Supporting Information

FRET based fluorescence ratiometric and colorimetric sensor to discriminate Fe³⁺ from Fe²⁺

Sangita Das^a, Krishnendu Aich^a, Shyamaprosad Goswami,^{*a} Ching Kheng Quah^b and Hoong-Kun Fun^{b,c}

^a Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711 103, India. Fax: +91 33 2668 2916; Tel: +91 33 2668 2961-3; E-mail: <u>spgoswamical@yahoo.com</u>

^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.

^cDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia

CONTENTS

1.	Determination of detection limit
2.	Determination of association constant
3.	X-ray crystallographic data
4.	¹ H NMR spectrum of Compound 1
5.	¹³ C NMR spectrum of Compound 1
6.	Mass spectrum (HRMS) of Compound 1
7.	¹ H NMR spectrum of RQBTE
8.	¹³ C NMR spectrum of RQBTE
9.	Mass spectrum (HRMS) of RQBTE
10.	Mass spectrum (HRMS) of RQBTE-Fe ³⁺

1. Determination of detection limit

The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio, the absorbance of RQBTE without Fe^{3+} was measured by 10 times and the standard deviation of blank measurements was determined. The detection limit (DL) of **RQBTE** for Fe^{3+} was determined from the following equation: $DL = K \times Sb_1/S$

Where K = 2 or 3 (we take 3 in this case); Sb₁ is the standard deviation of the blank solution; S is the slope of the calibration curve. From the graph we get slope = 96705.429, and Sb₁ value is 0.00174. Thus using the formula we get the Detection Limit = 5.39×10^{-8} M i.e. RQBTE can detect Fe³⁺ in this minimum concentration by fluorescence techniques.

Figure S1: Fluorescence (a) Response and (b) only linear curve of RQBTE at fluorescence intensity ratio (I_{558}/I_{470}) nm depending on Fe³⁺ concentration.

Linear responsive curve of RQBTE in presence of Fe³⁺

Figure S2: UV-vis Response curve of RQBTE at 540 nm depending on Fe³⁺ concentration.

2. Determination of Association Constant (K_a)

By fluorescence method:

Association constant was calculated according to the Benesi-Hildebran equation. K_a was calculated following the equation stated below.

$$1/(I-I_o) = 1/{K(I_{max}-I_o)[M^{x+}]^n} + 1/[I_{max}-I_o]$$

Here I_o is the fluorescence of receptor in the absence of guest, I is the fluorescenc recorded in the presence of added guest, I_{max} is fluorescence in presence of added $[M^{x+}]_{max}$ and K_a is the association constant, where $[M^{X+}]$ is $[Fe^{3+}]$. The association constant (K_a) could be determined from the slope of the straight line of the plot of $1/(I-I_o)$ against $1/[Fe^{3+}]$ and is found to be $6.12 \times 10^5 \text{ M}^{-1}$.

Figure S3: Benesi-Hildebrand plot from absorption titration data of receptor (RQBTE, 10 μ M) with Fe³⁺.

3. X-ray crystallographic data

X-ray diffraction data of a single crystal of **RQBTE** (with dimensions of $0.38 \times 0.25 \times 0.09$ mm) was collected on Bruker APEX II Duo CCD area-detector diffractometer operating at 50kV and 30mA using Mo K α radiation ($\lambda = 0.71073$ Å). Diffraction data were collected with the Oxford Cryosystem Cobra low temperature attachment at 100.0 (1) K ^[1]. Data collection and reduction were performed using the APEX2 and SAINT software ^[2]. The SADABS software was used for absorption correction ^[2]. **RQBTE** was solved by direct method and refinement was carried out by the full-matrix least-squares technique on F² using SHELXTL package ^[3]. All non-hydrogen atoms were refined anisotropically whereas hydrogen atoms were refined isotropically. N-bound H atoms were located in the difference Fourier map and refined freely [N—H = 0.82 (2) - 0.88 (2) Å]. The remaining H atoms were placed in calculated positions with C—H = 0.95 - 0.99 Å after checking their positions in the

Fourier difference map. The U_{iso} values were constrained to be 1.2 or 1.5 U_{eq} of the carrier atom. A rotating-group model was applied for the methyl groups. The crystallographic data and hydrogen bonds geometry are presented in Table S1 and S2, respectively. Crystallographic data for **RQBTE** has been deposited with the Cambridge Crystallographic Data Center No. CCDC 1416906. Copy of the data can be obtained free of charge on application to the CCDC, 12 Union Road, Cambridge CB2 IEZ, UK. Fax: +44-(0)1223-336033 or E-Mail: <u>deposit@ccdc.cam.ac.uk</u>.

Figure S4: The crystal packing of **RQBTE** viewed along the *a*-axis and H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.

Figure S5: Part of the crystal packing of **RQBTE** viewed along [010], showing the R_2^2 (7) and R_2^1 (6) ring motifs.

Table S1 Experimental details

Crystal data (CCDC 1416906)			
Chemical formula	$C_{46}H_{42}N_6O_4S$		
M _r	774.91		
Crystal system, space group	Triclinic, <i>P</i> ī		
Temperature (K)	100		
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.0642 (11), 11.8519 (14), 18.732 (2)		
α, β, γ (°)	86.072 (2), 83.458 (2), 81.905 (2)		
$V(\text{\AA}^3)$	1976.4 (4)		
Ζ	2		
Radiation type	Μο Κα		
$\mu (mm^{-1})$	0.14		
Crystal size (mm)	0.38 imes 0.25 imes 0.09		
Data collection			
Diffractometer	Bruker <i>SMART APEX</i> II DUO CCD area-detector diffractometer		
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2009)		
T_{\min}, T_{\max}	0.950, 0.988		
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	34021, 7909, 5676		
R _{int}	0.060		

$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.622
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.048, 0.119, 1.02
No. of reflections	7909
No. of parameters	530
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.31, -0.33

Table S	52 F	Iydrogen	-bond	geometry	(Å,	°)
	-	J D -		0)	\ 2	

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —Н…А
N5—H1 $N5$ ···O3 ⁱ	0.86 (2)	2.16 (2)	2.988 (2)	161 (2)
C18—H18 A ···O1 ⁱⁱ	0.95	2.53	3.418 (2)	157
C28—H28 A ···O1 ⁱⁱⁱ	0.95	2.60	3.384 (3)	141
C28—H28 A ···O2 ^{iv}	0.95	2.59	3.358 (3)	138
C30—H30 A ···O2 ^{iv}	0.95	2.37	3.190 (3)	144
C16—H16 A ···Cg1 ^v	0.95	2.55	3.486 (2)	168
C46—H46C····Cg2 ^{vi}	0.98	2.84	3.483 (2)	124

Symmetry codes: (i) x, y+1, z; (ii) x-1, y, z; (iii) -x+1, -y+1, -z+1; (iv) -x, -y+1, -z+1; (v) -x+1, -y+2, -z; (vii) -x+1, -y+1, -z.

* Cg 1 and Cg2 are the centroids for C1—C6 and C14—C19 benzene rings, respectively.

Figure S6: (a) The UV-vis spectra and (b) fluorescence spectra of RQBTE (10 μ M, MeOH/H₂O, 1/4, pH=7.2) in presence of Fe³⁺ (0-2.5 equivalents in water).

4. ¹H NMR spectrum of compound 1

Figure S7: ¹H NMR (300 MHz) spectra of compound 1 in CDCl₃.

5. ¹³C NMR spectrum of compound1

Figure S8: ¹³C NMR (75 MHz) spectra of compound 1 in CDCl₃.

6. Mass spectrum (HRMS) of Compound 1

Figure S9: HRMS of compound 1.

Figure S10: HRMS (expansion) of compound 1.

7. ¹H NMR (300 MHz) of RQBTE:

Figure S11: ¹H NMR (300 MHz) spectrum of RQBTE in CDCl₃.

8. ¹³ C NMR spectrum of RQBTE

Figure S12: ¹³C NMR (75 MHz) spectra of the receptor (RQBTE) in CDCl₃.

9. Mass spectrum (HRMS) of RQBTE

Figure S13: HRMS of RQBTE

10. HRMS of RQBTE-Fe³⁺ complex.

Figure S14: HRMS spectra of RQBTE-Fe³⁺ complex.

Table S3: The comparison of the present probe with recently reported probes for Fe^{3+} have been outlined in this table.

Fluorophore used	Type of	Nature of	Detection	Reference
	response	enhancement	limit	
Anthracene	Colorimetric,	Turn-on	$5.8 \times 10^{-7} M$	Chem. Commun., 2014, 50,
	fluorometric			4631
Rhodamine-6G and 6-	Colorimetric,	Turn-on	$3.6 \times 10^{-8} \mathrm{M}$	Dalton Trans., 2013, 42,
(hydroxymethyl)	fluorometric			15113
picolinohydrazide				
8-piperazino naphthalimide-	Colorimetric,	Ratiometric	$5 \times 10^{-8} \mathrm{M}$	Analyst, 2013, 138,1334.
rhodamine B	Fluorometric			
Fluoranthene	Colorimetric,	Turn-on	$2.49 \times 10^{-7} \text{ M}$	Dyes and Pigments, 2012,
	fluorometric			94, 60
Rhodamine B, 8-	Colorimetric,	Turn -on	3.5× 10 ⁻⁶ M	Dalton Trans., 2014, 43,
Aminoquinoline and 2-	fluorometric			5983
aminopyridine				
Anthracene-benzimidazole	fluorometric	Ratiometric	Not given	<i>Tetrahedron Letters</i> , 2011, 52, 1368.
Aminoxy-linked rhodamine	Colorimetric,	Turn-on	Not given	Tetrahedron Letters, 2010,
hydroxamate	fluorometric			51, 3290.
4-(diethylamino)	Colorimetric,	Ratiometric	$5.8 \times 10^{-8} \mathrm{M}$	Dalton Trans., 2013, 42,
benzaldehyde-pyridine	fluorometric			13889
4-(4-hydroxy-1-	Colorimetric	-	4.2×10^{-9} mol	RSC Adv., 2014,4, 19370-
naphthylazo)benzenesulfonic			L^{-1}	19374
acid				
8-quinolinol- Rhodamine 6G	Colorimetric,	Ratiometric	Not given	Org. Biomol. Chem., 2012,
hydrazide	fluorometric			10, 9634.
Thiacalix[4]arene	Colorimetric,	Turn-off	$5 \times 10^{-7} \mathrm{M}$	Dalton Trans., 2012, 41,
	fluorometric			408.
Benzothiazole -quinoline -	Colorimetric,	Ratiometric	$5.39 \times 10^{-8} \text{ M}$	Present Work
rhodamine-6G	fluorometric			

References

- Cosier, J.; Glazer, A. M. A nitrogen-gas-stream cryostat for general X-ray diffraction studies. J. Appl. Cryst.1986, 19, 105–107.
- 2. Bruker. APEX2, SAINT and SADABS. Bruker AXS Inc.: Madison, WI, USA, 2009.
- 3. Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2008, A64, 112-122.