## **Supporting Information**

## Two-dimensional molybdenum disulphide nanosheets covered metal nanoparticle array as floating gate in multi-functional flash memories

Su-Ting Han,<sup>a</sup> Ye Zhou,<sup>b</sup> Bo Chen,<sup>c</sup> Li Zhou,<sup>a</sup> Yan Yan,<sup>a</sup> Hua Zhang,<sup>c</sup> and V. A. L. Roy a\*

<sup>a</sup>Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR

<sup>b</sup>Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, PR China

<sup>c</sup>School of Materials Science and Engineering, Nanyang Technological University, Singapore



**Figure S1.** Energy-dispersive X-ray spectroscopy (EDS) spectra of (a) Ag NPs (b) Au NPs and (c) Pt NPs.



Figure S2. SEM image of the  $MoS_2$  nanosheets self-aligned on the Au NPs monolayer



Figure S3. The erasing operation of Ag NPs-MoS<sub>2</sub> memory device. The gate bias of erasing operation to release electrons after positively programming operation is -60 V for 5 s and the gate bias to release holes after negatively programming operation is +35 V for 1 s.



Figure S4. The erasing operation of Au NPs-MoS<sub>2</sub> memory device. The gate bias of erasing operation to release electrons after positively programming operation is -50 V for 1 s and the gate bias to release holes after negatively programming operation is +50 V for 1 s.



Figure S5. The erasing operation of Pt NPs-MoS<sub>2</sub> memory device. The gate bias of erasing operation to release electrons after positively programming operation is -30 V for 1 s and the gate bias to release holes after negatively programming operation is +60 V for 5 s.



**Figure S6. Transfer characteristics of the standard FET devices under programming operation.** The positively programming gate bias is set as +50 V for 1 s and the negatively programming operation is set as -50 V for 1 s.



Figure S7. Tapping-mode AFM height image of fabricated  $MoS_2$  film for pristine  $MoS_2$  flash memory.



**Figure S8. Transfer characteristics of the the memory devices with only Ag nanoparticles.** The positively programming gate bias is set as +50 V for 1 s and the negatively programming operation is set as -50 V for 1 s.

## Au NPs-MoS<sub>2</sub>



Figure S9.  $V_{GS}$  signals used for programming the flash memories into 8 data states ("0" to "7") in Au NPs-MoS<sub>2</sub> flash memories.

## Pt NPs-MoS<sub>2</sub>



**Figure S10.**  $V_{GS}$  signals used for programming the flash memories into 8 data states ("0" to "7") in Pt NPs-MoS<sub>2</sub> flash memories.



Figure S11. Data levels recorded for 100 sequential cycles of flash memories based on (a) Ag NPs-MoS<sub>2</sub> structure, (b) Au NPs-MoS<sub>2</sub> structure and (c) Pt NPs-MoS<sub>2</sub> structure.