Supporting Information

Leveling the Playing Ground: Screening for Synergistic Effects in Coalesced Bimetallic Nanoparticles

Rachel Lee Siew Tan,^{a,b} Xiaohui Song,^a Bo Chen,^c Wen Han Chong,^a Yin Fang,^a Hua Zhang,^c Jun Wei,^{*,b} and Hongyu Chen^{*,a}

Figure S1. Kinetics UV-vis spectra showing the change in absorption of 15 nm Au nanoparticles caused by the addition of ammonia (final concentration: 360 mM). The decrease in absorption of 520 nm peak and the increase in absorption and redshift of the 650-700 nm peaks were caused by the aggregation of Au nanoparticles.

Figure S2. TEM images of Au-Pt bimetallic samples prepared with 15-20 nm nanoparticles: (a) zoom in, and (b) zoom out.

Figure S3. EDS point scans of 3 different regions showing metal composition: (a) Pt; (b) Au-Pt; and (c) Au. Insert scale bars are 10 nm.

Figure S4. TEM images of nanoparticle stock solution of 5 nm small nanoparticles: (a) Au, (b) Ag, (c) Pt, (d) Pd, and (e) To investigate the aggregation state of the 5 nm Pt nanoparticles, they were coated by silica shells using the reverse emulsion method, giving core-shell nanostructures. The results showed that most of the nanoparticles were not aggregated, suggesting that the slight aggregation observed in c was due to the drying process during TEM sample preparation.

Figure S5. TEM images of bimetallic samples formed with different combinations: (a) Au-Ag; (b) Au-Pd, (c) Au-Pt, (d) Ag-Pd, (e) Ag-Pt, and (f) Pt-Pd.

Figure S6. Kinetic UV-Vis spectra of reduction of 4-nitrophenol using mono-metallic samples: (a) Au, (b) Ag, (c) Pd, and (d) Pt.

Figure S7. Kinetic UV-Vis spectra of reduction of 4-nitrophenol using mixture and bimetallic samples: (a, b) Au-Ag, (c, d) Au-Pd, and (e, f) Au-Pt.

Figure S8. Kinetic UV-Vis spectra of reduction of 4-nitrophenol using mixture and bimetallic samples: (a, b) Pd-Pt, (c, d) Ag-Pd, and (e, f) Ag-Pd (diluted 20 times).

Figure S9. Kinetic UV-Vis spectra of reduction of 4-nitrophenol using mixture and bimetallic samples: (a, b) Ag-Pt, and (c, d) Ag-Pt (diluted 20 times).

Figure S10. UV-Vis absorption trace at 400 nm for 4 combinations of samples during catalysis (insert: the 96-well microwell plate used in multi-plate reader).

Figure S11. (a-e) Kinetic UV-Vis spectra recorded during the catalytic reduction of 4nitrophenol with 5 different batches of Ag-Pd bimetallic samples. (f) Tabulation of turnover frequency for the 5 samples in a-e.

Calculations

Enhancement Factor

Total number of moles of metal atoms during nanoparticle synthesis

number of moles of metal atoms = number of moles of metal salt = $250 \ \mu L \times 50 \ mM = 1.25 \times 10^{-5} \ mol$

Number of moles of metal atoms in a typical silica encapsulation (1 mL of each type of nanoparticle used; total metal nanoparticle synthesis volume = 52.2 mL)

number of moles of metal atoms used during silica encapsulation

 $= 1.25 \times 10^{-5} mol \div 52.2 mL \times 2 mL = 4.79 \times 10^{-7} mol$

Etching silica encapsulated nanoparticles to form yolk-shell structures (1mL of silica encapsulation solution used, then concentrated to 100 μL)

number of moles of metal atoms after yolkshell structure formation

 $= 4.79 \times 10^{-7} mol \div 1.642 mL = 2.92 \times 10^{-7} mol in 100 \mu L solution$

Number of moles of each type of metal atoms used in each catalytic reaction (10 μ L of concentrated solution)

number of moles of metal atoms used for each catalytic reaction = $2.92 \times 10^{-7} \times \frac{10}{100} = 2.92 \times 10^{-8}$ mol

Number of moles of 4-nitrophenol in each catalytic reaction

number of moles of 4 – nitrophenol = $15 \text{ mM} \times 100 \text{ } \mu L \times \frac{10}{700} = 2.14 \times 10^{-8} \text{ mol}$

Monometallic Catalyst		Mole of Reactant	Mole of Catalyst	Reaction Time	TOF (s ⁻¹)
Au		2.14 x10 ⁻⁸	2.92 x 10 ⁻⁸	600	1.22x10 ⁻³
Ag		2.14 x10 ⁻⁸	2.92 x 10 ⁻⁸	300	2.44x10 ⁻³
Pt		2.14 x10 ⁻⁸	2.92 x 10 ⁻⁸	-	-
Pd		2.14 x10 ⁻⁸	2.92 x 10 ⁻⁸	180	5.94x10 ⁻³
Metal	Mole of	Mole of	TOF	TOF Bimetalli	c Enhancement
Combination	Reactant	Catalyst	Mixture (s ⁻¹)	(S ⁻¹)	Factor (EF)
AuAg	2.14 x10 ⁻⁸	2.92 x 10 ⁻⁸	3.05×10 ⁻³	4.07×10 ⁻³	1.33
AuPd	2.14 x10 ⁻⁸	2.92 x 10 ⁻⁸	1.53×10 ⁻³	1.53×10 ⁻³	1
AuPt	2.14 x10 ⁻⁸	2.92 x 10 ⁻⁸	-	-	-
AgPd	2.14 x10 ⁻⁸	1.46 x 10 ⁻⁹	24.4×10 ⁻³	30.5×10 ⁻³	1.25
AgPt	2.14 x10 ⁻⁸	1.46 x 10 ⁻⁹	17.4×10 ⁻³	20.4×10 ⁻³	1.17
PdPt	2.14 x10 ⁻⁸	2.92 x 10 ⁻⁸	2.44×10 ⁻³	2.04×10 ⁻³	0.83

Turnover Frequency (TOF) = number of mole of product/(number of mole of catalyst × time)

Surface Area Calculation

Total volume of nanoparticles (5 nm)

volume of each nanoparticle = $\frac{4}{3}\pi r^3$

total volume of 10 nanoparticles =
$$10 \times \frac{4}{3}\pi r^3$$

total volume of 5 nanoparticles = $5 \times \frac{4}{3}\pi r^3$

Surface area of nanowire formed from the coalescence of 10 nanoparticles

Volume of nanowire
$$=$$
 $\frac{4}{3}\pi r^3 + \pi r^2 X$

$$10 \times \frac{4}{3}\pi r^3 = \frac{4}{3}\pi r^3 + \pi r^2 X$$

$$10 \times \frac{4}{3}\pi r(2.5)^3 = \frac{4}{3}\pi (2.5)^3 + \pi (2.5)^2 X$$

X = 30 nm

Surface area = $4\pi r^2 + 2\pi r X = 4\pi (2.5)^2 + 2\pi (2.5)(30) = 550 \ nm^2$

Surface area of two nanowire formed from the coalescence of 5 nanoparticles each

Volume of nanowire
$$=$$
 $\frac{4}{3}\pi r^3 + \pi r^2 Y$

$$5 \times \frac{4}{3}\pi (2.5)^3 = \frac{4}{3}\pi (2.5)^3 + \pi (2.5)^2 Y$$

 $Y = 13.3 \ nm$

Surface area =
$$2[4\pi r^2 + 2\pi rY] = 2[4\pi (2.5)^2 + 2\pi (2.5)(13.3)] = 575 nm^2$$

% Surface area difference between a nanowire formed by coalescence of 10 nanoparticles and two nanowires formed by coalescence of 5 nanoparticles each

$$\% \, Difference = \frac{575 - 550}{575} \times 100\% = 4.3\%$$

Number of nanoparticles in our encapsulation system

Mass of two metal = 4.79×10^{-7} mol × 196.96657 mol/g = 9.4347×10^{-5} g

Total volume of Au metal = mass ÷ density

= $(9.4347 \times 10^{-5}/2) \div 19.3 \text{ g/cm}^3 = 2.4442 \times 10^{-6} \text{ cm}^3$

Volume of one 5 nm nanoparticle = $4/3 \times \pi \times (2.5)^3 = 65.5$ nm³

Number of nanoparticles for Au metal = $2.4442 \times 10^{-6} \div 65.5 \times 10^{-20} = 3.73 \times 10^{12}$ particles