Supporting information for

An Electrochemical Approach to Graphene Oxide Coated Sulfur for Long Cycle Life

Joonhee Moon¹⁺, Jungjin Park^{2,3+}, Insu Jo¹, Seung-Ho Yu^{2,3}, Cheolho Jeon⁶, Jouhahn Lee⁶, Sung-Pyo Cho^{1,4}, Yung-Eun Sung^{2,3*}, Byung Hee Hong^{1,5*}

¹Department of Chemistry, College of Natural Science, Seoul National University, Seoul 151-747, Republic of Korea ²School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Republic of Korea. ³Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 151-742, Republic of Korea ⁴National Center for Inter-University Research Facilities, Seoul National University, Seoul 141-742, Republic of Korea

⁵Graduate School of Convergence Science and Technology, Seoul National University, Suwon 443-270, Republic of Korea

⁶Korea Basic Science Institute, Daejeon 302-333, Republic of Korea

† These authors contributed equally to this work.*Corresponding author, E-mail: byunghee@snu.ac.kr

Figure S1. SEM images of (a) GO-S/CB and (b) S/CB composites. The insets show the magnified images of GO-S/CB and S/CB, respectively.

Figure S2. (a) Fourier transform infrared spectroscopy (FTIR) spectra of CB and GO. Strong peaks attributed to the characteristic vibrational mode of oxygen functional groups. X-ray photoelectron spectroscopy of CB and GO. (b) C 1*s* peaks and (c) O 1*s* peaks. Compared to CB, GO shows higher oxygen related peaks such as –OH, C=O, C-O and C-O-C at 3434 cm⁻¹, 1725 cm⁻¹, 1024-1180 cm⁻¹, and 1200 cm⁻¹, respectively. In addition, the C 1*s* peak of CB is sharp and strong, while the peaks of GO at 286.27 and 287.18 cm⁻¹ are rather broad and weak. On the contrary, the O 1s peak of GO is stronger than that of CB.