
Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2015

Supporting information

Fabrication of Mechanically Robust, Self-cleaning and Optically High-performance Hybrid Thin Films by SiO₂&TiO₂ Double-Shelled Hollow Nanospheres

Lin Yao^{a,b}, Junhui He^{a,*}, Zhi Geng^{a,b}, Tingting Ren^{a,b}

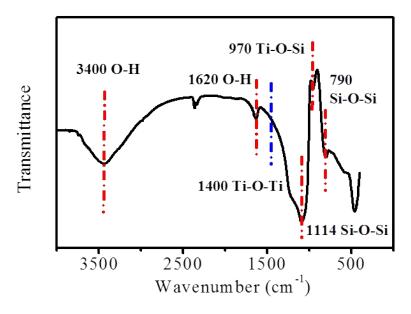

- ^a Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Zhongguancundonglu 29, Haidianqu, Beijing 100190, China.
- ^b University of Chinese Academy of Sciences, Beijing 100049, China.
- * Corresponding author. Fax: +86 10 82543535. E-mail address: jhhe@mail.ipc.ac.cn.

Figure S1. X-ray diffraction (XRD) patterns of SiO₂&TiO₂ DSHN powder.

Scherrer equation

 $D = 0.89 \ \lambda/(\beta \cos \theta)$ (1), where 20 is the diffraction angle, λ is the wavelength of X-ray radiation, and β is the full width at the half-maximum of the diffraction peak.

Figure S2. IR spectrum of SiO₂&TiO₂ DSHN powder.

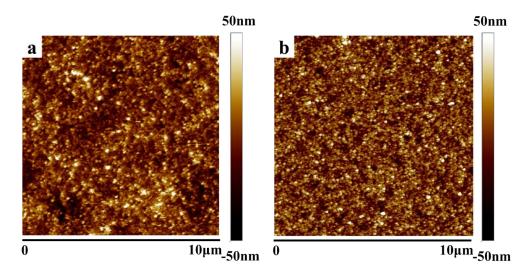
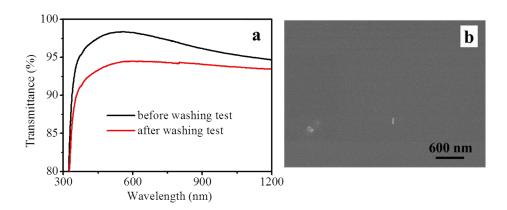



Figure S3. AFM images of (a) SiO_2 HN thin film and (b) SiO_2 & TiO_2 DSHN thin film.

Figure S4. (a) Transmission spectra of SiO_2 HN thin film before and after washing test. (b) SEM image of SiO_2 HN thin film after washing test.