Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting Information for **Oxidative Deamination of Azafulleroids into** C_{60} **by Peracids**

Naohiko Ikuma,* Koichi Fujioka, Yusuke Misawa, Ken Kokubo and Takumi Oshima

IR and NMR of byproduct of 1g with <i>m</i> CPBA (Fig. S1,S2)			
Endo/exo definition for substituted azafulleroid (Scheme S1)	4		
HOMO and relative energy of metastable conformers (Fig. S3-S7)	4-6		
Three plausible conformers and σ^* orbital of peracids (Fig. S8)	6		
Transition states of N-flipping of 1a/1f (Fig. S9)	7		
Supplemental TS results of 1a and 1f (Fig. S10-S12)	8-10		
Expected intermediates from $C\alpha/C\beta$ attack (Scheme S2)	11		
NMR charts of 1a	12		
Table of calculated energies of 1a/1f	13-14		
Full citation of Gaussian and Spartan	15		

Fig. S1. ¹H NMR (in DMSO-d6) of oxidized products of azafulleroid 1g. (too low solubility of the oxidized products inhibited ¹³C NMR measurement)

Wavenumber (cm^{-1})

Fig. S2. IR of the insoluble product of **1g** with *m*CPBA.

Scheme S1. Endo/exo definition for substituted azafulleroid.

Fig. S3. HOMO of metastable methyl azafulleroid 1a/5.

Fig. S4. HOMO of metastable TMS-methyl azafulleroid **1b** conformers. The values in parenthesis are relative energy (kJ/mol) to the most stable 6-exo isomer (Fig. 1b).

Fig. S5. HOMO of metastable conformers of benzylic azafulleroid **1e**. The values in parenthesis are relative energy (kJ/mol) to the most stable 6-exo isomer (Fig. 1c).

Fig. S6. HOMO of metastable phenyl azafulleroid 1f/6.

Fig. S7. HOMO and relative energies (kJ/mol) of metastable conformers of tosyl azafulleroid **1g.** The values in parenthesis are relative energy (kJ/mol) to the most stable 5-exo isomer (Fig. 1e)

Fig. S8. (a) Three plausible conformer of *m*CPBA with B3LYP/6-31G(d) energy. (b) LUMO+2 of *m*CPBA (geom-1). (c) LUMO+1 of PAA.

Fig. S9. N-flipping transition states of **1a** (top) and **1f** (bottom) (B3LYP/6-31G(d) with IEFPCM (*o*-DCB)). The values in parentheses are relative energies (kJ/mol).

1a/6: N-attack of *m*CPBA (geom-2) $\Delta E^{\ddagger} = +71.7 \text{ kJ/mol}$

1a/6: C α -attack of *m*CPBA (geom-2) : ΔE^{\ddagger} = +71.4 kJ/mol

1a/6: N-attack of *m*CPBA (geom-3) $\Delta E^{\ddagger} = +44.6 \text{ kJ/mol}$

1a/6: C α -attack of *m*CPBA (geom-2) : ΔE^{\ddagger} = +51.7 kJ/mol

Fig. S10. Representative results of transition states of 1a with geom-2 and geom-3 *m*CPBA.

Fig. S11. Transition state geometry of **1a** with peracetic acid.

Fig. S12. Transition state geometry of **1f** with *m*CPBA.

Scheme S2. Expected intermediates from $C\alpha/C\beta$ attack to azafulleroid, in comparison with those of fulleroid.

NMR Chart

1H and 13C NMR spectra of 1a (N-Methyl azafulleroid)

Calculations: Energy summary

Calculated energy table of transition states for 1a with *m*CPBA (Fig. 2, B3LYP/6-31G(d), with IEFPCM (*o*-DCB)

Initial State /au		Transition State (with vi) /au		$\Delta E^0, \Delta E^{\ddagger}, /kJ/mol$
1a /6	-2380.803978			0
1a /5	-2380.802525			3.81
		5/6-fliping (154.1i)	-2380.791043	34.0
mCPBA (geom-1)	-955.5466729			
		N-attack/6 (374.0i)	-3336.333707	44.5 ^a
		Cα-attack/6 (554.5i)	-3336.331084	51.4 ^a
		Cβ-attack/6 (530.7i)	-3336.328487	58.2 ^a
		Cγ-attack/6 (525.5i)	-3336.325792	65.3 ^a
		N-attack/5 (366.9i)	-3336.331931	49.1 ^a
		Cα-attack/5 (531.5i)	-3336.329781	54.8 ^a
		Cβ-attack/5 (515.6i)	-3336.327064	61.9 ^a
		Cγ-attack/5 (508.2i)	-3336.325568	65.8 ^a
mCPBA (geom-2)				
		N-attack/6 (333.6i)	-3336.323323	71.7 ^ª
		Cα-attack/6 (565.2i)	-3336.323450	71.4 ^ª
mCPBA (geom-3)				
		N-attack/6 (368.3i)	-3336.333644	44.6 ^a
		Cα-attack/6 (555.7i)	-3336.330954	51.7 ^a
<i>m</i> -CBA ^b	-880.4230826			
2	-2455.933987			-16.9 ^c
4	-2455.944849			-45.4 ^c
Nitroso	-169.7979863			
methane				
C60	-2286.174951			-119.1 ^d

^a $\Delta E^{\ddagger} = E(TS) - E(\mathbf{1a}/6) - E(mCPBA, geom-1)$

^b *m*-chlorobenzoic acid

^c $\Delta E^{\circ} = E(\mathbf{2} \text{ or } \mathbf{4}) + E(m\text{-CBA}) - E(\mathbf{1a}/6) - E(m\text{CPBA}, \text{ geom-1})$

^d $\Delta E^{\circ} = E(C_{60}) + E(m\text{-CBA}) + E(\text{nitrosomethane}) - E(\mathbf{1a}/6) - E(m\text{CPBA}, \text{geom-1})$

Initial State /au		Transition State (with vi) /au		$\Delta E^{\ddagger}/\mathrm{kJ/mol}$
PAA	-304.2136119			
		N-attack/6 (368.4i)	-2684.996978	54.1 ^a
		Cα-attack/6 (550.6i)	-2684.996111	56.4ª
		Cβ-attack/6 (526.8i)	-2684.992887	64.8 ^ª
		Cγ-attack/6 (523.6i)	-2684.989543	73.6ª
		N-attack/5 (366.3i)	-2684.994791	59.8 ª
		Cα-attack/5 (532.1i)	-2684.994757	59.9 ^a
		Cβ-attack/5 (510.6i)	-2684.990592	70.9 ^ª
		Cγ-attack/5 (510.4i)	-2684.989855	72.8 ^ª

Calculated energy table of transition states for **1a** with PAA (Fig. 3, B3LYP/6-31G(d), with IEFPCM (o-DCB)

^a $\Delta E^{\ddagger} = E(TS) - E(\mathbf{1a}/6) - E(PAA)$

Calculated energy table of transition states for 1f with *m*CPBA (Fig. 3, B3LYP/6-31G(d), with IEFPCM (o-DCB)

Initial State /au		Transition State (with vi) /au		$\Delta E^{0}, \Delta E^{\ddagger}, /kJ/mol$
1f /6	-2572.545125			0.61
1 f /5	-2572.545358			0
		5/6-fliping (32.8i)	-2572.541745	8.87
mCPBA (geom-1)	-955.5466729			
		N-attack/6 (359.7i)	-3528.068000	63.1 ^a
		Cα-attack/6 (549.2i)	-3528.062003	78.8 ª
		Cβ-attack/6 (552.3i)	-3528.064189	73.1 ª
		Cγ-attack/6 (541.5i)	-3528.064241	72.9 ª
		N-attack/5 (371.7i)	-3528.067831	63.5 ^a
		Cα-attack/5 (509.7i)	-3528.067755	63.7 ^ª
		Cβ-attack/5 (519.7i)	-3528.068467	61.9 ^ª
		Cγ-attack/5 (516.7i)	-3528.067347	64.8 ^a

^a $\Delta E^{\ddagger} = E(TS) - E(\mathbf{1f}/5) - E(mCPBA, \text{geom-1})$

Reference in ESI and full citation of software.

Gaussian 09: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

Spartan'08: Y. Shao, L.F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S.T. Brown,
A.T.B. Gilbert, L.V. Slipchenko, S.V. Levchenko, D.P. O'Neill, R.A. DiStasio Jr., R.C.
Lochan, T. Wang, G.J.O. Beran, N.A. Besley, J.M. Herbert, C.Y. Lin, T. Van Voorhis,
S.H. Chien, A. Sodt, R.P. Steele, V.A. Rassolov, P.E. Maslen, P.P. Korambath, R.D.
Adamson, B. Austin, J. Baker, E.F.C. Byrd, H. Dachsel, R.J. Doerksen, A. Dreuw, B.D.
Dunietz, A.D. Dutoi, T.R. Furlani, S.R. Gwaltney, A. Heyden, S. Hirata, C-P. Hsu, G.
Kedziora, R.Z. Khalliulin, P. Klunzinger, A.M. Lee, M.S. Lee, W.Z. Liang, I. Lotan, N.
Nair, B. Peters, E.I. Proynov, P.A. Pieniazek, Y.M. Rhee, J. Ritchie, E. Rosta, C.D.
Sherrill, A.C. Simmonett, J.E. Subotnik, H.L. Woodcock III, W. Zhang, A.T. Bell, A.K.
Chakraborty, D.M. Chipman, F.J. Keil, A.Warshel, W.J. Hehre, H.F. Schaefer, J. Kong,
A.I. Krylov, P.M.W. Gill and M. Head-Gordon, *Phys. Chem. Chem. Phys.*, 2006, 8,
3172.