Supplementary Information for

Size and surface chemistry of nanoparticles lead to a variant behavior in the dynamics of human carbonic

anhydrase unfolding

Irem Nasir, Martin Lundqvist, Celia Cabaleiro-Lago

Table S1: Hydrodynamic Diameter, PDI and Zeta Potential of PS-COOH and Si particles in 10 mM TRIS pH 8.4

Particle Type	Diameter/nm	PDI	ζ -Potential
PS-COOH	26 ± 0.5	0.11	-36 ± 2
	49 ± 5	0.01	-45 ± 1
	94 ± 2	0.01	-48 ± 1
Si	23 ± 0.1	0.1	-33 ± 2
	$34 {\pm} 0.6$	0.07	-37 ± 2
	$90{\pm}1$	0.12	-50 ± 1

Figure S1: Hydrodynamic diameter difference between protein:nanoparticle complex and nanoparticle control for Left) Silica and Right) PS-COOH nanoparticles

Figure S2: ITC data for the titrations of a) HCAi b)trHCAii into PS-COOH nanoparticles of different sizes in in 10 mM Tris pH 8.4 buffer at 30°C. Each panel shows the raw data on top and the integrated heats in the bottom.

Figure S3: ANS fluorescence in first 3 seconds of the experiment as shown in Fig. 3 in the main text. Red dashed line is the injection point at 1.1 s.

Figure S4: Structural representations of the proteins used in the study. Cyan: HCAi (pdbID: 2cab) and green: HCAii (pdbID: 1ca2). Truncated N-terminal of HCAii is represented by gray color.