Supplementary Information for

Dewetting Route to Grow Heterostructured Nanoparticles Based on Thin Film Heterojunctions

JunjieLi,^{1,2} Deqiang Yin,³ Qiang Li,⁴ Chunlin Chen,² Sumei Huang,¹ and Zhongchang

Wang^{2,}

¹Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry

of Education, Department of Physics, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, China

²Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira,

Aoba-ku, Sendai 980-8577, Japan

³School of Manufacturing Science and Engineering, Sichuan University, Chengdu

610064, China

⁴School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

Supplementary Table S1

Table S1 Experimental details of the prepared samples with different thickness of the metal heterojunction.

Sample	Deposition Rate		Deposition Time		Thickness		
	Co (nm/s)	Au (nm/s)	Co (s)	Au (s)	Co (nm)	Au (nm)	Total (nm)
1	0.10	0.12	50	42	5.1	5.0	10.1
2	0.11	0.13	64	54	7.0	7.1	14.1
3	0.10	0.12	90	70	9.0	9.0	18.0
4	0.12	0.11	92	100	11.1	11.0	22.1

Supplementary Table S2

Table S2 EDS analysis of an Au bell.

Element	Series	[wt.%]
Cobalt	K-series	0.45811
Gold	L-series	99.5418
Sum	100	

Supplementary Table S3

Table S2 EDS analysis of a Co bell.

Element	Series	[wt.%]
Cobalt	K-series	84.44802
Gold	L-series	15.55198
Sum	100	

Figure S1 Shape transformation of Co-Au nanoparticles from dumbbells to core-shell. **a–c**, SEM images of the sample 1 annealed at 1073 K for 1 min (**a**), 30 min (**b**), and 60 min (**c**). **d–f**, SEM images of the sample 2 (**d**), 3 (**e**), and 4 (**f**) annealed at 1073 K for 60 min.

Figure S2 EDS mapping of an individual Co-Au core-shell nanoparticle. **a**, Enlarged SEM image of a Co-Au core-shell nanoparticle. **b**–**f**, The Au, Co, Si, O, and their combined EDS mapping of the core-shell nanoparticle.

Figure S3 Morphology and composition of CoPt-Au core-shell nanoparticles. **a**, A typical SEM image of CoPt-Au core-shell nanoparticles. **b**, An enlarged SEM image of a CoPt-Au core-shell nanoparticle. **c**–**f**, The Au, Pt, Co, Si, O, and their combined

EDS mapping of the core-shell nanoparticle. The CoPt-Au core-shell nanoparticles were fabricated by annealing Si/Pt(15.0 nm)/Co(5.1 nm)/Au(20.0 nm) heterojunction at 1073 K for 60 min in vacuum.

Figure S4 Morphology and composition of CoO-Au heterostructured nanoparticles. **a**, A typical SEM image of CoO-Au heterostructured nanoparticles. **b**, An enlarged SEM image of the CoO-Au heterostructured nanoparticles. **c**–**f**, The Co, Au, Si, and O EDS mapping of the heterostructured nanoparticles. The CoO-Au nanoparticles were fabricated by annealing Si/Co(11.1 nm)/Au(11.0 nm) heterojunction at 1273 K for 60 min in air.

Figure S5 Morphology of MgO-Pt heterostructured nanoparticles. **a**, A typical SEM image of the MgO-Pt heterostructured nanoparticles. **b**, Enlarged SEM image of the MgO-Pt heterostructured nanoparticles. The MgO-Pt heterostructured nanoparticles were fabricated by annealing Si/MgO(20.1 nm)/Pt(10.0 nm) heterojunction at 1273 K for 60 min in air.