Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Unusual 1,2-Aryl Migration in Pd(II)-Catalyzed Aza-Wacker-Type Cyclization of 2-Alkenylanilines

So Won Youn* and So Ra Lee

Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea.

Table of Contents

1.	General Information	2
2.	Table S1. Full Data of Optimization Studies S	3
3.	Table S2. Effect of N-Protecting Groups S	4
4.	Table S3. Substrate Scope: β-Monosubstituted Alkenes S	5
5.	Table S4. Substrate Scope: β,β-Disubstituted Alkenes S	6
6.	General Procedure for the Preparation of N-Ts-2-Alkenylanilines	7
7.	General Procedure for the Preparation of β,β-Disubstituted 2-Alkenylanilines	7
8.	General Procedure for the Pd(II)-Catalyzed Aza-Wacker-Type Cyclization of N-Ts-2 Alkenylanilines 1	<u>2</u> - 59
9.	General Procedure for the Preparation of 2,3-Disubstituted N-Ts-Indoles 3 & 3'	20
10.	Mechanistic Studies	24
11.	Proposed Mechanism for the Cu(II)-Mediated Reaction in the Absence of Pd(II) Catalyst (Entrie	es
	23-24 in Table S1)	27
12.	Copies of NMR Spectra	28

General Information

Nuclear Magnetic Resonance spectra were recorded on 300 or 400 MHz instruments. Spectra were recorded in CDCl₃ solution referenced to TMS or solvent residual peak. High Resolution Mass Spectra were measured using EI at 70 eV. GC-MS spectra were recorded with EI ionization and an Elite-1 column (0.25 mm x 30 m, Film: 0.25 μ m). For control of the conversion and characterization of the products, the following method was used: The method starts with the injection temperature T₀ (50 °C), after holding this temperature for 5 min, the column is heated to the temperature T₁ (ramp, 300 °C, 10 °C/min) and hold for additional 10 min. Flash chromatography was performed on silica gel 230-400 mesh. All catalysts were purchased from Sigma-Aldrich or Strem and used as received. Unless otherwise noted, all commercially obtained reagents and solvents were used as received. Anhydrous DMF, toluene, ClCH₂CH₂Cl, and dioxane were purchased from Sigma-Aldrich in a SureSealTM bottle and used as received. THF was distilled from sodium benzophenone ketyl immediately prior to use. Heptane and MeCN were distilled from CaH₂ immediately prior to use. Thin layer chromatograms (TLC) was visualized via UV. Preparation and spectral data of **1a-1e, 1g-1k**, and **1n-1p** are available in our previous report.¹

¹ (a) Jang, Y. H.; Youn, S. W. Org. Lett. **2014**, *16*, 3720. (b) Youn, S. W.; Ko, T. Y.; Jang, M. J.; Jang, S. S. Adv. Synth. Catal. **2015**, *357*, 227.

	Pd cat	t. (5 mol%)		Ph	CI
			Ph +	+	Ph
N	HTs CICH ₂ CH	1 ₂ CI (0.05 M)	Ts	Ň	N <u></u>
1a	120	0, 24 11	2a	3a ^{Is}	C I-2a
Entry	Pd cat.	Oxidant	Additive (mol%)	Yield $(\%)^a$	2a:3a: Cl- 2a ^b
1	$Pd(O_2CCF_3)_2$	Cu(OAc) ₂	-	20	1:0:0
2	$Pd(O_2CCF_3)_2$	CuCl ₂	-	(84)	1:0.5:0
3	$Pd(O_2CCF_3)_2$	CuBr ₂	-	36	1:0:0
4	$Pd(O_2CCF_3)_2$	Ag ₂ O	-	32	1:0:0
5	$Pd(O_2CCF_3)_2$	AgOAc	-	81	1:0:0
6	$Pd(O_2CCF_3)_2$	Ag_2CO_3	-	87	1:0.3:0
7	$Pd(O_2CCF_3)_2$	BQ or CuCl	-	0	-
8	$Pd(O_2CCF_3)_2$	tBuOOH	-	34	1:0:0
9	$Pd(O_2CCF_3)_2$	$Ce(SO_4)_2$	-	48	1:0.1:0
10	$Pd(O_2CCF_3)_2$	PhI(OAc) ₂	-	12	1:0:trace ^c
11	$Pd(O_2CCF_3)_2$	$K_2S_2O_8$	-	34	1:0:0
12	$Pd(O_2CCF_3)_2$	Oxone	-	31	1:0:0
13	$Pd(O_2CCF_3)_2$	selectfluor	-	6	1:0.2:0
14^d	$Pd(O_2CCF_3)_2$	CuCl ₂	-	40	1:0.2:0
15^{e}	$Pd(O_2CCF_3)_2$	CuCl ₂	-	56	1:0.3:0.2
16 ^f	$Pd(O_2CCF_3)_2$	CuCl ₂	-	16-33	1:0:0
17^{g}	$Pd(O_2CCF_3)_2$	CuCl ₂	-	67-74	1:0:0
18^{h}	$Pd(O_2CCF_3)_2$	CuCl ₂	-	24	1:0.3:0
19 ^{<i>i</i>}	$Pd(O_2CCF_3)_2$	CuCl ₂	-	100 (91)	1:0.6:0
20^{i-j}	$Pd(O_2CCF_3)_2$	CuCl ₂	-	61	1:0.5:0
$21^{i, k}$	$Pd(O_2CCF_3)_2$	CuCl ₂	-	100	1:1:0.7
22^{i}	$Pd(O_2CCF_3)_2$	-	-	7	1:0:0
23 ^{<i>i</i>, <i>l</i>}	$Pd(O_2CCF_3)_2$	-	-	69	1:0:0
24^{i}	-	CuCl ₂	-	85	1:0:0
25 ^{<i>i</i>, <i>m</i>}	-	CuCl ₂	-	(27)	1:0:0
26	Pd(OAc) ₂	CuCl ₂	-	89	1:1.3:0
27^{i}	Pd(OAc) ₂	CuCl ₂	-	98 (92)	1:2.1:0
28^i	$Pd(OAc)_2$	$Cu(OAc)_2$	-	17	1:0:0
29	PdCl ₂	CuCl ₂	-	86	1:0.9:0.2
30	PdCl ₂ (MeCN) ₂	CuCl ₂	-	87	1:0.9:0
31	$PdCl_2(PPh_3)_2$	CuCl ₂	-	77	1:0:trace
32	PdCl ₂ (dppf)	CuCl ₂	-	68	1:0.9:0
33 ⁱ	PdCl ₂ (dppf)	CuCl ₂	-	55	1:1:0
34	Pd(OAc) ₂	CuCl ₂	LiCl (200)	83	1:1:0
35 ⁱ	Pd(OAc) ₂	CuCl ₂	LiCl (200)	95 (92)	1:1.8:0
36 ⁱ	PdCl ₂ (dppf)	CuCl ₂	LiCl (200)	46	1:1.4:0
37	$Pd(OAc)_2$	CuCl ₂	LiBr (200)	58	1:0.5:0.3
38	$Pd(OAc)_2$	CuCl ₂	NaI (200)	72	1:0.3:0
39	$Pd(OAc)_2$	CuCl ₂	nBu ₄ NCl (200)	47	1:0:0
40	$Pd(OAc)_2$	CuCl ₂	dppf (5)	38 ⁿ	1:0.1:0
41^{i}	$Pd(OAc)_2$	CuCl ₂	dppf (5)	15	1:0:0
42	$Pd(OAc)_2$	CuCl ₂	dppp (5)	86	1:0:0.1
43	$Pd(OAc)_2$	CuCl ₂	dppe (5)	64	1:trace:0

44	$Pd(OAc)_2$	CuCl ₂	(S)-BINAP (5)	85	1:trace:0.1
45	$Pd(OAc)_2$	CuCl ₂	Xantphos (5)	80	1:trace:0.1
46	$Pd(OAc)_2$	CuCl ₂	Sphos (10)	68	1:0:0
47	$Pd(OAc)_2$	CuCl ₂	P(o-Tol) ₃ (10)	59	1:0:0.1
48	$Pd(OAc)_2$	CuCl ₂	2,2'-bipyridine (5)	85	1:0.1:0.1
49	$Pd(OAc)_2$	CuCl ₂	phenanthroline (5)	95	1:0.1:0.1
50	$Pd(OAc)_2$	CuCl ₂	TMEDA(5)	75	1:trace:0
51	$Pd(OAc)_2$	CuCl ₂	IMes·HCl (10)	93	1:0:0
52 ^{<i>i</i>, <i>o</i>}	$Pd(O_2CCF_3)_2$	CuCl ₂	-	(100)	1:0.3:0
53 ^{<i>i</i>, <i>p</i>}	$Pd(O_2CCF_3)_2$	CuCl ₂	-	(88)	1:0.06:0
54 ^{<i>i</i>, <i>q</i>}	$Pd(O_2CCF_3)_2$	CuCl ₂	-	20-57	1:0:0

All reactions were carried out 2-5 times repetitively and the average values of both yields and ratios are given. ^{*a*} Yields were determined by ¹H NMR using trichloroethylene as an internal standard. Value in parentheses indicates an isolated yield. ^{*b*} Ratios of inseparable isomers were determined by ¹H NMR. ^{*c*} Instead of Cl, OAc was introduced at C3 position. ^{*d*} In toluene. ^{*e*} In heptane. ^{*f*} In 1,4-dioxane, MeCN, EtOAc, or DMF. ^{*g*} In DMSO or AcOH. ^{*h*} At 100 °C. ^{*i*} At 150 °C. ^{*j*} Using 1 equiv CuCl₂. ^{*k*} Using 3 equiv CuCl₂. ^{*l*} Using 1 equiv Pd(O₂CCF₃)₂. ^{*m*} Using 20 mol% CuCl₂ under O₂ (1 atm). ^{*n*} *N*-Ts-2-phenylindoline was obtained in 8%. ^{*o*} In the presence of 1 equiv Na₂CO₃. ^{*p*} In the presence of 1 equiv K₂CO₃. ^{*q*} In the presence of 1 equiv NEt₃, (*i*Pr)₂NEt, or DMAP.

Table S2. Effect of N-Protecting Groups

Ph	Pd(O ₂ CC CuCl ₂	F ₃) ₂ (5 m 2 (2 equiv	nol%) /)	-Ph	Ph	
NHR 1	CICH ₂ CH 150 ⁰	l ₂ Cl (0.05 ⁵ C, 24 h	5 M) R 2	3	R CI-2	R R R
	-	Entry	R	Yield $(\%)^a$	2:3: Cl- 2 ^b	
	_	1	Ts (1a)	91 (0)	1:0.6:0	
		2	PhSO ₂	88 (0)	1:0.2:0	
		3	$p-NO_2C_6H_4SO_2$	85 (0)	1:0.4:0	
		4	(2-pyridinyl)SO ₂	80 (0)	1:0:0	
		5	Tf	96 (0)	1:0:0	
		6	Ms	90 (15)	1:0.3:0	
		7	Ac	<u>_</u> <i>c-d</i>	-	
		8	Piv		-	
		9	Bz	<u>_</u> <i>c-d</i>	-	
		10	C ₆ F ₅ CO	<u>_</u> <i>c-d</i>	-	
		11	(2-pyridinyl)CO		-	
		12	CO ₂ Et	68 (11)	1:0:0.3	
		13	Cbz	66 (5)	1:0:0.5	
		14	Boc	<u>_</u> e	-	
		15	Bn	_d-e	-	
		16	Н	_d-e	-	

All reactions were carried out 2-5 times repetitively and the average values of both yields and ratios are given. ^{*a*} Isolated yield. Value in parentheses indicates a yield of **4**. ^{*b*} Ratios of inseparable isomers were determined by ¹H NMR. ^{*c*} Complex mixture. ^{*d*} 30-60% of starting material remained unreacted. ^{*e*} Decomposed.

R ¹	R ³	Pd(OAc CuCl	c) ₂ (5 mol %) R ¹ ₂ (2 equiv)		
R^2	NHTs	CICH ₂ CH 150	H ₂ CI (0.05 M) R ²	2 Ts	$R^2 $
				L	5
Entry	R^1	\mathbf{R}^2	R^3	Yield $(\%)^a$	$2:3^{b}$
1	Н	Η	Ph (1a)	92	1:2.1
2	Н	Н	Ph ((<i>Z</i>)-1a)	87^c	1:0.7
3^d	Н	Н	$4-MeOC_{6}H_{4}(1b)$	80^c	1:2.1 (:0.5) ^e
4	Н	Н	4-MeC ₆ H ₄	93 ^c	1:1.9 (:0.2) ^e
5	Н	Н	$3-MeC_{6}H_{4}(1c)$	77 ^{<i>c</i>, <i>f</i>}	1:0.9
6	Н	Н	2-MeC ₆ H ₄	92 ^{<i>c</i>}	1:2.1
7	Н	Н	$4-ClC_{6}H_{4}(1d)$	85	1:0.6
8	Н	Н	$4-NO_{2}C_{6}H_{4}(1e)$	91	1:0
9	Н	Н	$3-CF_3C_6H_4$	90	1:0
10^g	Н	Н	CO ₂ Me (1f)	60^{f}	1:0
11	Н	Н	<i>n</i> Hex (1g)	20	1:0
12	Me	Н	Ph (1h)	85 ^c	1:0.5
13	Cl	Н	Ph	91	1:2
14^h	NO_2	Н	Ph (1i)	90	1:3.8
15	Н	Me	Ph	89	1:0.3 (:0.1) ^e
16^h	Н	Cl	Ph (1j)	98	1:0.8
17^h	Н	NO ₂	Ph (1k)	82 ^{<i>f</i>}	1:1.1

Table S3. Substrate Scope: β-Monosubstituted Alkenes

All reactions were carried out 3-5 times repetitively and the average values of both yields and ratios are given. ^{*a*} Isolated yield. ^{*b*} Ratios of inseparable isomers were determined by ¹H NMR. ^{*c*} ~5% of the corresponding 2-substituted indoline was obtained. ^{*d*} For 6 h. ^{*e*} The ratio of *N*-Ts-2-aryl-3-chloro-substituted indole (Cl-2). ^{*f*} The remainder of the mass balance was unreacted starting material. ^{*g*} Using 20 mol% Pd(OAc)₂. ^{*h*} Using 10 mol% Pd(OAc)₂.

Table S4. Substrate Scope: β,β-Disubstituted Alkenes

^{*a*} Isolated yield. Value in parentheses indicates a yield based on recovered starting material. ^{*b*} ~5% of **2a** was obtained. ^{*c*} Using 10 mol% Pd(OAc)₂.

General Procedure for the Preparation of *N*-Ts-2-Alkenylanilines

To a solution of 2-bromoaniline (2.7 g, 15.52 mmol, 1 equiv) in NEt₃ (15.0 mL, 1.0 M) were added Pd(OAc)₂ (34.8 mg, 0.155 mmol, 1 mol%), P(o-Tol)₃ (398.0 mg, 1.241 mmol, 8 mol%), and olefin (18.62 mmol, 1.2 equiv). After being stirred at 125 °C overnight, the reaction mixture was poured into water and then the product was extracted with CH₂Cl₂ (three times). The combined organic layer was washed with brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel to afford the corresponding 2-styrylaniline product. To a solution of 2-styrylaniline (1 equiv) in pyridine (0.2 M) was added *p*-toluenesulfonyl chloride (1.1 equiv) at 0 °C. After being stirred at 25 °C for 2 hours, the reaction mixture was poured into water and then the product was extracted with CH₂Cl₂ (three times), dried over MgSO₄, and concentrated in vacuo. The residue was poured into water and then the product was extracted with CH₂Cl₂ (three times), dried over MgSO₄, and concentrated in vacuo. The residue was poured into water and then the product was extracted with CH₂Cl₂ (three times), dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel to give the corresponding product 1.

(E)-Methyl 3-(2-(4-Methylphenylsulfonamido)phenyl)acrylate (1f)

CO₂Me

Following the general procedure: 32% (step 1), 85% (step 2), a yellow solid (EtOAc : *n*-Hexane = 1:4 (step 1), 1:2 (step 2)), mp 160-162 °C.

¹H NMR (CDCl₃, 400 MHz) δ 2.37 (S, 3H), 3.79 (s, 3H), 6.15 (d, *J* = 15.6 Hz, 1H), 6.70 (br s, 1H), 7.20 (d, *J* = 7.6 Hz, 2H), 7.24 (t, *J* = 7.6 Hz, 1H), 7.35 (t, *J* = 8.0 Hz, 1H), 7.39 (d, *J* = 7.6 Hz, 1H), 7.45 (d, *J* = 7.2 Hz, 1H), 7.51 (d, *J* = 16.0 Hz, 1H), 7.56 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz) δ 21.5, 51.9, 120.4, 127.2, 127.3, 129.6, 129.7, 130.3, 130.9, 134.6, 135.8, 138.98, 139.03, 144.0, 166.8. EIMS *m*/*z* 331 (M⁺), 234, 176, 144, 132, 117, 91, 65, 51.

Spectral data were consistent with data reported in the literature.²

General Procedure for the Preparation of β , β -Disubstituted 2-Alkenylanilines

² Zhu, J.-B.; Wang, P.; Liao, S.; Tang, Y. Org. Lett. 2013, 15, 3054.

To a solution of 2-nitrobenzaldehyde (976.2 mg, 6.459 mmol, 1 equiv) and CBr₄ (4.3 g, 12.91 mmol, 2 equiv) in CH₂Cl₂ (16.1 ml, 0.4 M) at 0 °C was added dropwise a solution of PPh₃ (6.8 g, 25.84 mmol, 4 equiv) in CH₂Cl₂ (16 ml, 0.4 M). After addition (~1 h), the mixture was stirred for another 0.5 h before warmed to rt, and stirred for an additional 1 h. The reaction mixture was filtered through a short plug of silical gel, and was washed with a copious amount of CH₂Cl₂ until no product was found. Solvent was concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (EtOAc : *n*-Hexane = 1:7) to give the corresponding product **A** (1.7 g, 85%) as an orange solid.

A mixture of **A** (1 equiv), $Pd_2(dba)_3$ (3 mol%), $P(2-furyl)_3$ (15 mol%), and $Ar^1B(OH)_2$ (1 equiv) in 1,4-dioxane (0.1 M) was stirred at rt under argon for 5 min. An aq. Na₂CO₃ solution (1.0 M, 2 equiv) was added and the reaction mixture was heated at 65 °C for 23 h. The reaction mixture was then extracted with ether (3 times) and dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel to give the corresponding product **B**.

To a solution of **B** in mixed solvent (PEG : $H_2O = 1:3$, 0.15 M) were added $Ar^2B(OH)_2$ (1.25 equiv), $Pd(OAc)_2$ (4 mol%), and K_3PO_4 (2 equiv). The reaction mixture was stirred at 40 °C for 24 h. After cooling to rt, the mixture was diluted with water, extracted with CH_2Cl_2 (3 times), dried over MgSO₄, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel to give the corresponding product **C**.

The suspension of **C** (1 equiv) and $\text{SnCl}_2 \cdot \text{H}_2\text{O}$ (5 equiv) in EtOH (0.4 M) was heated at 100 °C for 30 min, and then cooled to rt. After most of EtOH was removed, the residue was taken into Et₂O and sat. K₂CO₃ solution. The reaction mixture was extracted with EtOAc (three times), dried over MgSO₄, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel to give the corresponding product **D**.

11-1m were prepared from **D** following a general procedure for tosylation. The stereochemistry of olefin **11-1m** could not be determined.

N-(2-(2-(4-Methoxyphenyl)-2-(4-(trifluoromethyl)phenyl)vinyl)phenyl)-4-methylbenzenesulfonamide (11)

E/*Z* mixture was obtained with a 3:1 ratio. an orange solid (EtOAc : *n*-Hexane = 1 : 4), mp 70-72 °C. Signals corresponding to major isomer: ¹H NMR (CDCl₃, 400 MHz) $\delta \delta$ 2.41 (s, 3H), 3.82 (s, 3H), 6.42 (s, 1H), 6.65 (d, *J* = 7.6 Hz, 1H), 6.81-6.89 (m, 1H), 6.82 (d, *J* = 8.8 Hz, 2H), 7.00 (d, *J* = 8.4 Hz, 4H), 7.10 (t, *J* = 7.8 Hz, 1H), 7.20 (d, *J* = 7.6 Hz, 2H), 7.40 (d, *J* = 8.0 Hz, 3H), 7.59 (d, *J* = 8.4 Hz, 2H). Representative signals corresponding to minor isomer: ¹H NMR (CDCl₃, 400 MHz) δ 2.41 (s, 3H), 3.77 (s, 3H), 6.40 (s, 1H), 6.73 (d, *J* = 8.8 Hz, 2H), 6.93 (t, *J* = 7.6 Hz, 1H), 7.38 (d, *J* = 8.0 Hz, 1H), 7.52 (t, *J* = 7.2 Hz, 1H), 7.53 (d, *J* = 7.2 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz) δ 21.5,

55.1, 55.3, 113.6, 113.7, 114.0, 122.2, 123.8 (q, J = 270.6 Hz), 123.9, 124.1, 124.5, 125.0 (q, J = 4.4 Hz), 125.1 (q, J = 3.7 Hz), 125.5, 125.6, 127.08, 127.14, 128.1, 128.2, 128.3, 129.05 (q, J = 33.8 Hz), 129.09, 129.5, 129.6, 130.4, 130.6 (q, J = 30.8 Hz), 130.8, 131.5 134.0, 134.2, 134.5, 136.9, 143.2, 143.7, 143.8, 144.0, 144.4, 146.4, 149.6, 159.4, 159.8 (only distinguishable peaks; 5 carbons are missing due to overlapping). HREIMS m/z 546.1321 (M+Na)⁺, calcd for C₂₉H₂₄F₃NNaO₃S 546.1321.

4-Methyl-N-(2-(2-p-tolyl-2-(4-(trifluoromethyl)phenyl)vinyl)phenyl)benzenesulfonamide (1m)

E/Z mixture was obtained with a 2.3:1 ratio. a yellow solid (EtOAc : *n*-Hexane = 1 : 6), mp 168-170 °C.

Signals corresponding to major isomer: ¹H NMR (CDCl₃, 400 MHz) δ 2.39 (s, 3H), 2.43 (s, 3H), 6.41 (s, 1H), 6.55 (br s, 1H), 6.67 (d, J = 7.6 Hz, 1H), 6.86 (t, J = 7.6 Hz, 1H), 6.96 (d, J = 8.4 Hz, 2H), 7.00 (d, J = 8.4 Hz, 2H), 7.13-7.21 (m, 1H), 7.14 (d, J = 7.6 Hz, 2H), 7.23 (d, J = 7.6 Hz, 2H), 7.41 (d, J = 8.4 Hz, 2H), 7.54 (d, J = 7.6 Hz, 1H), 7.60 (d, J = 8.4 Hz, 2H). Representative signals corresponding to minor isomer: ¹H NMR (CDCl₃, 400 MHz) δ 2.32 (s, 3H), 2.43 (s, 3H), 6.37 (s, 1H), 6.43 (br s, 1H), 6.80 (d, J = 8.0 Hz, 2H), 7.54 (d, J = 7.6 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz) δ 21.2, 21.3, 21.57, 21.58, 122.9, 123.6, 124.0 (q, J = 269.8 Hz), 124.4, 124.5, 125.0 (q, J = 3.7 Hz), 125.1 (q, J = 3.7 Hz), 125.5, 125.7, 127.1, 127.2, 127.5, 127.8, 128.3, 129.1, 129.4, 129.6, 129.7, 129.8, 130.1, 130.4, 130.5, 130.6, 130.7, 131.3, 133.6, 133.9, 134.5, 135.1, 136.9, 137.0, 138.3, 138.6, 138.8, 143.0, 143.8, 144.0, 144.6, 145.1, 146.2 (only distinguishable peaks; 2 carbons are missing due to overlapping). HREIMS m/z 530.1372 (M+Na)⁺, calcd for C₂₉H₂₄F₃NNaO₂S 530.1372.

General Procedure for the Pd(II)-Catalyzed Aza-Wacker-Type Cyclization of *N*-Ts-2-Alkenylanilines 1

To a solution of **1** (0.0677 mmol, 1 equiv) in $ClCH_2CH_2Cl$ (1.3 mL, 0.05 M) in pressure tube were added $Pd(OAc)_2$ (0.8 mg, 0.00339 mmol, 5 mol %) and $CuCl_2$ (18.2 mg, 0.136 mmol, 2 equiv). The resulting mixture was stirred at 150 °C for the reported time. After the reaction was completed, the reaction mixture was concentrated *in vacuo*. The residue was purified by column chromatography on silica gel to afford the corresponding product **2** or **3**. All reactions were carried out 3-5 times repetitively and the average values of both yields and ratios are given. In most cases, the remainder of the mass balance was unreacted starting material.

N-Ts-2-Phenylindole (2a) & N-Ts-3-Phenylindole (3a)

92% (**2a** : **3a** = 1 : 2.1), 87% (**2a** : **3a** = 1 : 0.7, from (*Z*)-**1a**), a white solid (EtOAc : *n*-Hexane = 1 : 8).

¹H NMR (CDCl₃, 400 MHz) δ 2.28 (s, 3H of **2a**), 2.34 (s, 3H of **3a**) 6.55 (s, 1H of **2a**), 7.04 (d, J = 8.4 Hz, 2H of **2a**), 7.23 (d, J = 8.4 Hz, 2H of **3a**), 7.26-7.31 (m, 3H of **2a** & 1H of **3a**), 7.36-7.40 (m, 1H of **2a** & 2H of **3a**), 7.44-7.53 (m, 6H of **2a** & 2H of **3a**), 7.61 (d, J = 7.2 Hz, 2H of **3a**), 7.71 (s, 1H of **3a**), 7.79 (d, J = 8.4 Hz, 1H of **3a**), 7.82 (d, J = 8.4 Hz, 2H of **3a**), 8.07 (d, J = 8.4 Hz, 1H of **3a**), 8.33 (d, J = 8.0 Hz, 1H of **2a**). ¹³C NMR (CDCl₃, 100 MHz) δ 21.49, 21.54, 113.6, 113.8, 116.6, 120.4, 120.7, 122.9, 123.5, 123.9, 124.3, 124.7, 124.9, 126.8, 126.9, 127.46, 127.51, 127.9, 128.6, 128.9, 129.2, 129.3, 129.9, 130.3, 130.5, 132.4, 133.0, 134.6, 135.1, 135.5, 138.2, 142.1, 144.5, 145.0. EIMS (**2a**) m/z 347 (M⁺), 208, 192, 177, 165, 139, 115, 91, 77, 65, 51. EIMS (**3a**) m/z 347 (M⁺), 267, 192, 165, 139, 115, 102, 91, 77, 65, 51.

Spectral data of $2a^{1, 3}$ and $3a^{1, 4}$ were consistent with data reported in the literature.

N-Ts-2-(4-Methoxyphenyl)indole (2b), *N*-Ts-3-(4-Methoxyphenyl)indole (3b), & *N*-Ts-3-Chloro-2-(4-methoxyphenyl)indole (Cl-2b)

80% (**2b** : **3b** : Cl-**2b** = 1 : 2.1 : 0.5), a yellow solid (EtOAc : *n*-Hexane = 1 : 7).

¹H NMR (CDCl₃, 400 MHz) δ 2.28 (s, 3H of **2b**), 2.31 (s, 3H of Cl-**2b**), 2.34 (s, 3H of **3b**), 3.87 (s, 3H of **3b**), 3.89 (s, 3H of **2b**), 3.91 (s, 3H of Cl-**2b**), 6.48 (s, 1H of **2b**), 6.96 (d, *J* = 8.8 Hz, 2H of **2b**), 7.00 (d, *J* = 8.8 Hz, 2H of **3b**), 7.04 (d, *J* = 8.4 Hz, 2H of **2b**), 7.07 (d, *J* = 8.0 Hz, 2H of Cl-**2b**), 7.21-7.47 (m, 7H of **2b**, 4H of **3b**, & 9H of Cl-**2b**), 7.53 (d, *J* = 8.0 Hz, 2H of **3b**), 7.63 (s, 1H of **3b**), 7.74 (d, *J* = 7.6 Hz, 1H of **3b**), 7.80 (d, *J* = 8.0 Hz, 2H of **3b**), 8.05 (d, *J* = 8.4 Hz, 1H of **3b**), 8.31 (d, *J* = 8.8 Hz, 1H of **2b**), 8.35 (d, *J* = 8.4 Hz, 1H of Cl-**2b**). ¹³C NMR (CDCl₃, 100 MHz) δ 21.48, 21.53, 55.28, 55.34, 112.8, 112.9, 113.0, 113.8, 113.9, 114.3, 116.5, 116.6, 118.5, 120.37, 120.44, 121.3, 122.3, 123.4, 123.7, 124.2, 124.5, 124.6, 124.7, 124.8, 125.4, 125.9, 126.76, 126.84, 127.05, 127.11, 127.3, 129.0, 129.1, 129.3, 129.46, 129.52, 129.9, 130.6, 131.6, 132.8, 134.7, 135.2,

³ Yin, Y.; Ma, W.; Chai, Z.; Zhao, G. J. Org. Chem. 2007, 72, 5731.

⁴ Kudo, N.; Perseghini, M.; Fu, G. C. Angew. Chem., Int. Ed. 2006, 45, 1282.

135.5, 138.1, 142.0, 144.4, 144.9, 159.2, 160.0, 160.2 (4 carbons are missing due to overlapping). EIMS (**2b**) *m*/*z* 377 (M), 222, 207, 195, 178, 165, 152, 139, 126, 102, 91, 77, 65. EIMS (**3b**) *m*/*z* 377 (M⁺), 222, 207, 178, 152, 91, 65, 51. EIMS (Cl-**2b**) *m*/*z* 411 (M⁺), 355, 327, 281, 256, 207, 178, 133, 96, 73, 65, 51.

Spectral data of **2b** and **3b** were consistent with data reported in the literature.^{1, 5-6}

N-Ts-2-p-Tolylindole (2), N-Ts-3-p-Tolylindole (3), & N-Ts-3-Chloro-2-p-tolylindole (Cl-2)

93% (**2** : **3** : Cl-**2** = 1 : 1.9 : 0.2), a yellow oil (EtOAc : *n*-Hexane = 1 : 7).

¹H NMR (CDCl₃, 400 MHz) δ 2.27 (s, 3H of 2), 2.30 (s, 3H of Cl-2), 2.32 (s, 3H of 2), 2.40 (s, 3H of 3), 2.43 (s, 3H of 2), 2.45 (s, 3H of Cl-2), 6.50 (s, 1H of 2), 7.03 (d, *J* = 7.6 Hz, 2H of 2), 7.07 (m, 2H of Cl-2), 7.14-7.31 (m, 5H of 2, 4H of 3, & 9H of Cl-2), 7.31-7.43 (m, 4H of 2 & 2H of 3), 7.49 (d, *J* = 7.6 Hz, 2H of 3), 7.66 (s, 1H of 3), 7.76 (d, *J* = 8.4 Hz, 1H of 3), 7.79 (d, *J* = 8.0 Hz, 2H of 3), 8.04 (d, *J* = 8.4 Hz, 1H of 3), 8.29 (d, *J* = 8.0 Hz, 1H of 2), 8.33 (d, *J* = 8.2 Hz, 1H of Cl-2). ¹³C NMR (CDCl₃, 100 MHz) δ 21.2, 21.42, 21.49, 21.54, 113.3, 113.8, 116.5, 116.6, 118.6, 120.4, 120.5, 122.7, 123.5, 124.0, 124.2, 124.4, 124.58, 124.64, 124.8, 125.9, 126.0, 126.8, 126.9, 127.1, 127.7, 128.2, 128.3, 129.1, 129.2, 129.3, 129.4, 129.47, 129.52, 129.6, 129.9, 130.1, 130.2, 130.6, 131.2, 134.6, 135.2, 135.5, 137.3, 138.2, 138.6, 142.3, 144.4, 144.9 (6 carbons are missing due to overlapping). EIMS (2) *m*/*z* 361 (M⁺), 206, 179, 65. EIMS (3) *m*/*z* 361 (M⁺), 206, 178, 91, 65. EIMS (Cl-2) *m*/*z* 395 (M⁺), 240, 213, 205, 155, 123.

Spectral data of **2** were consistent with data reported in the literature.^{1,5}

N-Ts-2-*m*-Tolylindole (2c) & *N*-Ts-3-*m*-Tolylindole (3c)

77% (**2c** : **3c** = 1 : 0.9), a yellow solid (EtOAc : *n*-Hexane = 1 : 7).

¹H NMR (CDCl₃, 400 MHz) δ 2.29 (s, 3H of **2c**), 2.34 (s, 3H of **3c**), 2.42 (s, 3H of **2c**), 2.43 (s, 3H of **3c**), 6.53 (s, 1H of **2c**), 7.05 (d, *J* = 8.0 Hz, 2H of **2c**), 7.19-7.36 (m, 8H of **2c** & 6H of **3c**), 7.42 (d, *J* = 8.0 Hz, 2H of **3c**), 7.69 (s, 1H of **3c**), 7.79 (d, *J* = 8.0 Hz, 1H

⁵ Palimkar, S. S.; Kumar, P. H.; Lahoti, R. J.; Srinivasan, K. V. Tetrahedron 2006, 62, 5109.

⁶ Monguchi, Y.; Mori, S.; Aoyagi, S.; Tsutsui, A.; Maegawa, T.; Sajiki, H. Org. Biomol. Chem. 2010, 8, 3338.

of **3c**), 7.81 (d, J = 8.4 Hz, 2H of **3c**), 8.06 (d, J = 8.4 Hz, 1H of **3c**), 8.31 (d, J = 8.4 Hz, 1H of **2c**). ¹³C NMR (CDCl₃, 100 MHz) δ 21.4, 21.49, 21.54, 113.3, 113.8, 116.6, 120.5, 120.6, 122.9, 123.5, 124.1, 124.2, 124.7, 124.8, 125.0, 126.8, 126.9, 127.4, 128.3, 128.6, 128.8, 129.1, 129.4, 129.9, 130.5, 131.0, 132.3, 133.0, 134.8, 135.2, 135.5, 137.0, 138.2, 138.6, 142.3, 144.4, 145.0 (3 carbons are missing due to overlapping). EIMS (**2c**) m/z 361 (M⁺), 222, 206, 191, 179, 164, 152, 139, 115, 102, 91, 77, 65, 51. EIMS (**3c**) m/z 361 (M⁺), 206, 178, 152, 91, 77, 65, 51. Spectral data of **2c** were consistent with data reported in the literature.^{1, 6}

N-Ts-2-o-Tolylindole (2) & N-Ts-3-o-Tolylindole (3)

92% (**2** : **3** = 1 : 2.1), a yellow oil (EtOAc : *n*-Hexane = 1 : 7).

¹H NMR (CDCl₃, 400 MHz) δ 2.22 (s, each 3H of **2** & **3**), 2.32 (s, 3H of **2**), 2.35 (s, 3H of **3**), 6.46 (s, 1H of **2**), 7.09 (d, *J* = 8.4 Hz, 3H of **2**), 7.19-7.36 (m, 7H of **2** & 9H of **3**), 7.50 (d, *J* = 7.6 Hz, 1H of **2**), 7.53 (s, 1H of **3**), 7.80 (d, *J* = 8.4 Hz, 2H of **3**), 8.05 (d, *J* = 9.2 Hz, 1H of **3**), 8.33 (d, *J* = 8.4 Hz, 1H of **2**). ¹³C NMR (CDCl₃, 100 MHz) δ 20.4, 20.5, 21.51, 21.54, 112.3, 113.8, 115.7, 120.6, 120.7, 123.4, 123.5, 123.8, 124.1, 124.55, 124.64, 124.7, 125.8, 126.8, 126.9, 127.9, 129.1, 129.3, 129.6, 129.9, 130.1, 130.5, 130.7, 130.9, 131.9, 132.1, 134.9, 135.2, 135.6, 136.8, 137.3, 139.3, 140.3, 144.6, 144.9 (1 carbon is missing due to overlapping). EIMS (**2**) *m/z* 361 (M⁺), 222, 206, 178, 151, 128, 115, 101, 91, 77, 65, 51. EIMS (**3**) *m/z* 361 (M⁺), 206, 178, 152, 128, 115, 103, 91, 77, 65, 51. HREIMS *m/z* 361.1138 (M)⁺, calcd for C₂₂H₁₉NO₂S 361.1136.

Spectral data of **2** were consistent with data reported in the literature.¹

N-Ts-2-(4-Chlorophenyl)indole (2d) & *N*-Ts-3-(4-Chlorophenyl)indole (3d)

85% (**2d** : **3d** = 1 : 0.6), an orange solid (EtOAc : *n*-Hexane = 1 : 7).

¹H NMR (CDCl₃, 400 MHz) δ 2.29 (s, 3H of **2d**), 2.35 (s, 3H of **3d**), 6.55 (s, 1H of **2d**), 7.05 (d, *J* = 8.0 Hz, 2H of **2d**), 7.23-7.32 (m, 3H of **2d** & 1H of **3d**), 7.36-7.46 (m, 6H of **2d** & 5H of **3d**), 7.54 (d, *J* = 8.0 Hz, 2H of **3d**), 7.70 (s, 1H of **3d**), 7.72 (d, *J* = 8.4 Hz, 1H of **3d**), 7.82 (d, *J* = 7.6 Hz, 2H of **3d**), 8.06 (d, *J* = 8.4 Hz, 1H of **3d**), 8.31 (d, *J* = 8.8 Hz, 1H of **2d**). ¹³C NMR (CDCl₃, 100 MHz) δ 21.5, 21.6, 113.9, 114.0, 116.7, 120.1, 120.8, 122.7, 123.0, 123.6, 124.4, 125.0, 126.7, 126.9, 127.8, 128.9, 129.1, 129.3, 130.0, 130.4, 130.9, 131.45, 131.54, 133.4, 134.5, 134.7, 135.1, 135.4, 135.4, 125.0, 126.7, 125.4,

138.3, 140.8, 144.7, 145.1 (2 carbons are missing due to overlapping). EIMS (**2d**) m/z 381 (M⁺), 242, 226, 199, 190, 164, 155, 139, 113, 91, 75, 65, 51. EIMS (**3d**) m/z 381 (M⁺), 226, 199, 190, 163, 155, 137, 113, 91, 65, 51. HREIMS m/z 381.0588 (M)⁺, calcd for C₂₁H₁₆CINO₂S 381.0590. Spectral data of **2d** were consistent with data reported in the literature.¹

N-Ts-2-(4-Nitrophenyl)indole (2e)

91%, a yellow solid (EtOAc : *n*-Hexane = 1 : 7), mp 170-171 °C.

¹H NMR (CDCl₃, 400 MHz) δ 2.29 (s, 3H), 6.69 (s, 1H), 7.06 (d, *J* = 8.0 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 2H), 7.30 (t, *J* = 7.6 Hz, 1H), 7.42 (t, *J* = 7.8 Hz, 1H), 7.47 (d, *J* = 7.6 Hz, 1H), 7.71 (d, *J* = 8.8 Hz, 2H), 8.30 (d, *J* = 8.8 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 21.5, 116.1, 116.8, 121.2, 122.8, 124.8, 125.8, 126.6, 129.4, 130.3, 130.6, 133.8, 138.7, 138.9, 139.6, 145.0, 147.5. EIMS *m/z* 392 (M⁺), 253, 237, 190, 178, 164, 155, 140, 91, 65.

Spectral data were consistent with data reported in the literature.^{1, 7}

N-Ts-2-(3-(Trifluoromethyl)phenyl)indole

90%, an orange solid (EtOAc : *n*-Hexane = 1 : 7), mp 55-60 °C.

¹H NMR (CDCl₃, 400 MHz) δ 2.29 (s, 3H), 6.60 (s, 1H), 7.04 (d, *J* = 7.6 Hz, 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 7.29 (t, *J* = 7.4 Hz, 1H), 7.39 (t, *J* = 8.0 Hz, 1H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.56 (t, *J* = 7.8 Hz, 1H), 7.60 (s, 1H), 7.68 (d, *J* = 7.6 Hz, 1H), 7.76 (d, *J* = 7.2 Hz, 1H), 8.33 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 21.5, 114.3, 116.6, 120.9, 124.0 (q, *J* = 270.9 Hz), 124.5, 125.25 (q, *J* = 3.7 Hz), 125.29, 126.6, 126.7 (q, *J* = 3.7 Hz), 127.9, 129.3, 130.0 (q, *J* = 32.0 Hz), 130.2, 133.1, 134.0, 134.5, 138.4, 140.2, 144.9. EIMS *m*/*z* 415 (M⁺), 396, 350, 335, 276, 260, 240, 233, 220, 190, 165, 155, 139, 91, 65, 51. HREIMS *m*/*z* 415.0853 (M)⁺, calcd for C₂₂H₁₆F₃NO₂S 415.0854. Spectral data were consistent with data reported in the literature.¹

Methyl N-Ts-Indole-2-carboxylate (2f)

60%, a yellow solid (EtOAc : *n*-Hexane = 1 : 3), mp 52-54 °C.

¹H NMR (CDCl₃, 400 MHz) δ 2.37 (s, 3H), 3.94 (s, 3H), 7.16 (s, 1H), 7.26 (d, *J* = 8.4 Hz, 2H), 7.28 (t, *J* = 8.4 Hz, 1H), 7.44 (t, *J* = 7.8 Hz, 1H), 7.56 (d, *J* = 8.0 Hz, 1H), 7.91 (d, *J* = 7.6 Hz, 2H), 8.13

⁷ Kurisaki, T.; Naniwa, T.; Yamamoto, T.; Imagawa, H.; Nishizawa, M. *Tetrahedron Lett.* 2007, 48, 1871.

(d, J = 8.4 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 21.6, 52.7, 115.4, 116.8, 122.5, 124.0, 127.0, 127.4, 128.1, 129.5, 131.4, 135.7, 138.2, 144.9, 161.8. EIMS m/z 329 (M⁺), 265, 155, 143, 139, 115, 91, 89, 65, 51.

Spectral data were consistent with data reported in the literature.⁸

N-Ts-2-n-Hexylindole (2g)

20%, a yellow solid (EtOAc : n-Hexane = 1 : 6), mp 73-74 °C.

¹H NMR (CDCl₃, 400 MHz) δ 0.90 (m, 3H), 1.32 (m, 4H), 1.41 (m, 2H), 1.74 (quintet, *J* = 7.5 Hz, 2H), 2.33 (s, 3H), 2.97 (t, *J* = 7.6 Hz, 2H), 6.38 (s, 1H), 7.18 (d, *J* = 8.4 Hz, 2H), 7.21 (t, *J* = 6.4 Hz, 1H), 7.25 (t, *J* = 7.2 Hz, 1H), 7.40 (d, *J* = 7.2 Hz, 1H), 7.61 (d, *J* = 8.0 Hz, 2H), 8.16 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 14.1, 21.5, 22.6, 28.8, 28.97, 29.02, 31.6, 108.5, 114.8, 120.0, 123.4, 123.7, 126.2, 129.7, 129.8, 136.2, 137.1, 142.5, 144.5. EIMS *m*/*z* 355 (M⁺), 285, 221, 200, 170, 156, 143, 130, 118, 103, 91, 77, 65, 55.

Spectral data were consistent with data reported in the literature.^{1, 9}

N-Ts-5-Methyl-2-phenylindole (2h) & *N*-Ts-5-Methyl-3-phenylindole (3h)

85% (**2h** : **3h** = 1 : 0.5), a white solid (EtOAc : *n*-Hexane = 1 : 7).

¹H NMR (CDCl₃, 400 MHz) δ 2.28 (s, 3H of **2h**), 2.34 (s, 3H of **3h**), 2.41 (s, 3H of **2h**), 2.43 (s, 3H of **3h**), 6.47 (s, 1H of **2h**), 7.04 (d, *J* = 8.0 Hz, 2H of **2h**), 7.16-7.32 (m, 4H of **2h** & 3H of **3h**), 7.35-7.51 (m, 5H of **2h** & 3H of **3h**), 7.55 (s, 1H of **3h**), 7.59 (d, *J* = 7.6 Hz, 2H of **3h**), 7.65 (s, 1H of **3h**), 7.79 (d, *J* = 8.0 Hz, 2H of **3h**), 7.93 (d, *J* = 8.8 Hz, 1H of **3h**), 8.18 (d, *J* = 8.4 Hz, 1H of **2h**). ¹³C NMR (CDCl₃, 100 MHz) δ 21.3, 21.4, 21.50, 21.54, 113.5, 113.6, 116.4, 120.2, 120.6, 123.1, 123.8, 126.1, 126.3, 126.78, 126.83, 127.4, 127.9, 128.5, 128.9, 129.1, 129.3, 129.5, 129.9, 130.2, 130.8, 131.4, 132.5, 133.2, 133.8, 133.9, 134.6, 135.2, 136.5, 142.2, 144.4, 144.9. EIMS (**2h**) *m/z* 361 (M⁺), 222, 206, 179, 152, 128, 102, 91, 77, 65, 51. EIMS (**3h**) *m/z* 361 (M⁺), 281, 206, 178, 152, 128, 102, 91, 77, 65, 51.

⁸ (a) Blessley, G.; Holden, P.; Walker, M.; Brown, J. M.; Gouverneur, V. *Org. Lett.* **2012**, *14*, 2754. (b) Karadeolian, A.; Kerr, M. A. *J. Org. Chem.* **2010**, *75*, 6830. (c) Vieira, T. O.; Meaney, L. A.; Shi, Y.-L.; Alper, H. *Org. Lett.* **2008**, *10*, 4899.

⁹ Yamagishi, M.; Nishigai, K.; Ishii, A.; Hata, T.; Urabe, H. Angew. Chem. Int. Ed. 2012, 51, 6471.

Spectral data of **2h** were consistent with data reported in the literature.^{1, 3, 5}

N-Ts-5-Chloro-2-phenylindole (2) & N-Ts-5-Chloro-3-phenylindole (3)

91% (**2** : **3** = 1 : 2), a pale yellow solid (EtOAc : *n*-Hexane = 1 : 7). ¹H NMR (CDCl₃, 400 MHz) δ 2.30 (s, 3H of **2**), 2.35 (s, 3H of **3**), 6.48 (s, 1H of **2**), 7.06 (d, *J* = 8.4 Hz, 2H of **2**), 7.24 (d, *J* = 9.2 Hz, each 2H of **2** & **3**), 7.29-7.33 (m, each 1H of **2** & **3**), 7.37-7.49 (m, 6H of **2** & 3H of **3**), 7.55 (d, *J* = 7.6 Hz, 2H of **3**), 7.70 (s, 1H of **3**), 7.73 (d, *J* = 1.6 Hz, 1H of **3**), 7.78 (d, *J* = 8.4 Hz, 2H of **3**), 7.98 (d, *J* = 8.8 Hz, 1H of **3**), 8.23 (d, *J* = 8.8 Hz, 1H of **2**). ¹³C NMR (CDCl₃, 100 MHz) δ 21.5, 21.6, 112.6, 114.9, 117.7, 120.1, 120.2, 123.5, 124.2, 124.9, 125.1, 126.75, 126.84, 127.5, 127.8, 128.95, 129.03, 129.3, 129.6, 130.0, 130.3, 130.5, 131.7, 131.8, 132.4, 133.8, 134.4, 134.9, 136.5, 143.5, 144.8, 145.3 (2 carbons are missing due to overlapping). EIMS (**2**) *m*/*z* 381(M⁺), 242, 226, 199, 190, 164, 155, 139, 123, 91, 73, 65, 51. EIMS (**3**) *m*/*z* 381(M⁺), 226, 199, 190, 163, 155, 139, 126, 91, 65, 51.

Spectral data of $2^{1,3}$ and 3^{10} were consistent with data reported in the literature.

N-Ts-5-Nitro-2-phenylindole (2i) & N-Ts-5-Nitro-3-phenylindole (3i)

90% (**2i** : **3i** = 1 : 3.8), a yellow oil (EtOAc : *n*-Hexane = 1 : 7).

¹H NMR (CDCl₃, 400 MHz) δ 2.32 (s, 3H of **2i**), 2.38 (s, 3H of **3i**), 6.65 (s, 1H of **2i**), 7.09 (d, *J* = 8.4 Hz, 2H of **2i**), 7.29 (d, *J* = 8.4 Hz, each 2H of **2i** & **3i**), 7.42-7.45 (m, 5H of **2i** & 1H of **3i**), 7.52 (t, *J* = 7.4 Hz, 2H of **3i**), 7.58 (d, *J* = 7.6 Hz, 2H of **3i**), 7.837 (s, 1H of **3i**), 7.838 (d, *J* = 8.0 Hz, 2H of **3i**), 8.15 (d, *J* = 8.8 Hz, 1H of **3i**), 8.24 (dd, *J* = 2.0, 6.8 Hz, 1H of **2i**), 8.26 (dd, *J* = 2.0, 7.2 Hz, 1H of **3i**), 8.38 (d, *J* = 2.0 Hz, 1H of **2i**), 8.44 (d, *J* = 9.2 Hz, 1H of **2i**), 8.68 (d, *J* = 1.6 Hz, 1H of **3i**). ¹³C NMR (CDCl₃, 100 MHz) δ 21.58, 21.64, 112.7, 114.0, 116.5, 116.8, 117.0, 119.7, 120.1, 124.6, 125.4, 126.8, 127.0, 127.6, 127.9, 128.3, 129.3, 129.4, 129.6, 130.3, 130.5, 131.1, 131.5, 134.6, 138.2, 141.0, 144.5, 144.7, 144.9, 145.5, 146.0 (3 carbons are missing due to overlapping). EIMS (**2i**) *m*/*z* 392 (M⁺), 237, 207, 179, 155, 139, 127, 91, 77, 65, 51. EIMS (**3i**) *m*/*z* 392 (M⁺), 237, 207, 179, 155, 139, 127, 91, 77, 65, 51. EIMS (**3i**) *m*/*z* 392 (M⁺), 237, 207, 179, 155, 139, 127, 91, 77, 65, 51.

Spectral data of **2i** were consistent with data reported in the literature.^{1, 3}

¹⁰ Miyagi, T.; Hari, Y.; Aoyama, T. *Tetrahedron Lett.* **2004**, *45*, 6303.

N-Ts-6-Methyl-2-phenylindole (2), *N*-Ts-6-Methyl-3-phenylindole (3), & *N*-Ts-3-Chloro-6-methyl-2-phenylindole (Cl-2)

89% (**2** : **3** : Cl-**2** = 1 : 0.3 : 0.1), a pale yellow solid (EtOAc : *n*-Hexane = 1 : 7). ¹H NMR (CDCl₃, 400 MHz) δ 2.29 (s, 3H of **2**), 2.32 (s, 3H of Cl-**2**), 2.35 (s, 3H of **3**), 2.51 (s, 3H of **3**), 2.53 (s, 3H of **2**), 2.56 (s, 3H of Cl-**2**), 6.49 (s, 1H of **2**), 7.03-7.12 (m, each 2H of **3** & Cl-**2**), 7.04 (d, *J* = 8.0 Hz, 2H of **2**), 7.09 (d, *J* = 7.6 Hz, 1H of **2**), 7.20-7.49 (m, 4H of **3** & 9H of Cl-**2**), 7.27 (d, *J* = 8.0 Hz, 2H of **2**), 7.32 (d, *J* = 7.6 Hz, 1H of **2**), 7.41-7.49 (m, 5H of **2**), 7.60 (d, *J* = 7.6 Hz, 2H of **3**), 7.63 (s, 1H of **3**), 7.65 (d, *J* = 8.0 Hz, 1H of **3**), 7.80 (d, *J* = 8.0 Hz, 2H of **3**), 7.87 (s, 1H of **3**), 8.13 (s, 1H of **2**), 8.17 (s, 1H of Cl-**2**). ¹³C NMR (CDCl₃, 100 MHz) δ 21.5, 21.6, 21.9, 22.1, 113.6, 113.9, 114.9, 116.6, 116.8, 117.6, 118.3, 120.0, 120.2, 120.6, 121.2, 122.3, 123.9, 125.1, 125.7, 126.2, 126.77, 126.83, 127.0, 127.4, 127.8, 128.3, 128.5, 128.9, 129.1, 129.4, 129.9, 130.2, 131.4, 132.6, 133.2, 133.6, 134.7, 134.9, 135.1, 135.3, 135.9, 138.7, 141.4, 144.1, 144.4, 144.9 (8 carbons are missing due to overlapping). EIMS (**2**) *m/z* 361 (M⁺), 222, 206, 179, 152, 128, 102, 91, 77, 65, 51. EIMS (**3**) *m/z* 361 (M⁺), 222, 206, 178, 152, 128, 102, 91, 77, 65, 51. EIMS (Cl-**2**) *m/z* 395 (M⁺), 361, 281, 240, 213, 204, 178, 151, 139, 102, 91, 65, 51. HREIMS *m/z* 361.1138 (M)⁺, calcd for C₂₂H₁₉NO₂S 361.1136.

Spectral data of **2** were consistent with data reported in the literature.¹

N-Ts-6-Chloro-2-phenylindole (2j) & N-Ts-6-Chloro-3-phenylindole (3j)

98% (**2j** : **3j** = 1 : 0.8), a pink solid (EtOAc : *n*-Hexane = 1 : 7).

¹H NMR (CDCl₃, 400 MHz) δ 2.31 (s, 3H of **2j**), 2.37 (s, 3H of **3j**), 6.50 (s, 1H of **2j**), 7.07 (d, J = 7.6 Hz, 2H of **2j**), 7.27 (d, J = 6.8 Hz, 3H of **2j** & 2H of **3j**), 7.36 (d, J = 8.0 Hz, 1H of **2j**), 7.38-7.48 (m, 5H of **2j** & 4H of **3j**), 7.56 (d, J = 7.2 Hz, 2H of **3j**), 7.67 (s, 1H of **3j**), 7.68 (d, J = 7.6 Hz, 1H of **3j**), 7.81 (d, J = 8.4 Hz, 2H of **3j**), 8.08 (d, J = 0.8 Hz, 1H of **3j**), 8.35 (s, 1H of **2j**). ¹³C NMR (CDCl₃, 100 MHz) δ 21.55, 21.61, 112.8, 114.0, 116.7, 121.2, 121.3, 123.3, 123.7, 124.2, 124.9, 126.8, 126.9, 127.5, 127.76, 127.81, 128.9, 129.0, 129.3, 130.1, 130.4, 130.6, 130.9, 131.8, 132.5, 134.5, 134.9, 135.8, 138.5, 142.6, 144.9, 145.4 (2 carbons are missing due to overlapping). EIMS (**2j**) *m*/*z* 381 (M⁺), 226, 199, 190, 164, 155, 123, 113, 91, 73, 65, 51. EIMS (**3j**) *m*/*z* 381 (M⁺), 226, 199, 190, 164, 155, 123, 113, 91, 73, 65, 51. EIMS (**3j**) *m*/*z* 381 (M⁺), 226, 199, 190, 164, 155, 123, 113, 91, 73, 65, 51. EIMS (**3j**) *m*/*z* 381 (M⁺), 226, 199, 190, 164, 155, 123, 113, 91, 73, 65, 51. EIMS (**3j**) *m*/*z* 381 (M⁺), 226, 199, 190, 164, 155, 123, 113, 91, 73, 65, 51. EIMS (**3j**) *m*/*z* 381 (M⁺), 226, 199, 190, 164, 155, 123, 113, 91, 73, 65, 51. EIMS (**3j**) *m*/*z* 381 (M⁺), 226, 199, 190, 164, 155, 123, 113, 91, 73, 65, 51. EIMS (**3j**) *m*/*z* 381 (M⁺), 226, 199, 190, 164, 155, 123, 113, 91, 73, 65, 51. EIMS (**3j**) *m*/*z* 381 (M⁺), 226, 199, 190, 164, 155, 123, 113, 91, 73, 65, 51. EIMS (**3j**) *m*/*z* 381 (M⁺), 226, 199, 190, 164, 155, 123, 113, 91, 73, 65, 51. EIMS (**3j**) *m*/*z* 381 (M⁺), 226, 199, 190, 164, 155, 123, 113, 91, 73, 65, 51. EIMS (**3j**) *m*/*z* 381 (M⁺), 226, 199, 190, 163, 155, 91, 65, 51. Spectral data of **2j** were consistent with data reported in the literature.^{1, 11}

N-Ts-6-Nitro-2-phenylindole (2k) & *N*-Ts-6-Nitro-3-phenylindole (3k)

82% (**2k** : **3k** = 1 : 1.1), a dark brown solid (EtOAc : *n*-Hexane = 1 : 7). ¹H NMR (CDCl₃, 400 MHz) δ 2.32 (s, 3H of **2k**), 2.38 (s, 3H of **3k**), 6.62 (s, 1H of **2k**), 7.09 (d, *J* = 8.4 Hz, 2H of **2k**), 7.28-7.31 (m, each 2H of **2k** & **3k**), 7.42-7.52 (m, 5H of **2k** & 3H of **3k**), 7.55 (d, *J* = 8.4 Hz, 1H of **2k**), 7.57 (d, *J* = 6.4 Hz, 2H of **3k**), 7.86 (d, *J* = 8.4 Hz, 1H of **3k**), 7.87 (d, *J* = 7.6 Hz, 2H of **3k**), 7.94 (s, 1H of **3k**), 8.18 (d, *J* = 9.2 Hz, each 1H of **2k** & **3k**), 8.96 (s, 1H of **3k**), 9.25 (s, 1H of **2k**). ¹³C NMR (CDCl₃, 100 MHz) δ 21.57, 21.64, 110.2, 112.3, 112.8, 118.7, 119.6, 120.6, 120.7, 123.8, 126.9, 127.1, 127.6, 127.7, 127.9, 128.2, 129.2, 129.57, 129.59, 130.3, 130.5, 131.1, 131.7, 133.8, 134.2, 134.4, 134.5, 135.0, 136.9, 145.0, 145.2, 145.4, 146.0, 147.2. EIMS (**2k**) *m/z* 392 (M⁺), 281, 253, 237, 207, 190, 179, 163, 155, 139, 91, 77, 65, 51. EIMS (**3k**) *m/z* 392 (M⁺), 282, 252, 237, 207, 190, 179, 163, 155, 139, 126, 91, 65, 51. HREIMS *m/z* 392.0832 (M)⁺, calcd for C₂₁H₁₆N₂O₄S 392.0831.

Spectral data of $2\mathbf{k}$ were consistent with data reported in the literature.¹

N-Ts-3-(4-Methoxyphenyl)-2-(4-(trifluoromethyl)phenyl)indole (3l)

78%, a greenish solid (EtOAc : *n*-Hexane = 1 : 8), mp 140-142 °C. E/Z mixture of **11** (3:1) was used and recovered in 8% yield with a 1:1 ratio.

¹H NMR (CDCl₃, 400 MHz) δ 2.31 (s, 3H), 3.77 (s, 3H), 6.78 (d, *J* = 8.4 Hz, 2H), 6.97 (d, *J* = 8.8 Hz, 2H), 7.08 (d, *J* = 8.0 Hz, 2H), 7.29 (t, *J* = 8.0 Hz, 1H), 7.30 (d, *J* = 8.4 Hz, 2H), 7.39 (d, *J* = 8.4 Hz, 2H), 7.43 (t, *J* = 7.6 Hz, 1H), 7.45 (d, *J* = 7.6 Hz, 1H), 7.54 (d, *J* = 8.0 Hz, 2H), 8.39 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 21.5, 55.1, 113.9, 116.3, 120.2, 124.079 (q, *J* = 270.6 Hz), 124.082, 124.2 (q, *J* = 3.7 Hz), 124.4, 125.6, 125.9, 126.8, 129.4, 130.1 (q, *J* = 32.3 Hz), 130.7, 130.9, 132.2, 134.7, 134.9, 135.0, 137.4, 144.8, 158.8. HREIMS *m*/*z* 544.1165 (M+Na)⁺, calcd for C₂₉H₂₂F₃NNaO₃S 544.1165.

N-Ts-3-*p*-Tolyl-2-(4-(trifluoromethyl)phenyl)indole (3m)

¹¹ Inamoto, K.; Asano, N; Nakamura, Y.; Yonemoto, M.; Kondo, Y. Org. Lett. 2012, 14, 2622.

47%, a yellow solid (EtOAc : *n*-Hexane = 1 : 6). E/Z mixture of **1m** (2.3:1) was used and recovered in 51% yield with a 1.1:1 ratio.

¹H NMR (CDCl₃, 400 MHz) δ 2.31 (s, 3H), 2.32 (s, 3H), 6.93 (d, *J* = 8.0 Hz, 2H), 7.06 (d, *J* = 8.4 Hz, 2H), 7.08 (d, *J* = 8.4 Hz, 2H), 7.29 (t, *J* = 7.2 Hz, 1H), 7.30 (d, *J* = 8.4 Hz, 2H), 7.39 (d, *J* = 8.4 Hz, 2H), 7.43 (t, *J* = 8.4 Hz, 1H), 7.45 (d, *J* = 7.6 Hz, 1H), 7.54 (d, *J* = 8.0 Hz, 2H), 8.39 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 21.2, 21.6, 116.4, 120.3, 124.1 (q, *J* = 270.6 Hz), 124.2 (q, *J* = 3.7 Hz), 124.4, 125.6, 126.1, 126.8, 128.9, 129.1, 129.4, 129.6, 130.1 (q, *J* = 32.2 Hz), 130.6, 132.2, 134.86, 134.91, 137.1, 137.5, 144.8 (1 carbon is missing due to overlapping). HREIMS *m*/*z* 528.1215 (M+Na)⁺, calcd for C₂₉H₂₂F₃NNaO₂S 528.1216.

N-Ts-3-Phenyl-2-(4-(trifluoromethyl)phenyl)indole (3n) & *N*-Ts-2-Phenylindole (2a)

42% (3n : 2a = 1 : 0.1), a yellow solid (EtOAc : *n*-Hexane = 1 : 7). *E*/*Z* mixture of 1n (1.7:1) was used and recovered in 53% yield with a 1.4:1 ratio.

¹H NMR (CDCl₃, 400 MHz) δ 2.28 (s, 3H of **2a**), 2.32 (s, 3H of **3n**), 6.54 (s, 1H of **2a**), 7.04-7.06 (m, 2H of **3n** & 2H of **2a**), 7.09 (d, *J* = 8.0 Hz, 2H of **3n**), 7.20-7.34 (m, 6H of **3n** & 4H of **2a**), 7.38 (d, *J* = 8.0 Hz, 2H of **3n**), 7.42-7.49 (m, 2H of **3n** & 6H of **2a**), 7.53 (d, *J* = 8.0 Hz, 2H of **3n**), 8.31 (d, *J* = 8.4 Hz, 1H of **2a**), 8.40 (d, *J* = 8.8 Hz, 1H of **3n**). ¹³C NMR (CDCl₃, 100 MHz) δ 21.5, 21.6, 113.6, 116.4, 116.6, 120.2, 120.7, 124.1 (q, *J* = 271.3 Hz), 124.2 (q, *J* = 3.7 Hz), 124.5, 124.7, 125.7, 126.1, 126.8, 126.9, 127.3, 127.5, 128.4, 128.6, 129.2, 129.4, 129.8, 130.2 (q, *J* = 32.2 Hz), 130.3, 130.45, 130.53, 132.0, 132.2, 132.4, 134.6, 134.8, 134.9, 135.1, 137.4, 138.2, 142.1, 144.5, 144.9 (1 carbon is missing due to overlapping). EIMS (**3n**) *m*/*z* 491 (M⁺), 336, 267, 239, 163, 155, 134, 91, 65, 51. EIMS (**2a**) *m*/*z* 347 (M⁺), 208, 192, 165, 139, 115, 91, 65. HREIMS *m*/*z* 491.1168 (M)⁺, calcd for C₂₈H₂₀F₃NO₂S 491.1167.

Spectral data of **3n** and **2a** were consistent with data reported in the literature.¹

N-Ts-2,3-Diphenylindole

73%, a pale yellow solid (EtOAc : n-Hexane = 1 : 5), mp 173-175 °C. Unreacted starting material was recovered in 22% yield.

¹H NMR (CDCl₃, 400 MHz) δ 2.32 (s, 3H), 7.07-7.09 (m, 4H), 7.20-7.31 (m, 9H), 7.34 (d, J = 8.0 Hz, 2H), 7.42 (t, J = 7.6 Hz, 1H), 7.49 (d, J = 7.6 Hz, 1H), 8.41 (d, J = 8.4 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 21.5, 116.2, 119.9, 124.1, 124.7, 125.1, 126.9, 127.2, 128.1, 128.4, 129.3, 129.8, 130.4, 130.8, 132.0, 132.6, 135.2, 136.8, 137.2, 144.5 (1 carbon is missing due to overlapping). EIMS *m*/*z* 423 (M⁺), 268, 239, 213, 190, 165, 134, 120, 91, 65, 51. Spectral data were consistent with data reported in the literature.^{1, 12}

N-Ts-2-Methyl-3-phenylindole (30)

64%, a yellow oil (EtOAc : *n*-Hexane = 1 : 6). Unreacted **10** was recovered in 23% yield. ¹H NMR (CDCl₃, 400 MHz) δ 2.36 (s, 3H), 2.60 (s, 3H), 7.22-7.24 (m, 1H), 7.23 (d, J = 7.6 Hz, 2H), 7.30-7.38 (m, 4H), 7.41-7.47 (m, 3H), 7.73 (d, J = 8.0 Hz, 2H), 8.27 (d, J = 8.8 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 13.5, 21.6, 114.5, 119.2, 122.5, 123.5, 124.2, 126.4, 127.3, 128.5, 129.9, 130.0, 133.05, 133.10, 136.2, 136.3, 144.7 (1 carbon is missing due to overlapping). EIMS *m/z* 361 (M⁺), 206, 178, 165, 152, 128, 115, 91, 77, 65, 51.

Spectral data were consistent with data reported in the literature.^{1, 13}

N-Ts-7,8-Dihydro-6*H*-benzo[6,7]oxepino[4,5-*b*]indole (3p)

51%, a yellow solid (EtOAc : *n*-Hexane = 1 : 7), mp 109-110 °C.

¹H NMR (CDCl₃, 400 MHz) δ 2.34 (s, 3H), 3.60 (t, *J* = 6.2 Hz, 2H), 4.44 (t, *J* = 6.0 Hz, 2H), 7.13 (d, *J* = 7.6 Hz, 1H), 7.21 (d, *J* = 8.4 Hz, 2H), 7.20-7.26 (m, 2H), 7.29 (t, *J* = 7.6 Hz, 1H), 7.35 (t, *J* = 7.4 Hz, 1H), 7.67 (d, *J* = 8.4 Hz, 2H), 7.87-7.89 (m, 2H), 8.32 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 21.5, 30.5, 73.4, 114.9, 118.2, 120.0, 121.4, 123.5, 123.7, 124.6, 125.6, 126.3, 127.9, 128.6, 129.6, 130.0, 135.6, 136.1, 137.0, 145.0, 158.9. EIMS *m*/*z* 389 (M⁺), 307, 281, 267, 234, 207, 204, 165, 152, 133, 102, 96, 91, 73, 65, 55. HREIMS *m*/*z* 389.1087 (M)⁺, calcd for C₂₃H₁₉NO₃S 389.1086.

Spectral data were consistent with data reported in the literature.¹

¹² Larock, R. C.; Yum, E. K.; Refvik, M. D. J. Org. Chem. **1998**, 63, 7652.

 ¹³ (a) Zhu, C.; Ma, S. Org. Lett. 2013, 15, 2782. (b) McAusland, D.; Seo, S.; Pintori, D. G.; Finlayson, J.; Greaney, M. F. Org. Lett. 2011, 13, 3667.

N-Ts-Spiro(chroman-4,2'-indoline) (4)

31%, a yellow solid (EtOAc : *n*-Hexane = 1 : 7), mp 168-170 °C.

¹H NMR (CDCl₃, 400 MHz) δ 2.07 (d, J = 13.2 Hz, 1H), 2.38 (s, 3H), 3.27 (d, J = 16.0 Hz, 1H), 3.29 (td, J = 4.0, 12.6 Hz, 1H), 3.54 (d, J = 16.0 Hz, 1H), 4.21 (td, J = 1.9, 11.6 Hz, 1H), 4.21 (dt, J = 3.8, 11.3 Hz, 1H), 6.72 (t, J = 7.2 Hz, 1H), 6.87 (d, J = 7.6 Hz, 1H), 7.01 (t, J = 7.6 Hz, 1H), 7.05 (d, J = 7.2 Hz, 1H), 7.12 (d, J = 7.6 Hz, 1H), 7.15 (t, J = 8.8 Hz, 1H), 7.19 (d, J = 8.4 Hz, 2H), 7.23 (t, J = 8.4 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.61 (d, J = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz) δ 21.5, 35.0, 48.6, 64.1, 69.3, 113.8, 117.2, 120.6, 123.0, 125.1, 126.3, 126.9, 127.0, 127.1, 128.1, 128.9, 129.4, 138.4, 142.4, 143.6, 154.3. EIMS m/z 391 (M⁺), 355, 326, 254, 236, 220, 180, 165, 152, 143, 131, 91, 65, 51. HREIMS m/z 414.1133 (M+Na)⁺, calcd for C₂₃H₂₁NNaO₃S 414.1140.

Authentic samples of 2-aryl-3-aryl'-substituted indoles (**3** and **3'**) were prepared as follows¹⁴ and the products from our protocol were identified by comparison with ¹H & ¹³C NMR spectra of each corresponding isomer.

To a solution of 2-iodoaniline (800.4 mg, 3.654 mmol) was dissolved in mixed ethynyltrimethylsilane (607 μ L, 4.385 mmol, 1.2 equiv), PdCl₂(PPh₃)₂ (256.5 mg, 0.365 mmol, 10 mol%), CuI (69.6 mg, 0.365 mmol, 10 mol%) and Et₃N (28.1 mL, 0.13 M) were added. The

¹⁴ Cacchi, S.; Fabrizi, G.; Lamba, D.; Marinelli, F.; Parisi, L. M. *Synthesis* **2003**, 728.

reaction mixture was stirred at reflux for 3 h. The reaction mixture was diluted with water and extracted with CH_2Cl_2 (3 times). The resulting organic phase was washed with brine and dried over MgSO₄. The resulting mixture was filtered, and the filtrate was concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (EtOAc : *n*-Hexane = 1:20) to give the corresponding product **A** (520.8 mg, 75 %) as a yellow oil.

To a solution of **A** (520.8 mg, 2.751 mmol, 1 equiv) in MeOH (13.8 mL, 0.2 M) was added K_2CO_3 (760.4 mg, 5.502 mmol, 2 equiv). After being stirred at room temperature for 16 h, the reaction mixture was poured into water and then the product was extracted with CH_2Cl_2 (3 times). The combined organic layer was washed with brine, dried over MgSO₄, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (EtOAc : *n*-Hexane = 1:10) to afford the corresponding product **B** (315.6 mg, 98%) as a yellow oil.

To a solution of **B** (1 equiv) in DMF (0.25 M) were added $Ar^{1}I$ (1equiv), $PdCl_{2}(PPh_{3})_{2}$ (1 mol%), CuI (1 mol%), and Et₃N (8 equiv). After being stirred at 50 °C for 8-12 h, the reaction mixture was poured into water and then the product was extracted with $CH_{2}Cl_{2}$ (three times). The combined organic layer was washed with brine, dried over MgSO₄, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel to afford the corresponding product **C**.

To a solution of **C** (1 equiv) in pyridine (0.2 M) was added *p*-TsCl (1.1 equiv) at 0 °C. After being stirred at 25 °C for 2 hours, the reaction mixture was poured into water and then the product was extracted with CH_2Cl_2 (three times), dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel to give the corresponding product **D**.

To a solution of **D** (1 equiv) in MeCN (0.13 M) were added subsequently Cs_2CO_3 (2.2 equiv), $Pd(PPh_3)_4$ (5 mol%), and Ar^2I (2.2 equiv). After being stirred at 100 °C for 1 h, the reaction mixture was cooled to room temperature. The reaction mixture was poured into water and then the product was extracted with CH_2Cl_2 (three times), dried over MgSO₄, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel to give the corresponding product **3** or **3'** (or the mixture of **3** or **3'** and **2**).

N-Ts-3-(4-Methoxyphenyl)-2-(4-(trifluoromethyl)phenyl)indole (31)

a white solid (EtOAc : n-Hexane = 1 : 8).

¹H NMR (CDCl₃, 400 MHz) δ 2.32 (s, 3H), 3.77 (s, 3H), 6.79 (d, *J* = 8.4 Hz, 2H), 6.97 (d, *J* = 8.8 Hz, 2H), 7.08 (d, *J* = 7.6 Hz, 2H), 7.30 (t, *J* = 7.2 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.39 (d, *J* = 8.4 Hz, 2H), 7.41 (t, *J* = 7.6 Hz, 1H), 7.45 (d, *J* = 7.6 Hz, 1H), 7.54 (d, *J* = 8.0 Hz, 2H), 8.39 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 21.5, 55.2, 113.9, 116.4, 120.2, 124.09, 124.10 (q, *J* = 270.6 Hz), 124.2 (q, *J* = 3.7 Hz), 124.4, 125.6, 125.9, 126.8, 129.4, 130.1 (q, *J* = 32.2 Hz), 130.7,

130.9, 132.2, 134.7, 134.9, 135.0, 137.4, 144.8, 158.8. HREIMS m/z 544.1163 (M+Na)⁺, calcd for C₂₉H₂₂F₃NNaO₃S 544.1165.

N-Ts-2-(4-Methoxyphenyl)-3-(4-(trifluoromethyl)phenyl)indole (3l') & *N*-Ts-2-(4-Methoxyphenyl)indole (2b)

3l' : **2b** = 9.6 : 1, a white solid (EtOAc : *n*-Hexane = 1 : 5).

¹H NMR (CDCl₃, 400 MHz) δ 2.28 (s, 3H of **2b**), 2.32 (s, 3H of **3l'**), 3.85 (s, 3H of **3l'**), 3.89 (s, 3H of **2b**), 6.48 (s, 1H of **2b**), 6.82 (d, *J* = 8.4 Hz, 2H of **3l'**), 6.95 (d, *J* = 8.4 Hz, 2H of **2b**), 7.03 (d, *J* = 7.6 Hz, 2H of **2b**), 7.09 (d, *J* = 8.0 Hz, 2H of **3l'**), 7.12 (d, *J* = 8.4 Hz, 2H of **3l'**), 7.20-7.50 (m, 7H of **2b**), 7.21 (d, *J* = 8.4 Hz, 2H of **3l'**), 7.30 (t, *J* = 7.6 Hz, 1H of **3l'**), 7.33 (d, *J* = 8.0 Hz, 2H of **3l'**), 7.43 (t, *J* = 7.6 Hz, 1H of **3l'**), 7.44 (d, *J* = 8.8 Hz, 1H of **3l'**), 7.48 (d, *J* = 8.8 Hz, 2H of **3l'**), 8.30 (d, *J* = 8.0 Hz, 1H of **2b**), 8.42 (d, *J* = 8.0 Hz, 1H of **3l'**). ¹³C NMR (CDCl₃, 100 MHz) δ 21.5, 21.6, 55.2, 55.3, 112.9, 113.0, 116.3, 116.7, 119.4, 120.5, 122.3, 122.8, 124.1 (q, *J* = 270.6 Hz), 124.2, 124.3, 124.5, 125.1 (q, *J* = 3.7 Hz), 125.3, 126.8, 126.9, 128.7 (q, *J* = 32.3 Hz), 129.1, 129.2, 129.3, 129.7, 130.0, 130.6, 131.6, 133.4, 135.4, 136.9, 137.1, 137.5, 144.5, 144.7, 160.0. (5 carbons are missing due to overlapping). HREIMS (**3l'**) *m*/*z* 544.1163 (M+Na)⁺, calcd for C₂₉H₂₂F₃NNaO₃S 544.1165. HREIMS (**2b**) *m*/*z* 400.0983 (M+Na)⁺, calcd for C₂₂H₁₉NNaO₃S 400.0978.

N-Ts-3*-p*-Tolyl-2-(4-(trifluoromethyl)phenyl)indole (3m) & *N*-Ts-2-(4-(Trifluoromethyl)phenyl)indole (2)

3m : 2 = 1 : 0.3, a beige solid (CH₂Cl₂ : *n*-Hexane = 1 : 1).

¹H NMR (CDCl₃, 400 MHz) δ 2.28 (s, 3H of **2**), 2.30 (s, 3H of **3m**), 2.31 (s, 3H of **3m**), 6.60 (s, 1H of **2**), 6.93 (d, *J* = 8.0 Hz, 2H of **3m**), 7.05 (d, *J* = 9.0 Hz, 2H of **3m**), 7.07 (d, *J* = 8.8 Hz, 2H of **3m**), 7.04-7.09 (m, 2H of **2**), 7.29 (t, *J* = 7.2 Hz, 1H of **3m**), 7.30 (d, *J* = 8.4 Hz, 2H of **3m**), 7.24-7.27 (m, 3H of **2**), 7.36-7.40 (m, 2H of **2**), 7.39 (d, *J* = 8.0 Hz, 2H of **3m**), 7.43 (t, *J* = 8.2 Hz, 1H of **3m**), 7.45 (d, *J* = 7.2 Hz, 1H of **3m**), 7.53 (d, *J* = 7.6 Hz, 2H of **3m**), 7.63 (d, *J* = 8.4 Hz, 2H of **2**), 7.68 (d, *J* = 8.8 Hz, 2H of **2**), 8.31 (d, *J* = 8.4 Hz, 1H of **2**), 8.39 (d, *J* = 8.0 Hz, 1H of **3m**). ¹³C NMR (CDCl₃, 100 MHz) δ 21.2, 21.49, 21.52, 115.0, 116.3, 116.7, 120.3, 121.0, 124.1 (q, *J* = 270.6 Hz), 124.2 (q, *J* = 3.7 Hz), 124.4, 124.5 (q, *J* = 3.7 Hz), 124.6, 125.4, 125.6, 126.2, 126.7, 126.8, 128.9,

129.1, 129.3, 129.4, 129.6, 130.1 (q, J = 32.3 Hz), 130.37, 130.4 (q, J = 33.0 Hz), 130.6, 132.2, 134.2, 134.87, 134.92, 136.0, 137.1, 137.5, 138.5, 140.4, 144.8 (4 carbons are missing due to overlapping). HREIMS (**3m**) m/z 528.1213 (M+Na)⁺, calcd for C₂₉H₂₂F₃NNaO₂S 528.1216. HREIMS (**2**) m/z 438.0751 (M+Na)⁺, calcd for C₂₂H₁₆F₃NNaO₂S 438.0746.

N-Ts-2-*p*-Tolyl-3-(4-(trifluoromethyl)phenyl)indole (3m')

a light yellow solid ($CH_2Cl_2 : n$ -Hexane = 1 : 2), mp 188-190 °C.

¹H NMR (CDCl₃, 400 MHz) δ 2.31 (s, 3H), 2.39 (s, 3H), 7.08 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 6.8 Hz, 4H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.29 (t, *J* = 7.4 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.42 (t, *J* = 7.6 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 1H), 7.47 (d, *J* = 8.4 Hz, 2H), 8.42 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 21.47, 21.54, 116.3, 119.4, 122.9, 124.1 (q, *J* = 271.3 Hz), 124.3, 125.1 (q, *J* = 3.6 Hz), 125.3, 126.9, 127.3, 128.3, 128.8 (q, *J* = 32.3 Hz), 129.3, 129.8, 130.0, 131.8, 135.3, 136.8, 137.1, 137.7, 138.8, 144.7. HREIMS *m/z* 528.1214 (M+Na)⁺, calcd for C₂₉H₂₂F₃NNaO₂S 528.1216.

N-Ts-2-Phenyl-3-(4-(trifluoromethyl)phenyl)indole (3n') & *N*-Ts-2-Phenylindole (2a)

55% (**3n'** : **2a** = 1 : 0.6), a white solid (EtOAc : *n*-Hexane = 1 : 10).

Representative signals corresponding to **3n'**: ¹H NMR (CDCl₃, 400 MHz) δ 2.33 (s, 3H), 7.10 (d, J = 8.0 Hz, 2H), 7.20 (d, J = 6.4 Hz, 2H), 7.25 (d, J = 7.6 Hz, 2H), 7.64 (d, J = 8.0 Hz, 1H), 8.45 (d, J = 8.4 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 21.6, 116.2, 119.5, 123.1, 124.3, 125.1 (q, J = 3.8 Hz), 125.4, 126.9, 128.7, 128.8, 129.4, 129.6, 130.1, 132.0, 135.4, 136.7, 137.1, 137.5, 144.8 (3 carbons are missing due to overlapping). EIMS (**3n'**) m/z 491 (M⁺), 336, 267, 239, 155, 134, 91. EIMS (**2a**) m/z 347 (M⁺), 208, 192, 165, 139, 115, 91, 65.

Spectral data of **3n'** were consistent with data reported in the literature.¹

Mechanistic Studies

1) Reaction of 2a under the Standard Reaction Conditions

To a solution of **2a** (25.0 mg, 0.0715 mmol, 1 equiv) in ClCH₂CH₂Cl (1.4 mL, 0.05 M) in pressure tube were added Pd(OAc)₂ (0.8 mg, 0.00358 mmol, 5 mol %) and CuCl₂ (19.2 mg, 0.143 mmol, 2 equiv). After the resulting mixture was stirred at 150 °C for 24 h, the reaction mixture was concentrated *in vacuo*. The residue was purified by column chromatography on silica gel to afford the mixture of **2a** and Cl-**2a** (25.3 mg, 99%, **2a** and Cl-**2a** = 1:0.3).

¹H NMR (CDCl₃, 400 MHz) δ 2.28 (s, 3H of **2a**), 2.31 (s, 3H of Cl-**2a**), 6.54 (s, 1H of **2a**), 7.03 (d, *J* = 7.6 Hz, 2H of **2a**), 7.07 (d, *J* = 8.0 Hz, 2H of Cl-**2a**), 7.24-7.28 (m, 1H of **2a** & 2H of Cl-**2a**), 7.27 (d, *J* = 8.4 Hz, 2H of **2a**), 7.33-7.38 (m, 1H of **2a** & 1H of Cl-**2a**), 7.43-7.53 (m, 6H of **2a** & 7H of Cl-**2a**), 8.31 (d, *J* = 8.4 Hz, 1H of **2a**), 8.35 (d, *J* = 8.8 Hz, 1H of Cl-**2a**). ¹³C NMR (CDCl₃, 100 MHz) δ 21.5, 21.6, 113.6, 116.4, 116.6, 118.7, 120.7, 124.3, 124.7, 124.8, 126.1, 126.8, 126.9, 127.47, 127.52, 128.6, 129.2, 129.4, 130.3, 130.5, 131.4, 132.4, 134.6, 136.3, 138.2, 142.1, 144.5, 145.0 (6 carbons are missing due to overlapping). EIMS (**2a**) *m/z* 347 (M⁺), 208, 192, 177, 165, 139, 115, 91, 77, 65, 51. EIMS (Cl-**2a**) *m/z* 381 (M⁺), 267, 226, 199, 190, 164, 155, 91, 65, 51.

Spectral data of $2a^{1,3}$ and Cl- $2a^{15}$ were consistent with data reported in the literature.

 ¹⁵ (a) Yamashita, M.; Noro, T.; Iida, A. *Tetrahderon Lett.* 2013, *54*, 6848. (b) Shen, Z.; Lu, X. *Adv. Synth. Catal.* 2009, *351*, 3107. (c) Dalton, L.; Humphrey, G. L.; Cooper, M. M.; Joule, J. A. *J. Chem. Soc., Perkin Trans.1:* 1983, *10*, 2417.

¹H NMR Spectrum of **2a** & Cl-**2a** Mixture (CDCl₃, 400 MHz)

¹³C NMR Spectrum of **2a** & Cl-**2a** Mixture (CDCl₃, 100 MHz)

2) Crossover Experiments

To a solution of **1b** and **1h** (each 0.0361 mmol, 0.5 equiv) in ClCH₂CH₂Cl (1.4 mL, 0.05 M) in pressure tube were added Pd(OAc)₂ (0.8 mg, 0.00361 mmol, 5 mol %) and CuCl₂ (19.4 mg, 0.144 mmol, 2 equiv). After the resulting mixture was stirred at 150 °C for 24 h, the reaction mixture was concentrated *in vacuo*. ¹H NMR of each crude mixture was taken first and then a few spots observed in TLC were separated by column chromatography on silica gel. ¹H NMR and GC-MS of each portion were taken to identify the structure of each compound.

3) Addition of Olefins

To a solution of **1n** (26.0 mg, 0.0527 mmol, 1 equiv) in $ClCH_2CH_2Cl$ (1.1 mL, 0.05 M) in pressure tube were added olefin (0.105 mmol, 2 equiv), $Pd(OAc)_2$ (0.6 mg, 0.00264 mmol, 5 mol %), and $CuCl_2$ (14.2 mg, 0.105 mmol, 2 equiv). After the resulting mixture was stirred at 150 °C for 24 h, the reaction mixture was concentrated *in vacuo*. ¹H NMR of each crude mixture was taken first and then a few spots observed in TLC were separated by column chromatography on silica gel. ¹H NMR and GC-MS of each portion were taken to identify the structure of each compound.

Proposed Mechanism for the Cu(II)-Mediated Reaction in the Absence of Pd(II) Catalyst (Entries 23-24 in Table S1)

Copies of NMR Spectra

N-(2-(2-(4-Methoxyphenyl)-2-(4-(trifluoromethyl)phenyl)vinyl)phenyl)-4-methylbenzenesulfonamide (11)

4-Methyl-N-(2-(2-p-tolyl-2-(4-(trifluoromethyl)phenyl)vinyl)phenyl)benzenesulfonamide (1m)

N-Ts-2-Phenylindole (2a) & N-Ts-3-Phenylindole (3a)

N-Ts-2-(4-Methoxyphenyl)indole (2b), *N*-Ts-3-(4-Methoxyphenyl)indole (3b), & *N*-Ts-3-Chloro-2-(4-methoxyphenyl)indole (Cl-2b)

N-Ts-2-p-Tolylindole (2), N-Ts-3-p-Tolylindole (3), & N-Ts-3-Chloro-2-p-tolylindole (Cl-2)

N-Ts-2-*m*-Tolylindole (2c) & *N*-Ts-3-*m*-Tolylindole (3c)

N-Ts-2-o-Tolylindole (2) & N-Ts-3-o-Tolylindole (3)

N-Ts-2-(4-Chlorophenyl)indole (2d) & *N*-Ts-3-(4-Chlorophenyl)indole (3d)

N-Ts-2-(4-Nitrophenyl)indole (2e)

N-Ts-2-(3-(Trifluoromethyl)phenyl)indole

Methyl N-Ts-Indole-2-carboxylate (2f)

N-Ts-2-*n*-Hexylindole (2g)

N-Ts-5-Methyl-2-phenylindole (2h) & *N*-Ts-5-Methyl-3-phenylindole (3h)

N-Ts-5-Chloro-2-phenylindole (2) & *N*-Ts-5-Chloro-3-phenylindole (3)

N-Ts-6-Methyl-2-phenylindole (2), *N*-Ts-6-Methyl-3-phenylindole (3), & *N*-Ts-3-Chloro-6methyl-2-phenylindole (Cl-2)

N-Ts-6-Chloro-2-phenylindole (2j) & N-Ts-6-Chloro-3-phenylindole (3j)

N-Ts-6-Nitro-2-phenylindole (2k) & *N*-Ts-6-Nitro-3-phenylindole (3k)

N-Ts-3-(4-Methoxyphenyl)-2-(4-(trifluoromethyl)phenyl)indole (3l)

N-Ts-3-*p*-Tolyl-2-(4-(trifluoromethyl)phenyl)indole (3m)

N-Ts-3-Phenyl-2-(4-(trifluoromethyl)phenyl)indole (3n) & *N*-Ts-2-Phenylindole (2a)

N-Ts-2,3-Diphenylindole

N-Ts-2-Methyl-3-phenylindole (30)

N-Ts-7,8-Dihydro-6*H*-benzo[6,7]oxepino[4,5-*b*]indole (3p)

N-Ts-Spiro(chroman-4,2'-indoline) (4)

Pulse Sequence: COSY Solvent: cdcl3 Ambient temperature Operator: vnm78 File: R222-2-cosy Nercury-40088 "mercury" Relax. delay 1.301 sec Acta. time 0.166 sec 2D Vidth 6383.0 Hz 2 repetitions 128 increments 085RVK H1.398.4053629 MHz DATA PROCESSING Sine Dell 0.050 sec Fi size 2048 x 2048 Total time 7 min, 40 sec

DEUTERIUM OBSERVE STANDARD PARAMETERS

S54

Authentic Samples of 2-Aryl-3-aryl'-substituted Indoles (3 and 3')

N-Ts-3-(4-Methoxyphenyl)-2-(4-(trifluoromethyl)phenyl)indole (3l)

N-Ts-2-(4-Methoxyphenyl)-3-(4-(trifluoromethyl)phenyl)indole (3l') & *N*-Ts-2-(4-Methoxyphenyl)indole (2b)

N-Ts-3*-p*-Tolyl-2-(4-(trifluoromethyl)phenyl)indole (3m) & *N*-Ts-2-(4-(Trifluoromethyl)phenyl)indole (2)

N-Ts-2-*p*-Tolyl-3-(4-(trifluoromethyl)phenyl)indole (3m')

N-Ts-2-Phenyl-3-(4-(trifluoromethyl)phenyl)indole (3n') & *N*-Ts-2-Phenylindole (2a)

