Supplementary Information for

Ultra-broadband and high response of the Bi2Te3-Si heterojunction and its

application on photodetector at room temperature in harshworking

environments

Jiandong Yao, Jianmei Shao, Yingxin Wang, Ziran Zhao, Guowei Yang

S1. Components of the PLD-grown Bi2Te³ thin film

The energy dispersive spectrum (EDS) analysis of the PLD-grown $Bi₂Te₃$ thin film is shown in Fig. S1. Components of the film are slightly deviated from the ideal stoichiometric ratio, with a little excess of Bi atoms. According to previous studies, excess Bi generates p-type carriers due to the formation of Bi (Te) anti-site defects.^{[1](#page-7-0)}

Figure S1. EDS analysis of the PLD-grown Bi₂Te₃ thin film.

S2. Ohmic contacts between Ag (Pt) and Si (Bi2Te3)

The current-voltage (I-V) characteristics of Ag/Si/Ag and $Pt/Bi₂Te₃/Pt$ are shown in Fig. S2(a) and Fig. S2(b), respectively. The linearity of the lines reveals relatively good ohmic contact between Ag (Pt) and Si (TI).

Figure S2. Ohmic contacts between Ag (Pt) and Si (Bi₂Te₃). (a) The I-V curve of Si with Ag electrodes. (b) The I-V curve of $Bi₂Te₃$ with Pt electrodes. The insets on the top left corner illustrate the structure of the devices.

S3. Long-term switching behavior of the device

Figure S3. Time-dependent switching behavior for c.a. 1500 s. Source-drain bias: -5

V.

S4. The response and recovery times of the device

We record the current during the fast mechanical chop of the illumination. No data point is recorded at the rising and falling edge. Therefore, the rising and falling times of the device must be less than c.a. 100 ms, the shortest sampling interval of our electrical measurement instrument.

Figure S4. The rising and falling times of the photodetector. (a) An enlarged switching cycle. (b) Enlarged rising edge of (a). (c) Enlarged decay edge of (a). Note that the chopper (plastic sheet) can not completely block the incident light. Therefore, the base current becomes relatively large.

S5. Calculation of photosensitivity (S) responsivity (R) and detectivity (D*).

Photosensitivity (S), responsivity (R) , and detectivity (D^*) were calculated using the following equations. [2-4](#page-7-1)

$$
S = \frac{I_p - I_d}{I_d * P}
$$

$$
R(AW^{-1}) = \frac{I_p - I_d}{P_{opt}}
$$

$$
D^* = A^{\frac{1}{2}} R / (2qI_d)^{\frac{1}{2}}
$$

where I_p , I_d , P , P_{opt} , A , q are photocurrent, dark current, incident light power density, incident light power, active area, the unit of elementary charge, respectively.

Device	Responsivity	Response/Recovery	Photosensitivity	Response range	Detectivity (cm*H)	Ref
Structure	(A/W)	time	cm^2/mW		$\frac{1}{z}$ / ₂ *W ⁻¹)	
Bi ₂ Te ₃ /Si	1	\leq 100ms/ \leq 100ms	10 ³	$370 \text{ nm} \sim 118.8 \text{ µm}$	$4.7*10^{10}$	Our work
GO junction	0.0236	105 ms/ 105 ms	0.024	290 nm \sim 1610 nm	$3.31*107$	J. Mater. Chem. C ⁵
G/Si	0.435	$1.2 \text{ms}/3 \text{ms}$	0.26	488 nm \sim 730 nm	$1.4*108$	Nano Lett ⁶
GO/SiNW	0.009	26.5s/25.6s	3.4	532 nm \sim 118.8 µm	ND	Small ⁷
Pd/G/TI	0.006	ND	ND	632 nm \sim 1550 nm	ND	Nature Photonics ⁸
G	$\overline{4}$	ND	ND	532 nm \sim 3200 nm	ND	Nature Nano ⁹
G	8.6	>100s/>100s	${}_{0.001}$	532 nm \sim 10 µm	ND	Nature Com ¹⁰
G/OD	10 ⁷	100 ms/ 200 ms	ND	500 nm \sim 1600 nm	$7*10^{13}$	Nature Nano ¹¹
$G-Bi2Te3$	35	9.3 ms/ 17.7 ms	0.03	300 nm \sim 1600 nm	ND	ACS Nano ¹²

Table S1. Summary of the performances of G/GO based photodetector.

G: graphene, GO: graphene oxide, NW: nanowire, ND: no data, QD: quantum dots.

Reference

- 1. S. Cho, Y. Kim, A. DiVenere, G. K. Wong, J. B. Ketterson and J. R. Meyer, *Appl Phys Lett*, 1999, **75**, 1401-1403.
- 2. L. B. Luo, L. H. Zeng, C. Xie, Y. Q. Yu, F. X. Liang, C. Y. Wu, L. Wang and J. G. Hu, *Scientific reports*, 2014, **4**, 3914.
- 3. L. H. Zeng, M.-Z. Wang, H. Hu, B. Nie, Y.-Q. Yu, C.-Y. Wu, L. Wang, J.-G. Hu, C. Xie, F.-X. Liang and L.-B. Luo, *ACS applied materials & interfaces*, 2013, **5**, 9362-9366.
- 4. L.-B. Luo, J.-J. Chen, M.-Z. Wang, H. Hu, C.-Y. Wu, Q. Li, L. Wang, J.-A. Huang and F.-X. Liang, *Adv Funct Mater*, 2014, **24**, 2794-2800.
- 5. S. K. Lai, L. Tang, Y. Y. Hui, C. M. Luk and S. P. Lau, *Journal of Materials Chemistry C*, 2014, **2**, 6971-6977.
- 6. X. An, F. Liu, Y. J. Jung and S. Kar, *Nano letters*, 2013, **13**, 909-916.
- 7. Y. Cao, J. Zhu, J. Xu, J. He, J. L. Sun, Y. Wang and Z. Zhao, *Small*, 2014, **10**, 2345-2351.
- 8. T. Mueller, F. Xia and P. Avouris, *Nat Photon*, 2010, **4**, 297-301.
- 9. C. H. Liu, Y. C. Chang, T. B. Norris and Z. Zhong, *Nat Nanotechnol*, 2014, **9**, 273-278.
- 10. B. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu and Q. J. Wang, *Nat Commun*, 2013, **4**, 1811.
- 11. G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti and F. H. Koppens, *Nat Nanotech*, 2012, **7**, 363-368.
- 12. H. Qiao, J. Yuan, Z. Xu, C. Chen, S. Lin, Y. Wang, J. Song, Y. Liu, Q. Khan and H. Y. Hoh, *ACS nano*, 2015.
- 13. L. H. Zeng, M. Z. Wang, H. Hu, B. Nie, Y. Q. Yu, C. Y. Wu, L. Wang, J. G. Hu, C. Xie, F. X. Liang and L. B. Luo, *ACS applied materials & interfaces*, 2013, **5**, 9362-9366.
- 14. F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia and P. Avouris, *Nat Nanotechnol*, 2009, **4**, 839-843.