From adsorbents to electrode materials: Facile hydrothermal synthesis of montmorillonite/polyaniline/metal oxide

(hydroxide) composites

Weibing Xu^{a,b}, Bin Mu^a, Aiqin Wang^{a*}

^a State Key Laboratory of Solid Lubrication, Center of Eco-Materials and Green

Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences,

Lanzhou 730000, China.

^b University of the Chinese Academy of Sciences, Beijing 100049, P.R. China.

Table S1 The absorption capacitance of MMT/PANI-x for Co^{2+} , Fe^{2+} , Ni^{2+} and the

Sample	Absorption capacitor (mg g ⁻¹)			Capacitance (F g ⁻¹) ^a		
	Co ²⁺	Fe ²⁺	Ni ²⁺	Co_3O_4	Fe ₂ O ₃	Ni(OH) ₂
MMT/PANI-0.8	118.7	106.7	99.1	109	22	58
MMT/PANI-1.0	148.9	169.4	113.8	106	45	61
MMT/PANI-1.2	152.7	187.8	117.9	83	53	74
MMT/PANI-1.4	210.4	227.8	175.6	127	66	145
MMT/PANI-1.6	198.7	148.5	166.1	79	47	123

specific capacitance of MMT/PANI-x/Co₃O₄ (Fe₂O₃, and Ni(OH)₂).

^aThe capacitance is calculated according to the equation (1) using GCD curve at current

density 0.25 A g^{-1} .

^{*} Corresponding author. Tel.: +86 931 4968118; fax: +86 931 8277088. *E-mail:* aqwang@licp.cas.cn (A. Wang).

Figure S1 XRD patterns of MMT and MMT/PANI-x composites.

Figure S2 GCD curves of MMT/PANI-0.8 ~ 1.6/Co₃O₄ composites at current density

0.25 A g⁻¹ in 1.0 M KOH.

Figure S3 XRD patterns of MMT/PANI-1.4/Ni(OH)₂ and MMT/PANI-1.4/Fe₂O₃

composites.

Figure S4 FTIR spectra of MMT/PANI-1.4/Ni(OH)₂ and MMT/PANI-1.4/Fe₂O₃

composites.

Figure S5 SEM images of (a) MMT/PANI-1.4/Fe $_2O_3$ and (b) MMT/PANI-1.4/Ni(OH) $_2$

composites.

Figure S6 TEM images of (a) MMT/PANI-1.4/Fe₂O₃ and (b) MMT/PANI-1.4/Ni(OH)₂

composites.

Figure S7 Element mapping images and EDX curve of (a) MMT/PANI-1.4/Fe $_2O_3$ and

(b) MMT/PANI-1.4/Ni(OH)₂ composites.

Figure S8 TG and DTG curves of (1) MMT/PANI-1.4/Ni(OH)₂ and (2)

MMT/PANI-1.4/Fe₂O₃ composites.

Figure S9 GCD curves of (a) MMT/PANI-0.8 ~ $1.6/Fe_2O_3$ and (b) MMT/PANI-0.8 ~

 $1.6/Ni(OH)_2$ composites at current density 0.25 Ag^{-1} in 1.0 M KOH.