Electronic Supporting Information

Tie Liu, ^a Jingyuan Liu, ^{*a} Qi Liu, ^a Dalei Song, ^a Hongseng Zhang, ^a Hongquan Zhang, ^{a,c} and Jun Wang*^{a,b}

^a Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, 150001, PR China.

^b Institute of Advanced Marine Materials, Harbin Engineering University, 150001, PR China.

^c School of Automation, Harbin Engineering University, 150001, PR China.

* Corresponding author: Tel.: +86 451 8253 3026; Fax: +86 451 8253 3026; E-mail: zhqw1888@sohu.com.

Experimental

Synthesis of ZCO lamellar cubes

In order to prepare cubic ZnCo₂O₄, 1mmol Zn(NO₃)₂·6H₂O and 2mmol Co(NO₃)₂·6H₂O were completely dissolved in ethylene glycol (50ml) to form a transparent solution. Brief, 10mmol NH₄F and some Na₂SO₄ were dissolved completely with ethanol (20ml), added to solution above. After ultrasonic and stirred treatments, the final solution was transferred to a Teflonlined stainless autoclave, which was heated 180°C for 8h in air flow electric oven. Next, the product was washed by distilled water and ethanol several times prior to being dried at 60°C for 10h. Finally, the final sample was collected after the calcination process at 650°C for the gas sensing test further.

Table. s1 Comparisons of BET data of three samples and the response and response/recovery times of three sample-based sensors toward 100 ppm ethanol

Samples	Materials	Structures	Surface area/	T _{Res} ~ T _{Rec} /s	Response
			m ² ·g ⁻¹		
S1	ZnCo ₂ O ₄	microsphere	77.3	5.5~14.3	19.3
S2	ZnCo ₂ O ₄	lamellar cubic	24.5	7.6~19.7	9.8
S 3	Co ₃ O ₄	microsphere	42.1	33.7~16.4	8.9
S4	ZnCo ₂ O ₄	nanoparticles	21.3	8.9~13.1	7.1

T_{Res}, response time;

T_{Rec}, recovery time

Fig.s1 EDX analysis spectrums of S1, S2, S3 (a, b, c, respectively).

Fig.s2 N₂ adsorption-desorption isotherms and corresponding BJH pore-size distribution plots (inset) of S2, S3 (shown in a, b, respectively), and TGA curve of S1(c).

Fig.s3 Long-term stability of sensor based S1, S2, and S3 to 100ppm ethanol at 175°C.

Fig.s4 SEM image of S4 (a), response of sensor based on ZnCo₂O₄ nanoparticles to 100ppm ethanol (b) and

response/recovery times (c).