Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Ruthenium-Catalyzed Cyclization of *N*-Carbamoyl Indolines with Alkynes: An Efficient Route to Pyrroloquinolinones

Ramasamy Manoharan and Masilamani Jeganmohan*

Department of Chemistry, Indian Institute of Science Education and Research, Pune 411021, India

Electronic Supplementary Information (ESI)

Table of Contents

Pages 2	Experimental Section
Pages 3 – 5	Optimization studies
Pages 6 – 9	Crystal structure of Compounds
Pages 10 – 34	Copies of ¹ H and ¹³ C NMR Spectra of all Compounds

Experimental section

General Procedure for the Preparation of Pyrroloquinolinones Catalyzed by Ruthenium Complex.

A 15-mL pressure tube with septum containing [{RuCl₂(p-cymene)}₂] (5.0 mol %), N-carbamoyl indolines **1** (100 mg), Adm-1-COOH (30 mol %), alkyne **2** (1.2 equiv) (if alkyne is solid) and AgSbF₆ (20 mol %) was evacuated and purged with nitrogen gas three times (AgSbF₆ was taken inside the glove box). To the tube were then added *tert*-amyl alcohol (3 ml) via syringe after that the reaction mixture was evacuated and purged with nitrogen gas three times (liquid alkynes were added at this stage via syringe). After that, the septum was taken out and immediately a screw cap was used to cover the tube under the nitrogen atmosphere and the reaction mixture stirred at room temperature for 5 minutes. Then, the reaction mixture was allowed to stir at 130 °C for 24 h. After cooling to ambient temperature, the reaction mixture was diluted with CH₂Cl₂, filtered through Celite and the filtrate was concentrated. The crude residue was purified through a silica gel column using hexanes and ethyl acetate as eluent to give pure product **3**.

General Procedure for the Aromatization of Pyrroloquinolinones.

A 15-mL pressure tube with septum containing pyrroloquinolinone **3aa** or **3ah** (50 mg) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (5.0 equiv) was evacuated and purged with nitrogen gas three times. To the tube was then added 1,4-dioxane (2.0 mL) via syringe after that the reaction mixture was evacuated and purged with nitrogen gas three times. After that, the septum was taken out and immediately a screw cap was used to cover the tube under the nitrogen atmosphere and the reaction mixture was stirred at room temperature for 5 minutes. Then, the reaction mixture was allowed to stir at 100 °C for 12 h. After cooling to ambient temperature, the reaction mixture was diluted with CH_2Cl_2 , and concentrated. The crude residue was purified through a silica gel column using hexanes and ethyl acetate as eluent to give pure aromatized product **4a** or **4b**.

Solvent Optimization.

S. No	Solvent	Base	Additive	Yield (%) ^b
		(30 mol %)	(20 mol %)	
1	DCE	Adm-1- COOH	AgSbF ₆	58
2	1,4-dioxane	Adm-1- COOH	AgSbF ₆	27
3	iso-PrOH	Adm-1- COOH	AgSbF ₆	20
4	<i>tert</i> -amyl alcohol	Adm-1- COOH	AgSbF ₆	79
5	1,2-dimethoxyethane	Adm-1- COOH	AgSbF ₆	32
6	THF	Adm-1- COOH	AgSbF ₆	15
7	t-BuOH	Adm-1- COOH	AgSbF ₆	17
8	Toluene	Adm-1- COOH	AgSbF ₆	NR
9	Acetonitrile	Adm-1- COOH	AgSbF ₆	NR
10	DMSO	Adm-1- COOH	AgSbF ₆	NR
11	DMF	Adm-1- COOH	AgSbF ₆	NR
12	<i>tert</i> -amyl alcohol	Adm-1- COOH	AgSbF ₆	45°

^{*a*}All reactions were carried out using **1** (100 mg), alkynes **2a** (1.2 equiv), [{RuCl₂(p-cymene)}₂] (5 mol %), AgSbF₆ (20 mol %) and solvent (3.0 mL) at 130°C for 24 h. ^{*b*}GC yield. ^{*c*} at 110°C for 24 h

Note:

1. The catalytic reaction was tried without $[{RuCl_2(p-cymene)}_2]$. No product **3aa** was observed.

2. The catalytic reaction was tried without AgSbF₆. No product **3aa** was observed.

Base Optimization:

2a

[{RuCl₂(*p*-cymene)}₂] (5 mol %) AgSbF₆ (20 mol %) base (30 mol %) *tert*-amyl alcohol,130 °C, 24 h

S. No	Solvent	Base (30 mol %)	Additive	Yield (%) ^a
			(20 mol %)	
1	<i>tert</i> -amyl alcohol	NaOAc	AgSbF ₆	25
2	<i>tert</i> -amyl alcohol	LiOAc	AgSbF ₆	-
3	<i>tert</i> -amyl alcohol	Cu(OAc) ₂ .H ₂ O	AgSbF ₆	37
4	<i>tert</i> -amyl alcohol	Cu(OAc) ₂ .H ₂ O	AgSbF ₆	39 ^b
5	<i>tert</i> -amyl alcohol	AgOAc	AgSbF ₆	29
6	<i>tert</i> -amyl alcohol	Ag ₂ CO ₃	AgSbF ₆	0
7	<i>tert</i> -amyl alcohol	АсОН	AgSbF ₆	-
8	<i>tert</i> -amyl alcohol	Mesytylinic acid	AgSbF ₆	47
9	tert-amyl alcohol	Adm-1-COOH	AgSbF ₆	79 (73) ^c
10	<i>tert</i> -amyl alcohol	CF ₃ COOH	AgSbF ₆	-
11	<i>tert</i> -amyl alcohol	PivOH	AgSbF ₆	51
12	<i>tert</i> -amyl alcohol	CsOPiv	AgSbF ₆	0
13	<i>tert</i> -amyl alcohol	CsOAc	AgSbF ₆	0
14	<i>tert</i> -amyl alcohol	Adm-1-COOH	AgSbF ₆	81 ^d
^a GC Yield. ^b Under air. ^c Yield in the paranthesis is isolated yield. ^d 100 mol % of Adm-1-				

Additive Optimization:

2a

[{RuCl₂(*p*-cymene)}₂] (5 mol %) Additive (20 mol %) Adm-1-COOH (30 mol %) *tert*-amyl alcohol,130 °C, 24 h

Entry	Solvent	Base (30 mol %)	Additive (20 mol %	Yield (%) ^a
)	
1	<i>tert</i> -amyl alcohol	Adm-1-COOH	AgSbF ₆	79
2	<i>tert</i> -amyl alcohol	Adm-1-COOH	AgBF ₄	41
3	<i>tert</i> -amyl alcohol	Adm-1-COOH	AgOTf	0
4	<i>tert</i> -amyl alcohol	Adm-1-COOH	KPF ₆	0
^a GC Yie	eld.			

Crystal structure of Compound 3aa.

Crystal data and structure refinement for 3	Saa.	
Identification code	NRM 323	
Empirical formula	C ₁₈ H ₁₅ NO	
Formula weight	261.31	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	$P2_1/n$	
Unit cell dimensions	a = 7.6266(8) Å	$\alpha = 90^{\circ}$.
	b = 18.5193(18) Å	$\beta = 108.801(5)^{\circ}.$
	c = 10.0793(10) Å	$\gamma = 90^{\circ}.$
Volume	1347.6(2) Å ³	
Z	4	
Density (calculated)	1.288 Mg/m ³	
Absorption coefficient	0.625 mm ⁻¹	
F(000)	594	
Crystal size	?x ?x ? mm ³	
Theta range for data collection	4.776 to 68.371°.	

Index ranges	-9<=h<=9, -22<=k<=22, -10<=l<=12
Reflections collected	16428
Independent reflections	2475 [R(int) = 0.0426]
Completeness to theta = 67.679°	100.0 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2475 / 0 / 182
Goodness-of-fit on F ²	0.882
Final R indices [I>2sigma(I)]	R1 = 0.0405, wR2 = 0.1216
R indices (all data)	R1 = 0.0540, wR2 = 0.1389
Extinction coefficient	n/a
Largest diff. peak and hole	0.190 and -0.115 e.Å ⁻³

Crystal structure of Compound 3af.

Identification code	NRM 22	
Empirical formula	$C_{16}H_{17}N O_3$	
Formula weight	271.31	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 8.1792(3) Å	$\alpha = 91.062(2)^{\circ}$.
	b = 8.2361(3) Å	$\beta = 95.422(2)^{\circ}.$
	c = 11.9209(4) Å	$\gamma = 119.402(2)^{\circ}.$
Volume	694.53(4) Å ³	
Z	2	
Density (calculated)	1.297 Mg/m ³	
Absorption coefficient	0.730 mm ⁻¹	
F(000)	308	
Crystal size	0.230 x 0.100 x 0.050 mm ³	
Theta range for data collection	3.735 to 68.392°.	
Index ranges	-9<=h<=9, -9<=k<=9, -13<=l<=14	
Reflections collected	7560	
Independent reflections	2525 [R(int) = 0.0259]	

Completeness to theta = 67.679°	99.4 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2525 / 0 / 183
Goodness-of-fit on F ²	0.639
Final R indices [I>2sigma(I)]	R1 = 0.0445, wR2 = 0.1168
R indices (all data)	R1 = 0.0551, wR2 = 0.1311
Extinction coefficient	n/a
Largest diff. peak and hole	0.297 and -0.247 e.Å ⁻³

Spectral Data of Compounds

¹H and ¹³C NMR Spectra of Compound 3aa.

¹H and ¹³C NMR Spectra of Compound 3ac.

¹H and ¹³C NMR Spectra of Compound 3ad.

¹H and ¹³C NMR Spectra of Compound 3ae.

¹H and ¹³C NMR Spectra of Compound 3ag.

¹H and ¹³C NMR Spectra of Compound 3ah.

¹H and ¹³C NMR Spectra of Compound 3al.

¹H and ¹³C NMR Spectra of Compound 3ba.

¹H and ¹³C NMR Spectra of Compound 3bh.

¹H and ¹³C NMR Spectra of Compound 3ca.

¹H and ¹³C NMR Spectra of Compound 3ch.

¹H and ¹³C NMR Spectra of Compound 3da.

¹H and ¹³C NMR Spectra of Compound 3eh.

¹H and ¹³C NMR Spectra of Compound 3ia.

¹H and ¹³C NMR Spectra of Compound 4a.

¹H and ¹³C NMR Spectra of Compound 4b.

