Supporting information

Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs

Yuanyuan Song,^a Yaoquan Jiang,^b Liyi Shi,^b Shaomei Cao,^b Xin Feng,^{a,b,*} Miao Miao^b and Jianhui Fang^c.

^a School of Materials Sciences and Engineering, Shanghai University, Shanghai 200444, P. R. China.

Fax: 86-21-66136038; Tel: 86-21-66137257; E-mail: fengxin@shu.edu.cn

^b Research Center of Nano Science and Technology, Shanghai University, Shanghai 200444, P. R. China.

^c Department of Chemistry, Shanghai University, Shanghai 200444, P. R. China.

Figure S1 3D AFM image of the BNFC/HNFC/AgNWs hybrid nanopaper with a weight ratio of BNFC/HNFC to AgNWs of 1:1.

Figure S2 TG curves of BNFC/HNFC/AgNWs hybrid nanopaper and pure BNFC/HNFC nanopaper.

Figure S3 Digital pictures and resistance variation of the BNFC/HNFC/AgNWs hybrid nanopaper before and after peeling test for 60 times.

Figure S4 Optical microscope images of the BNFC/HNFC/AgNWs hybrid nanopaper (a,b) and ITO/PET film (c,d).