ELECTRONIC SUPLEMENTARY INFORMATION

Simultaneous Introduction of Trifluoromethyl and λ^6 -Pentafluorosulfanyl Substituents using SF₅-C=C-CF₃ as Dienophile

Blazej Duda* and Dieter Lentz*

Freie Universität Berlin, Institut für Chemie und Biochemie, Fabeckstraße 34-36, 14195 Berlin, Germany

> Email: blazejduda@gmail.com dieter.lentz@fu-berlin.de

General remarks

All reagents from commercial suppliers were used without further purification. All solvents were freshly distilled from appropriate drying agents before use. Volatile reagents were transferred using a glass vacuum line system. Reactions were carried out under atmosphere of dry argon. TLC/PTLCs were performed with silica gel 60 F₂₅₄ plates. Column chromatography was carried out using silica gel 60. The NMR spectra were recorded on JEOL ECS 400 in CDCl₃; ¹H-NMR (Me₄Si) at 400 MHz, ¹³C-NMR (Me₄Si) at 100 MHz and ¹⁹F-NMR (CFCl₃) at 376 MHz. El mass spectra were recorded on a MAT 711 (Varian MAT Bremen). ESI mass spectra were recorded on an Agilent 6210 ESI-TOF, Agilent Technologies.

Procedure for the preparation of SF₅-C=C-CF₃

3,3,3-Trifluoropropyne (22 mmol) and SF₅Br (22 mmol) were condensed into a 100 mL flask equipped with a Young-valve using a glass vacuum line. The valve was closed and the reaction mixture was kept at 80 °C for 2 days. The product was isolated and purified by fractional condensation under vacuum through traps kept at -78 and -196 °C. The product was collected in the -78 °C trap as a mixture of the *E* and *Z* alkenes **1a-b** in a ratio of 1:2. **1a-b** was slowly evaporated under vacuum and passed over KOH pellets in a U-tube kept at 90 °C. The alkyne **2** (2.65 g, 65 %) was collected in the trap kept at -196 °C.

¹³C NMR (100 MHz, CDCl₃) δ_C 63.2 (q, ²*J*_{CF} = 57 Hz, *C*-CF₃), 83.5 (quintet, ²*J*_{CF(eq)} = 40 Hz, F₅S-*C*), 112.9 (q, ¹*J*_{CF} = 262 Hz, -*C*F₃); ¹⁹F NMR (376 MHz) δ 80.8 (B₄-part, d, ²*J*_{F(eq)F(ax)} = 161 Hz, 4F), 68.2 (A-part, 8 lines, 1F), -52.5 (s, CF₃).

General procedure for the synthesis of 4a-h

Diene **3a-h** (1 mmol) was dissolved in dry DCM (3 mL) in a round-bottomed flask equipped with a Young valve. The reaction mixture was then cooled with liquid nitrogen and evacuated using a glass vacuum line system. Subsequently, the alkyne **2** (1.2 mmol) was condensed to the reaction mixture. After allowing to warm to room temperature within 15-20 min the reaction mixture was stirred at ambient temperature. All volatile materials were removed under reduced pressure. The crude product was purified by flash column chromatography using DCM/*n*-pentane (1:2 *v*/*v*) as eluent to obtain pure **4a-h**.

4a: solidified oil; Yield (100%); ¹H NMR (400 MHz, CDCl₃) δ_H 7.30 (m, 2H), 7.55 (m, 6H), 7.83 (AB, J_{AB} = 8 Hz, 1H, B-part), 7.98 (d, *J* = 8 Hz, 2H), 8.04 (AB, J_{AB} = 8 Hz, 1H, A-Part), 8.09 (d, *J* = 8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ_C 93.7, 94.8, 120.6 (q, ¹J_{CF} = 273 Hz), 123.6, 123.9, 126.9, 128.3, 128.4, 128.8, 129.8, 133.1, 134.2, 146.9 (qquintet, ²J_{CF} = 35 Hz, ³J_{CF}(eq) = 4 Hz), 147.7, 148.4, 173.0 (quintetq, ²J_{CF}(eq) = 18 Hz, ³J_{CF} = 4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ_F 78.8 (9 lines, A-part), 71.9 (dq, ²J_F(eq)_F(ax) = 150 Hz, ⁵J_F(eq)_F = 12 Hz, B4-part), -57.2 (quintet, ⁵J_{FF}(eq) = 12 Hz); HRMS (ESI) [M+Na]⁺ C₂₃H₁₄F₈SONa found: 513.0548, calcd: 513.0529.

¹H NMR of **4a**.

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <th1</th>
 <th1</th>
 <th1</th>
 <th1</th>

¹³C NMR of 4a

130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -12 fl(ppm)

¹⁹F NMR of **4a**

4b: colorless oil; Yield (98%); ¹H NMR (400 MHz, CDCl₃) δ_H 5.68 (br s, 1H), 5.76 (br s, 1H), 7.27 – 7.30 (ABXY, $J_{AB} = 5$ Hz, $J_{AX} = J_{BY} = 2$ Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ_C 84.2 (q, ³ $J_{CF} = 3$ Hz), 86.5 (quintet, ³ $J_{CF(eq)} = 4$ Hz), 120.4 (q, ¹ $J_{CF} = 269$ Hz), 143.2, 143.3, 144.4 (qquintet, ² $J_{CF} = 39$ Hz, ³ $J_{CF(eq)} = 5$ Hz), 169.5 (quintetqd, ³ $J_{CF(eq)} = 23$ Hz, ³ $J_{CF} = 5$ Hz, ² $J_{CF(ax)} = 2$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ_F 77.5 (9-lines, A-part), 65.6 (dq, ² $J_{F(eq)F(ax)} = 152$ Hz, ⁵ $J_{F(eq)F} = 10$ Hz, B₄-part), -62.8 (quintet, ⁵ $J_{FF(eq)} = 10$ Hz); HRMS (ESI) [M-H]⁻ C₇H₄F₈SO found: 286.9835, calcd: 286.9837.

¹H NMR of **4b**

175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 fl(ppm)

¹³C NMR of 4b

17 80 77 75	35	<u>1</u> 6	14	11	60	08	76	75	73	72	71	20	69	68
777	22	289/	00	99	-66	-66	-65	-65	-65	-65	-65	-65	-65	L65.

90 80 70 50 40 30 20 10 0 f1 (ppm) -20 -30 60 -10 -40 -50

¹⁹F NMR of **4b**

4c: colorless oil; Yield (78%); ¹H NMR (400 MHz, CDCl₃) δ_H 1.80 (quintet, ⁵*J*_{HF(eq)} = 1 Hz, 3H), 1.85 (q, ⁵*J*_{HF} = 1 Hz, 3H), 6.96 – 7.00 (AB, *J*_{AB} = 6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ_C 16.1 (q, ⁴*J*_{CF} = 2 Hz), 17.1 (quintet, ⁴*J*_{CF(eq)} = 3 Hz), 92.5 (q, ³*J*_{CF} = 1 Hz), 94.7 (quintet, ⁴*J*_{CF(eq)} = 2 Hz), 120.7 (q, ¹*J*_{CF} = 271 Hz), 147.4, 147.9, 148.2 (qquintet, ²*J*_{CF} = 35 Hz, ³*J*_{CF(eq)} = 4 Hz), 171.8 (quintetq, ³*J*_{CF(eq)} = 24 Hz, ³*J*_{CF} = 6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ_F 79.6 (9-lines, A-part), 68.5 (dq, ²*J*_{F(eq)F(ax)} = 150 Hz, ⁵*J*_{F(eq)F} = 10 Hz, B₄-part), - 62.3 (quintet, ⁵*J*_{FF(eq)} = 10 Hz); HRMS (ESI) [M+H]⁺ C₉H₉F₈SO found: 317.4226, calcd: 317.4220.

¹H NMR of 4c

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

4d: colorless oil; Yield (98% without correction for the dicyclopentadiene impurity); ¹H NMR (400 MHz, CDCl₃) δ_H 2.09 (d, ²*J*_{HH} = 7 Hz, C-H_A, 1H); 2.37 (dquintet, ²*J*_{HH} = 7 Hz, ⁵*J*_{HF(eq)} = 1 Hz, C-H_B, 1H), 3.92 (br s, 1H), 4.11 (br s, 1H), 6.97 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ_C 52.4, 56.2 (quintet, ³*J*_{CF(eq)} = 4 Hz), 71.5, 121.1 (q, ¹*J*_{CF} = 270 Hz), 141.9, 142.5, 143.4 (qquintet, ²*J*_{CF} = 38 Hz, ³*J*_{CF(eq)} = 5 Hz), 168.3 (quintetq, ²*J*_{CF(eq)} = 15 Hz, ³*J*_{CF} = 5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ_F 80.1 (A-Part, 9 lines), 64.7 (dq, ²*J*_{F(eq)F(ax)} = 151 Hz, ⁵*J*_{F(eq)F} = 10 Hz, B4-Part), -62.9 (quintet, ⁵*J*_{FF(eq)} = 10 Hz); HRMS (EI, 80 eV): [M]⁺⁺ C₈H₆F₈S calcd. 286.0063, found 286.0070.

¹H NMR of **4d**, impurity signals are due to the Diels-Alder dimer of cyclopentadiene (dicyclopentadiene, tricyclo[5,2,1,0^{2,6}]deca-3,8-diene).

170 165 160 155 150 145 140 135 130 125 120 115 110 f1 (ppm) 105 100 95 90 85 80 75 70 65 60 55 50

¹³C NMR of 4d

90

80

60

70

50

40

30

20

 $\begin{bmatrix} 80.39\\ 64.64\\ 64.67\\ 64.97\\ 64.92\\ 64.67\\ 64.92\\ 64.67\\ 64.61\\ 64.57$

10 0 f1 (ppm) -10

-20

-30

-40

-50

-60

-70

12

-80

Yellowish oil; Yield (98%); HRMS (EI, 80 eV): [M]^{+•} C₁₃H₁₆F₈S; calcd: 356.2126; found: 356.2122.

endo-**4e**: ¹H NMR (400 MHz, CDCI₃) δ_H 1.05 (d, ³*J*_{HH} = 7 Hz, 3H), 1.34 (q, ⁴*J*_{HF} = 2 Hz, 3H), 1.42 (quintet, ⁴*J*_{HF(eq)} = 3 Hz, 3H), 1.80 (s, 3H, CH₃), 1.85 (s, 3H, CH₃), 2.52 (qquintet, ³*J*_{HH} = 6 Hz, ⁵*J*_{HF(eq)} = 1 Hz, 1H); ¹³C NMR (100 MHz, CDCI₃) δ_C 9.6, 11.37, 11.38, 12.4 (q, ⁴*J*_{CF} = 3 Hz), 14.1 (quintet, ⁴*J*_{CF(eq)} = 4 Hz), 63.7, 66.5, 80.5, 121.8 (q, ¹*J*_{CF} = 271 Hz), 141.1, 141.5, 143.0 (qquintet, ²*J*_{CF} = 34 Hz, ³*J*_{CF(eq)} = 5 Hz), 168.2 (quintetqd, ²*J*_{CF(eq)} = 16 Hz, ³*J*_{CF} = 5 Hz, ²*J*_{CF(ax)} = 2 Hz); ¹⁹F NMR (376 MHz, CDCI₃) δ_F 82.4 (quintet, ²*J*_{F(ax)F(eq)} = 150 Hz), 69.7 (dq, ²*J*_{F(eq)F(ax)} = 150 Hz, ⁵*J*_{F(eq)F} = 14 Hz), -59.7 (quintet, ⁵*J*_{FF(eq)} = 15 Hz).

exo-**4e**: ¹H NMR (400 MHz, CDCl₃) δ_H 0.76 (d, ³*J*_{HH} = 7 Hz, 3H), 1.33 (q, ⁴*J*_{HF} = 2 Hz, 3H), 1.40 (quintet, ⁴*J*_{HF(eq)} = 3 Hz, 3H), 1.66 (s, 6H), 2.44 (q, ³*J*_{HH} = 6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ_C 10.0, 10.90, 10.92, 11.8 (q, ⁴*J*_{CF} = 3 Hz), 13.6 (quintet, ⁴*J*_{CF(eq)} = 4 Hz), 63.8, 66.2, 78.7, 121.9 (q, ¹*J*_{CF} = 271 Hz), 134.2, 137.7, 147.7 (qquintet, ²*J*_{CF} = 34 Hz, ³*J*_{CF(eq)} = 5 Hz), 172.3 (quintetqd, ²*J*_{CF(eq)} = 16 Hz, ³*J*_{CF} = 5 Hz, ²*J*_{CF(ax)} = 2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ_F 82.3 (quintet, ²*J*_{F(ax)F(eq)} = 150 Hz), 70.5 (dq, ²*J*_{F(eq)F(ax)} = 150 Hz, ⁵*J*_{F(eq)F} = 14 Hz), -59.4 (quintet, ⁵*J*_{FF(eq)} = 15 Hz).

¹H NMR of **4e** indicating the C-H group

¹⁹F NMR of **4e**

18.75 -58.80 -58.85 -58.90 -58.95 -59.00 -59.00 -59.10 -59.10 -59.20 -59.20 -59.30 -59.35 -59.40 -59.45 -59.50 -59.60 -59.65 -59.70 -59.75 -59.80 -59.85 -59.90 -59.95 -60.00 -60.05 -60.15 -11 (ppm)

 $^{19}\mathsf{F}$ NMR of 4e indicating the $-CF_3$ groups of both regioisomers

4f: Colorless oil; Yield (65% due to incomplete conversion); ¹H NMR (400 MHz, CDCl₃) δ_H 1.501 (s, CH₃, 3H), 1.504 (s, CH₃, 3H), 4.37 (br s, 1H), 4.55 (br s, 1H), 7.05 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ_C 18.2, 18.3, 52.4, 55.7, 101.9, 120.9 (q, ¹*J*_{CF} = 270 Hz), 142.0, 142.6, 143.1 (quintet, ²*J*_{CF} = 36 Hz, ³*J*_{CF(eq)} = 4 Hz), 158.9, 167.6 (quintetq, ²*J*_{CF(eq)} = 18 Hz, ³*J*_{CF} = 4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ_F 80.2 (9-lines, A-part), 65.2 (dq, ²*J*_{F(eq)F(ax)} = 150 Hz, ⁵*J*_{F(eq)F} = 11 Hz, B4-part), -62.5 (quintet, ⁵*J*_{FF(eq)} = 11 Hz); HRMS (EI, 80 eV): [M]⁺⁺ C₁₁H₁₀F₈S; calcd: 326.0375; found: 326.0367.

¹H NMR of 4f

¹⁹F NMR of 4f

4g: yellowish oil; Yield (97%); ¹H NMR (400 MHz, CDCl₃) δ_H 1.55 (m, 4H), 4.06 (br s, 1H), 4.29 (quintet, ⁴*J*_{HFeq} = 2 Hz, 1H), 6.42 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ_C 24.0, 24.2, 39.2, 41.7 (quintet, ³*J*_{CF(eq)} = 4 Hz), 120.8 (q, ¹*J*_{CF} = 272 Hz), 133.6, 133.8, 134.9 (qquintet, ²*J*_{CF} = 35 Hz, ³*J*_{CF(eq)} = 3 Hz), 158.2 (quintetq, ³*J*_{CF(eq)} = 17 Hz, ³*J*_{CF} = 3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ_F 81.4 (9-lines, A-part), 63.7 (dq, ²*J*_{F(eq)F(ax)} = 152 Hz, ⁵*J*_{F(eq)F} = 10 Hz, B₄-part), -61.8 (quintet, ⁵*J*_{FF(eq)} = 10 Hz); HRMS (EI, 80 eV): [M]⁺⁺ C₉H₈F₈S; calcd: 300.0219; found: 300.0224.

¹H NMR of **4g**

¹⁹F NMR of **4g**

Diene **3h** (1 mmol, 100 mg) was dissolved in dry toluene (2 mL) in a round-bottomed flask with a young valve. The reaction mixture was then cooled with liquid nitrogen and evacuated using a glass vacuum line system. Subsequently, the alkyne **2** (1.2 mmol, 275 mg) was condensed to the reaction mixture and slowly warmed to room temperature within 10 min. After 24 h of stirring at 110°C all volatile materials were removed under reduced pressure. The crude product was purified by fractional condensation under vacuum through traps kept at -30, -78 and -196 °C. The product **4h** (yield 37%, 0.41 mmol, 128 mg, due to low conversion) was collected in the -30 °C trap.

4h: Colorless oil; ¹H NMR (CDCl₃, 400 MHz) δ_H 0.71 (dd, ²*J*_{HH} = 7 Hz, ³*J*_{HH} = 4 Hz, 1H), 0.74 (dd, ²*J*_{HH} = 7 Hz, ³*J*_{HH} = 4 Hz, 1H) 1.49 (m, 1H), 1.58 (m, 1H), 4.08 (q, ⁴*J*_{HF} = 2 Hz, 1H), 4.31 (quintet, ⁴*J*_{HF(eq)} = 2.0 Hz, 1H), 6.11 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ_C 17.1, 17.3, 17.6, 41.2 (q, ³*J*_{CF} = 3 Hz), 43.8 (quintet, ³*J*_{CF(eq)} = 3 Hz), 121.4 (q, ¹*J*_{CF} = 273 Hz), 129.8, 130.1, 140.1 (qquintet, ²*J*_{CF} = 34 Hz, ³*J*_{CF(eq)} = 2 Hz), 164.8 (quintetq, ²*J*_{CF(eq)} = 18 Hz, ³*J*_{CF(eq)} = 2 Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ_F 81.7 (9 lines, A-part, 1F), 64.6 (dq, ²*J*_{F(eq)F(ax)} = 165 Hz, ⁵*J*_{F(eq)F} = 14 Hz, 4F, B₄-part), -61.7 (quintet, ⁵*J*_{FF(eq)} = 14 Hz, 3F); HRMS (EI, 80 eV): 312 [M⁺⁺] C₁₀H₈F₈S; calcd: 312.0219; found: 312.0213.

¹³C NMR of 4h

¹H-¹³C HMQC of **4h**

2*H*-pyran-2-on **3i** (1 mmol, 100 mg) was dissolved in dry toluene (2 mL) in a roundbottomed flask equipped with a young valve. The reaction mixture was then cooled with liquid nitrogen and evacuated using a glass vacuum line system. Subsequently, the alkyne **2** (1.2 mmol, 275 mg) was condensed to the reaction mixture and slowly warmed up to room temperature within 10 min. After 48 h of stirring at 120°C all volatile materials were removed under reduced pressure. The crude product was purified by flash column chromatography using *n*-pentane as eluent (Rf = 0,5) affording the pure benzene **4i** in 54% (0.56 mmol, 154 mg) yield due to low conversion.

4i: Colorless oil; ¹H NMR (CDCl₃, 400 MHz) δ_H 7.65 (t, ³*J*_{HH} = 7 Hz, 1H), 7.70 (t, ³*J*_{HH} = 7 Hz, 1H), 7.93 (d, ³*J*_{HH} = 8 Hz, 1H), 8.02 (d, ³*J*_{HH} = 8 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ_C 122.5 (q, ¹*J*_{CF} = 269 Hz), 126.5 (q, ²*J*_{CF} = 33 Hz), 129.2 (q, ³*J*_{CF} = 8 Hz), 129.9 (quintet, ³*J*_{CF(eq)} = 6 Hz) 132.1, 132.5, 151.1 (quintet, ²*J*_{CF(eq)} = 21 Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ_F 81.7 (9 lines, A-part, 1F), 68.6 (dq, ²*J*_{F(eq)F(ax)} = 149 Hz, ⁵*J*_{F(eq)F} = 18 Hz, 4F, B₄-part), -57.9 (quintet, ⁵*J*_{FF(eq)} = 18 Hz, 3F); HRMS (EI, 80 eV): 271 [M⁺⁺] C₇H₄F₈S; calcd: 271.9906; found: 271.9910.

¹H NMR of **4i**

¹H-¹³C HMQC of 4i

¹⁹F NMR of 4i

82.55 82.17 82.17 82.17 81.78 781.78 781.78 781.75 81.38 68.39 68.39 68.49 68.49 68.49 68.49 68.49 68.49 68.49 68.49 68.49 68.49 68.49 68.49 68.49 68.49 68.49 68.49 68.49 68.40 68.39 68.39 68.35 68.40 68.40 68.40 68.35 68.55 68.

¹⁹F-¹³C HMBC of **4i** (C-SF₅)

6, Dark-purple crystals, mp 221-225 °C; ¹H NMR (400 MHz, CDCl₃) δ_H 2.25 (s, 6H), 2.77 (s, 6H), 7.33 (m, 2H), 7.61 (dd, J = 7 Hz, J = 4 Hz, 2H); HRMS (ESI) [M+H]⁺ C₁₉H₁₇O found: 261.1269, calcd: 261.1264.

¹H NMR of 6

 ^1H NMR after 4h indicating the decomposition of ${\bf 6}$ in the solution

The *in situ* prepared compound **6** (2 mmol, 0.5 g) was dissolved in acetic anhydride (5 mL) in a round-bottomed flask equipped with a young valve. The reaction mixture was then cooled with liquid nitrogen and evacuated using a glass vacuum line system. Subsequently, the alkyne **2** (6 mmol, 1.3 g) was condensed to the reaction mixture and slowly warmed up to room temperature. After 24 h of stirring at 80°C the crude mixture was diluted with 50 mL of dichloromethane and extracted with water. The organic layer was dried over Na₂SO₄ for 1h, filtered off and concentrated on the rotary evaporator. The crude product was purified by column chromatography using *n*-pentane as eluent (Rf = 0.3) affording the pure fluoranthene **7** in 75% (1.5 mmol, 0.67 g) yield.

7, Yellowish crystals, Yield (75%), mp = 121-123 °C; ¹H NMR (CDCl₃, 400 MHz) δ 2.69 (s, 3H), 2.78 (s, 3H), 2.87 (q, ⁵*J*_{H-F} = 3 Hz, 3H), 2.92 (quintet, ⁵*J*_{H-F(eq)} = 1 Hz, 3H), 7.37 (d, ³*J*_{HH} = 8 Hz, 2H), 7.37 (d, ³*J*_{HH} = 8 Hz, 2H); ¹³C NMR (CDCl₃) δ 24.1 (q, ⁴*J*_{C-F} = 6 Hz), 24.7, 25.5, 25.7 (quintet, ⁴*J*_{C-F(eq)} = 7 Hz), 124.1 (q, ¹*J*_{C-F} = 277 Hz), 128.1, 128.9, 131.7, 132.3, 132.7 (qquintet, ²*J*_{C-F} = 28 Hz, ³*J*_{C-F(eq)} = 3 Hz), 133.5, 135.4, 143.4, 153.6 (quintetq, ²*J*_{C-F(eq)} = 14 Hz, ³*J*_{C-F} = 4 Hz); ¹⁹F NMR (CDCl₃) δ 85.4 (A-part, 8-lines, 1F), 74.2 (dq, B₄-part, *J*_{F(eq)F(ax)} = 144 Hz, ⁵*J*_{F(eq)F} = 24 Hz, 1F), -49.7 (quintet, ⁵*J*_{F-F(eq)} = 25 Hz, 3F); HRMS (EI, 80 eV): 452 [M⁺⁺] C₂₁H₁₆F₈S found: 452.0854, calcd: 452.0845.

2.93 2.91 2.88 2.87 2.88 2.87 2.86 2.69

7.81 7.80 7.79 7.79 7.74 7.41

¹⁹F NMR of **7**