.