Supporting Information

Patterned, highly stretchable and conductive nanofibrous PANI/PVDF strain sensors based on electrospinning and in situ polymerization

Gui-Feng Yu^{a),b)†}, Xu Yan^{a)†}, Miao Yu^{a),c)†}, Meng-Yang Jia^d), Wei Pan^{a),e)}, Xiao-Xiao He^{a)}, Wen-Peng Han^{a)}, Zhi-Ming Zhang^{d)*}, Liang-Min Yu^{d)}, and Yun-Ze Long^{a),f)*}

1. Image of patterned PANI/PVDF membrane and unwoven PANI/PVDF membrane under different strains.

Figure S1 a) Optical image of unwoven membrane without strain; b) image of unwoven membrane under about 10% strain; c) image of unwoven membrane in the point of break. d) Optical image of patterned unwoven membrane without strain; e) image of patterned membrane under about 20% strain; f) image of patterned membrane in the point of break; g) image of patterned membrane under about 40% strain.

2. Stress-stain characteristic of patterned PANI/PVDF membrane and unwoven PANI/PVDF membrane.

Figure S2 Stress-strain curve for patterned PANI/PVDF membrane (A); unwoven PANI/PVDF membrane (B).