Supporting Information

The calculations reported here are performed by using periodic, spin-polarized DFT as implemented in Vienna ab initio program package (VASP).¹ The electron-ion interactions are described by the projector augmented wave (PAW) method proposed by Blöchl² and implemented by Kresse.³ RPBE functional⁴ is used as exchange-correlation functional approximation and a plane wave basis set with an energy cutoff of 400 eV is used. Only gamma point is used for the Brillouin zone sampling. To model the oxygen functional groups, a graphene sheet in a cubic cell with a 26.72x16.04x15.00 Å for x, y, z dimension is used and the periodic condition is employed along the y direction. All atoms in the cell are allowed to relax during the structure optimization and the optimization is stopped when the force residue on the atom is smaller than 0.02 eV/Å. The reaction pathway and barriers are calculated by using the climbing image nudged elastic band (CI-NEB) method.⁵ More detailed information such as k points test can be seen in our previous study.⁶The configuration of the doping atoms (B, N and S) is chosen as graphitic type.The binding energy is defined as:

$$\mathbf{E}_{b} = \mathbf{E}_{tot} - \mathbf{E}_{slab} - \mathbf{E}_{C_{2}H_{5}}; (1)$$

Where \mathbf{E}_{tot} is the total energy after the binding of C₂H₅ on the catalyst; \mathbf{E}_{slab} is the energy of the catalyst alone; $\mathbf{E}_{C_2H_5}$ is the energy of the ethane radical in the gas phase. The dissociation energy is defined as:

$$\mathbf{E}_{dis} = \mathbf{E}_{tot} - \mathbf{E}_{slab} - \mathbf{E}_{C_2H_6}; \quad (2)$$

Where \mathbf{E}_{tot} is the total energy after the first C-H bond cleavage of ethaneon the catalystresulting in a ethane radical in the gas phase (the final state in Figure S2); \mathbf{E}_{slab} is the energy of the clean slab alone; $\mathbf{E}_{C_2H_6}$ is the energy of the ethane molecule.

Figure S1: The doping positions on the carbon catalyst. The numbers represent the doping positions. For boron (B) and nitrogen (N) doping,ten positions are calculated; for sulphur(S) doping, only positions marked as 1 and 2 are calculated. Color code: carbon is gray, hydrogen is white, and oxygen is red.

Figure S2:The transition state (TS) and final state (FS) of the first C-H bond cleavage of ethane on the undoped catalyst, in whichd is the length of the C-H bond at the transition state. Color code: carbon on the substrate is gray, carbon in ethane is violet, hydrogen is white, and oxygen is red.

Figure S3: The methane molecule activation on the undoped and doped catalysts and the relation between the dissociation energy (E_{dis}) and the activation energy (E_a). The graphitic dopants are considered in the calculations.

Figure S4: The pyridine nitrogen is included in the data set shown in Figure 2 and 3. (a) The relation between the dissociation energy and the activation energy. (b) The relation between the breaking bond distance and the activation energy.

Table S1: The length (d) of the C-H bond in ethane at the transition state onboth the undoped and doped catalysts, which d is indicated in Figure S2. The unit is Å.

Doping positions	1	2	3	4	5	6	7	8	9	10
undoped	1.57									
B doped	1.48	1.43	1.44	1.45	1.49	1.45	1.47	1.48	1.46	1.46
N doped	1.62	1.59	1.55	1.53	1.51	1.51	1.68	1.52	1.50	1.51
S doped	1.71	1.56								

References

- 1. (a) G. Kresse and J. Furthmüller, *Comput. Mater. Sci.*, 1996, **6**, 15;(b) G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169.
- 2. P. E. Blöchl, Phys. Rev. B, 1994, 50, 17953.
- 3. G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, **59**, 1758.
- 4. B. Hammer, L. B. Hansen and J. K. Nørskov, *Phys. Rev. B*, 1999, **59**, 7413.
- 5. G. Henkelman, B. P. Uberuaga and H. Jonsson, J. Chem. Phys., 2000, 113, 9901.
- 6. S. Mao, B. Li and D. Su, J. Mater. Chem. A, 2014, 2, 5287.