Electronic Supplementary Information

Synthesis of *N*-Dialkylphosphoryl Iminosugar Derivatives and Their Immunosuppressive Activities

Xuemei Yang,^{+a,b} De-Cai Xiong,^{+a} Chengcheng Song,^{a,c} Guihua Tai^c and Xin-Shan Ye^{*a}

^aState Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China. E-mail: xinshan@bjmu.edu.cn; Fax: +86-10-82802724; Tel: +86-10-82805736.

^bSchool of Pharmacy, Guangdong Medical College, Dongguan 523808, China.

^cSchool of Life Sciences, Northeast Normal University, Changchun 130024, China.

⁺These authors contributed equally to this work.

Chemistry Section	S1
Biology Section	S 8
References	S9
¹ H NMR Spectrum of Compound 9	S9
¹ H NMR Spectrum of Compound 13	S10
¹ H, ¹³ C and ³¹ P NMR Spectra of Compound 15 j	S10
¹ H, ¹³ C and ³¹ P NMR Spectra of Compound 15k	S12
¹ H, ¹³ C and ³¹ P NMR Spectra of Compound 15 l	S13
¹ H, ¹³ C and ³¹ P NMR Spectra of Compound 16a	S15
¹ H, ¹³ C and ³¹ P NMR Spectra of Compound 16b	S16
¹ H, ¹³ C and ³¹ P NMR Spectra of Compound 16c	S18
¹ H, ¹³ C and ³¹ P NMR Spectra of Compound 16d	S19
¹ H, ¹³ C and ³¹ P NMR Spectra of Compound 16e	S21
¹ H, ¹³ C and ³¹ P NMR Spectra of Compound 16f	S22
¹ H, ¹³ C and ³¹ P NMR Spectra of Compound 16g	S24
¹ H, ¹³ C and ³¹ P NMR Spectra of Compound 16h	S25
¹ H, ¹³ C, ³¹ P, H-H COSY and HSQC Spectra of Compound 16i	S27
¹ H, ¹³ C and ³¹ P NMR Spectra of Compound 16 j	S29
¹ H, ¹³ C, ³¹ P, H-H COSY and HSQC Spectra of Compound 16k	S31
¹ H, ¹³ C and ³¹ P NMR Spectra of Compound 16 l	S 33
¹ H, ¹³ C and ³¹ P NMR Spectra of Compound 8a	S35
¹ H, ¹³ C and ³¹ P NMR Spectra of Compound 8b	S 36
¹ H, ¹³ C and ³¹ P NMR Spectra of Compound 8c	S38
¹ H, ¹³ C and ³¹ P NMR Spectra of Compound 8d	S39
¹ H, ¹³ C and ³¹ P NMR Spectra of Compound 8e	S41
¹ H, ¹³ C and ³¹ P NMR Spectra of Compound 8f	S42
¹ H, ¹³ C and ³¹ P NMR Spectra of Compound 8g	S44
¹ H, ¹³ C and ³¹ P NMR Spectra of Compound 8h	S45
¹ H, ¹³ C and ³¹ P NMR Spectra of Compound 8i	S47
¹ H, ¹³ C and ³¹ P NMR Spectra of Compound 8j	S48
¹ H, ¹³ C, ³¹ P, H-H COSY and HSQC NMR Spectra of Compound 8k	S50
¹ H, ¹³ C and ³¹ P NMR Spectra of Compound 81	S52

Chemistry Section

General. All chemicals were purchased as reagent grade and used without further purification except otherwise noted. Dichloromethane (CH₂Cl₂) and acetonitrile (CH₃CN) were distilled over calcium hydride (CaH₂). Tetrahydrofuran (THF) was distilled over sodium potassium alloy. Methanol was distilled from magnesium. Pulverized molecular sieves 3Å MS for reductive amination were activated by heating at 400 °C for 6 hours. Reactions were monitored by thin-layer chromatography (TLC) analysis, which was visualized by UV light (254 nm) and acidic ceric ammonium molybdate. Solvents were evaporated under reduced pressure and below 40 °C (water bath). Column chromatography was performed on silica gel. ¹H NMR spectra were recorded on the Avance III 400 instruments from Bruker at room temperature. Chemical shifts (in ppm) were referenced to tetramethylsilane ($\delta = 0$ ppm) in deuterated chloroform. ¹³C NMR spectra were obtained by using the same NMR spectrometers and were calibrated with CDCl₃ ($\delta = 77.16$ ppm). HRMS (ESI) data were obtained by Thermo Scientific LTQ Orbitrap Discovery mass spectrometer or Waters Xevo G2 QT of mass spectrometer.

N-Benzyl-2,3-O-isopropylidene-1,4-dideoxy-1,4-iminoerythritol (13)

According to the method reported in the literature,¹ 2,3-*O*-isopropylidene-D-ribose (**11**) was prepared from D-ribose (15.0 g, 0.10 mol), dry acetone (180 mL), anhydrous $CuSO_4$ (47.88 g, 0.30 mol) and sulfuric acid (0.45 mL). Yield: 12.41 g (65%).

To a solution of NaIO₄ (10.95 g in 50 mL of H₂O, 51.2 mmol) at 0 °C, a solution of compound **11** (4.674 g in 10 mL of H₂O, 24.6 mmol) was added dropwise. The reaction mixture was stirred at 0 °C for 30 min and then kept at room temperature for another 4 h. After the disappearence of the starting material derected by TLC (petroleum ether/EtOAc = 1:2), the reaction mixture was directly concentrated under reduced pressure. The residue was diluted with EtOAc (150 mL) and then filtered through a celite pad. The filtrate was evaporated under vacuum to give a colorless oil **12**, which was used directly in the next step without further purification.

To a solution of activated 3Å molecular sieves, NaBH₃CN (6.18 g, 98.4 mmol) and anhydrous ZnCl₂ (4.02 g, 29.5 mmol) containing 90 mL of anhydrous MeOH at 0 °C, a solution of **12** containing 10 mL of anhydrous MeOH was added dropwise, which was followed by the addition of a solution of BnNH₂ (3.5 mL in 20 mL of anhydrous MeOH, 32.0 mmol). The reaction mixture was stirred at 0 °C for 30 min and then stirred at room temperature overnight. After the disappearence of the starting material derected by TLC (petroleum ether/EtOAc = 2:1), the reaction mixture was filtered through a celite pad, and then the solvent was evaporated under reduced pressure. The residue was diluted with 100 mL of ammonia water (1 M), and then extracted with EtOAc (50 mL×4). The combined rganic layer was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluted with petroleum ether/acetone (12:1) to give compound **13** (4.88 g, 85% yield, $R_f = 0.57$, petroleum ether/acetone, 2:1, v/v) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.21-7.35 (m, 5H, ph), 4.63-4.66 (m, 2H, 2OC*H*), 3.62 (s, 2H, ph-C*H*₂), 3.04 (d, *J* = 11.6 Hz, 2H, 2C*H*H), 2.14 (ddd, *J* = 11.4 Hz, *J* = 3.0 Hz, *J* = 1.3 Hz, 2H, 2C*H*H), 1.57 (s, 3H, C*H*₃), 1.32 (s, 3H, C*H*₃). The ¹H NMR data coincide with the previous report.²

2,3-O-Isopropylidene-1,4-dideoxy-1,4-iminoerythritol (9)

A mixture of compound **13** (238.8 mg, 1.0 mmol) and Pd(OH)₂/C (20% Pd, 450.0 mg) in dry THF (3.0 mL) was stirred under an atmosphere of 0.4 MPa H₂ at room temperature for 2 days. After TLC (CH₂Cl₂/MeOH 20:1) showed the complete consumption of **13** ($R_f = 0.72$), the reaction mixture was filtered through a celite pad, then the filtrate was concentrated under reduced pressure to afford the compound **9** as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 4.63-4.66 (m, 2H, 2OCH), 3.10 (d, J = 14 Hz, 2H, 2CHHN), 2.52 (dd, J = 13.6 Hz, J = 1.2 Hz, 2H, 2CHHN), 2.19 (br s, 1H, NH), 1.45 (s, 3H, CH₃), 1.32 (s, 3H, CH₃). The ¹H NMR data coincide with the

previous report.2

General procedure A for the synthesis of compounds 15j-15l:

To a solution of alcohol (1.0 equiv.) in dry pyridine (8 mL) at 0 $^{\circ}$ C, diphenyl phosphite (3.0 equiv.) was added dropwise. The reaction mixture was stirred at room temperature for 1 h, which was followed by the addition of methanol (5.0 equiv.). After stirring for an additional 1 h, 2 N hydrochloric acid (60 mL) was added. The resulting solution was extracted with ethyl acetate (50 mL×3). The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, filtered, and evaporated. The residue was purified by column chromatography on silica gel eluted with petroleum ether/EtOAc to give the compounds **15j-15l**.

Methyl octyl phosphite (15j)

The reaction of *n*-octanol (0.50 mL, 3.17 mmol) with diphenyl phosphite (1.83 mL, 9.51 mmol) and methanol (0.64 mL, 15.85 mmol) was performed as described in the general procedure A, affording **15j** (0.61 g, 93% yield, $R_f = 0.25$, petroleum ether/EtOAc, 1:1, v/v) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.66 (s, 0.5H, PH), 5.92 (s, 0.5H, PH), 4.05-4.11 (m, 2H, 2OCH₂), 3.78 (d, J = 12 Hz, 3H, 2OCH₃), 1.66-1.73 (m, 2H, 2OCH₂CH₂), 1.28-1.40 (m, 10H, 5CH₂), 0.88 (t, J = 6.8 Hz, 6H, 2CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃): δ 66.02, 65.96, 51.95, 51.90, 31.76, 30.46, 30.40, 29.16, 29.08, 25.49, 22.64, 14.09; ³¹P NMR (162 MHz, CDCl₃): δ 11.25, 6.96. HRMS (ESI) calcd. for C₉H₂₁O₃P [M+Na]⁺: 231.1121, found: 231.1117.

Methyl nonyl phosphite (15k)

The reaction of *n*-nonanol (0.50 mL, 2.87 mmol) with diphenyl phosphite (1.65 mL, 8.60 mmol) and methanol (0.58 mL, 14.35 mmol) was performed as described in the general procedure A, affording **15k** (0.57 g, 90% yield, $R_f = 0.27$, petroleum ether/EtOAc, 1:1, v/v) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): 7.66 (s, 0.5H, PH), 5.92 (s, 0.5H, PH), 4.05-4.11 (m, 2H, 2OCH₂), 3.77 (d, J = 12 Hz, 3H, 2OCH₃), 1.66-1.73 (m, 2H, 2OCH₂CH₂), 1.27-1.39 (m, 12H, 6CH₂), 0.88 (t, J = 6.8 Hz, 6H, 2CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 66.12, 66.06, 52.01, 51.96, 31.93, 30.56, 30.50, 29.54, 29.29, 29.20, 25.58, 22.75, 14.17; ³¹P NMR (162 MHz, CDCl₃) δ 11.29, 7.00. HRMS (ESI) calcd for C₁₀H₂₃O₃P [M+Na]⁺: 245.1277, found: 245.1274.

Methyl decyl phosphite (15l)

The reaction of *n*-decanol (0.50 mL, 2.87 mmol) with diphenyl phosphite (1.65 mL, 8.60 mmol) and methanol (0.64 mL, 15.85 mmol) was performed as described in the general procedure A, affording **151** (0.55 g, 87% yield, $R_f = 0.27$, petroleum ether/EtOAc, 1:1, v/v) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (s, 0.5H, PH), 5.92 (s, 0.5H, PH), 4.05-4.11 (m, 2H, 2OCH₂), 3.77 (d, J = 11.6 Hz, 3H, 2OCH₃), 1.66-1.73 (m, 2H, 2OCH₂CH₂), 1.27-1.39 (m, 14H, 7CH₂), 0.88 (t, J = 6.8 Hz, 6H, 2CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 66.14, 66.08, 52.06, 52.00, 31.99, 30.57, 30.51, 29.61, 29.60, 29.40, 29.22, 25.59, 22.79, 14.22; ³¹P NMR (162 MHz, CDCl₃) δ 11.28, 6.99. HRMS (ESI) calcd for C₁₁H₂₅O₃P [M+Na]⁺: 259.1434, found: 259.1429.

General procedure B for the preparation of compounds 14b-h: To a stirred solution of alcohol (3.0 equiv.) in dry CH_2Cl_2 (5 mL) at 0 °C under N₂, a solution of phosphorus trichloride (3.0 equiv.) in dry CH_2Cl_2 (2 mL) was added dropwise over a period of 30 min. Blowing air constantly, the reaction mixture was stirred at this temperature for 30 min, then allowed to warm up to room temperature for an additional 3 h. After a solution of trichloroisocyanuric acid (0.45 equiv. in 10 mL of dry CH_3CN) was added dropwise at 0 °C, the resulting solution was allowed to warm up to room temperature and stirred overnight. The reaction mixture was filtered through a celite pad to remove cyanuric acid. The filtrate was concentrated under vacuum to afford the crude product **14b-l**.

General procedure B for the preparation of compounds 14j-l: To a solution of compound 15j-l (1.0 equiv.) in dry CH₃CN (0.5 mL) at 0 $^{\circ}$ C, a solution of trichloroisocyanuric acid (1.0 equiv. in 0.5 mL of dry CH₃CN) was added dropwise. The resulting solution was allowed to warm up to room temperature and stirred overnight. The reaction mixture was filtered through a celite pad to remove cyanuric acid. The filtrate was concentrated under vacuum to afford the crude product 14j-l.

General procedure C for the synthesis of compounds 16a-16I: To a mixture of compound 9 (1.0 equiv.) and DIPEA (5.0 equiv.) in THF (10 mL) at 0 °C, the compound 14a-1 (3.0 equiv.) in dry THF (2 mL) was added dropwise. After stirred at 0 °C for 30 min, the reaction mixture was stirred for an additional 4 h at room temperature. The resulting solution was filtered through a celite pad and then evaporated. The syrup was diluted with saturated NaHCO₃ (40 mL), and extracted with EtOAc (50 mL×4). The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, filtered, and evaporated. The residue was purified by column chromatography on silica gel eluted with petroleum ether/EtOAc to give the compound 16a-l.

N-Diethylphosphoryl-2,3-O-isopropylidene-1,4-dideoxy-1,4-iminoerythritol (16a)

Compound **16a** was prepared from compound **9** starting from compound **13** (200.6 mg, 0.86 mmol), and **14a** (445.3 mg 2.58 mmol) as described in the general procedure C, affording **16a** (112.8 mg, 47% yield, two steps from compound **13**, $R_f = 0.19$, petroleum ether/acetone, 2:1, v/v) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 4.68-4.70 (br m, 2H, 2OC*H*), 4.05-4.12 (m, 4H, 2OC*H*₂CH₃), 3.49 (dd, *J* = 12 Hz, *J* = 2 Hz, 2H, 2NC*H*HCH), 3.03 (d, *J* = 12 Hz, 2H, 2NC*H*HCH), 1.47 (s, 3H, CC*H*₃), 1.31-1.34 (m, 9H, 2CH₂CH₃, CCH₃); ¹³C NMR (101 MHz, CDCl₃): δ 111.64, 80.26, 80.15, 62.53, 62.48, 52.98, 52.94, 26.31, 24.53, 16.35, 16.29; ³¹P NMR (162 MHz, CDCl₃): δ 6.38. HRMS (ESI) calcd for C₁₁H₂₂NO₅P [M+H]⁺: 302.1128; found: 302.1123.

N-Dibutylphosphoryl-2,3-O-isopropylidene-1,4-dideoxy-1,4-iminoerythritol (16b)

Compound **16b** was prepared from compound **9** starting from compound **13** (233.2 mg 1.0 mmol), and the crude product **14b** (686 mg, 3.0 mmol) as described in the general procedure B and C, affording **16b** (173.0 mg, 52% yield, two steps from compound **13**, $R_f = 0.20$, petroleum ether/acetone, 2:1, v/v) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 4.68-4.70 (br m, 2H, 2OC*H*), 3.95-4.06 (m, 4H, 2OC*H*₂CH₂), 3.46-3.50 (dd, *J* = 12 Hz, *J* = 2 Hz, 2H, 2NC*H*HCH), 3.01-3.04 (dd, *J* = 12 Hz, *J* = 2.4 Hz, 2H, 2NC*H*HCH), 1.62-1.69 (m, 4H, 2OCH₂CH₂), 1.47 (s, 3H, CCH₃), 1.35-1.44 (m, 4H, 2CH₂CH₃), 1.31 (s, 3H, CCH₃), 0.93 (t, *J* = 7.2 Hz, 6H, 2CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃): δ 111.73, 80.31, 80.04, 66.33, 66.28, 53.04, 53.00, 32.56, 32.49, 26.42, 24.61, 18.93, 13.79; ³¹P NMR (162 MHz, CDCl₃): δ 6.47. HRMS (ESI) calcd for C₁₅H₃₀NO₅P [M+Na]⁺: 358.1754; found: 358.1748.

N-Dihexylphosphoryl-2,3-O-isopropylidene-1,4-dideoxy-1,4-iminoerythritol (16c)

Compound **16c** was prepared from compound **9** starting from compound **13** (137.2 mg, 0.59 mmol), and the crude product **14c** (513.2 mg, 1.80 mmol) as described in the general procedure B and C, affording **16c** (101.0 mg, 44% yield, two steps from compound **13**, $R_f = 0.23$, petroleum ether/acetone, 3:1, v/v) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 4.69 (br s, 2H, 2OC*H*), 3.96-4.02 (m, 4H, 2OC*H*₂CH₂), 3.48 (dd, *J* = 12.4 Hz, *J* = 2 Hz, 2H, 2NC*H*HCH), 3.02 (d, *J* = 11.6 Hz, 2H, 2NC*H*HCH), 1.63-1.70 (m, 4H, 2OCH₂CH₂), 1.47 (s, 3H, CCH₃), 1.25-1.39 (m, 15H, 6CH₂, CCH₃), 0.89 (t, *J* = 6.8 Hz, 6H, 2CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃): δ 111.65, 80.26, 80.15, 66.60, 66.54, 52.99, 52.95, 31.48, 30.44, 30.37, 26.38, 25.32, 24.55, 22.65, 14.11; ³¹P NMR (162 MHz, CDCl₃): δ 6.46. HRMS (ESI) calcd for C₁₉H₃₈NO₅P [M+Na]⁺: 414.2380; found: 414.2381.

N-Diheptylphosphoryl-2,3-O-isopropylidene-1,4-dideoxy-1,4-iminoerythritol (16d)

Compound 16d was prepared from compound 9 starting from compound 13 (149.3 mg, 0.64 mmol), and the crude

product **14d** (600.5 mg, 1.92 mmol) as described in the general procedure B and C, affording **16d** (153.3 mg, 58% yield, two steps from compound **13**, $R_f = 0.20$, petroleum ether/ EtOAc, 1:1, v/v) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 4.68-4.69 (br m, 2H, 2OC*H*), 3.93-4.04 (m, 4H, 2OC*H*₂CH₂), 3.47 (d, *J* =12 Hz, *J* = 2 Hz, 2H, 2NC*H*HCH), 3.02 (d, *J* = 11.2 Hz, 2H, 2NC*H*HCH), 1.63-1.70 (m, 4H, 2OCH₂CH₂), 1.47 (s, 3H, CCH₃), 1.28-1.32 (m, 19H, 8CH₂, CCH₃), 0.88 (t, *J* = 7.2 Hz, 6H, 2CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃): δ 111.72, 80.30, 80.20, 66.65, 66.59, 53.03, 52.99, 31.87, 30.53, 30.46, 29.01, 26.44, 25.66, 24.62, 22.71, 14.19; ³¹P NMR (162 MHz, CDCl₃): δ 6.46. HRMS (ESI) calcd for C₂₁H₄₃NO₅P [M+H]⁺: 420.2879; found: 420.2874.

N-Dioctylphosphoryl-2,3-*O*-isopropylidene-1,4-dideoxy-1,4-iminoerythritol (16e)

Compound **16e** was prepared from compound **9** starting from compound **13** (126.0 mg, 0.54 mmol), and the crude product **14e** (552.3 mg, 1.62 mmol) as described in the general procedure B and C, affording **16e** (89.5 mg, 40% yield, two steps from compound **13**, $R_f = 0.20$, petroleum ether/ EtOAc, 1:1, v/v) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 4.66-4.69 (br m, 2H, 2OC*H*), 3.93-4.05 (m, 4H, 2OC*H*₂CH₂), 3.47 (dd, *J* = 12.4 Hz, *J* = 2 Hz, 2H, 2NC*H*HCH), 3.03 (d, *J* = 11.2 Hz, 2H, 2NC*H*HCH), 1.63-1.69 (m, 4H, 2OCH₂CH₂), 1.47 (s, 3H, CCH₃), 1.27-1.37 (m, 23H, 10CH₂, CCH₃), 0.88 (t, *J* = 6.8 Hz, 6H, 2CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃): δ 111.74, 80.32, 80.21, 66.66, 66.61, 53.05, 53.01, 31.93, 30.55, 30.48, 29.34, 29.32, 26.46, 25.71, 24.64, 22.78, 14.23; ³¹P NMR (162 MHz, CDCl₃): δ 6.46. HRMS (ESI) calcd for C₂₃H₄₆NO₅P [M+Na]⁺: 470.3006; found: 470.3007.

N-Dinonylphosphoryl-2,3-O-isopropylidene-1,4-dideoxy-1,4-iminoerythritol (16f)

Compound **16f** was prepared from compound **9** starting from compound **13** (149.3 mg, 0.64 mmol), and the crude product **14f** (708.3 mg, 1.92 mmol) as described in the general procedure B and C, affording **16f** (150.3 mg, 50% yield, two steps from compound **13**, $R_f = 0.30$, petroleum ether/ EtOAc, 1:1, v/v) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 4.67-4.69 (br m, 2H, 2OCH), 3.93-4.04 (m, 4H, 2OCH₂CH₂), 3.47 (dd, J = 12 Hz, J = 2 Hz, 2H, 2NCHHCH), 3.03 (d, J = 11.2 Hz, 2H, 2NCHHCH), 1.62-1.69 (m, 4H, 2OCH₂CH₂), 1.47 (s, 3H, CCH₃), 1.27-1.33 (m, 23H, 10CH₂, CCH₃), 0.88 (t, J = 7.2 Hz, 6H, 2CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃): δ 111.74, 80.32, 80.21, 66.66, 66.60, 53.05, 53.01, 32.00, 30.55, 30.48, 29.64, 29.37, 29.36, 26.47, 25.71, 24.64, 22.80, 14.23; ³¹P NMR (162 MHz, CDCl₃): δ 6.46. HRMS (ESI) calcd for C₂₅H₅₀NO₅P [M+H]⁺: 476.3499; found: 476.3512.

N-Didecylphosphoryl-2,3-O-isopropylidene-1,4-dideoxy-1,4-iminoerythritol (16g)

Compound **16g** was prepared from compound **9** starting from compound **13** (168.0 mg, 0.72 mmol), and the crude product **14g** (857.5 mg, 2.16 mmol) as described in the general procedure B and C, affording **16g** (176.7 mg, 49% yield, two steps from compound **13**, $R_f = 0.30$, petroleum ether/ EtOAc, 1:1, v/v) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 4.69 (br s, 2H, 2OC*H*), 3.95-4.03 (m, 4H, 2OC*H*₂CH₂), 3.47 (dd, *J* = 12 Hz, *J* = 2 Hz, 2H, 2NC*H*HCH), 3.03 (d, *J* = 11.6 Hz, 2H, 2NC*H*HCH), 1.62-1.69 (m, 4H, 2OCH₂CH₂), 1.47 (s, 3H, CCH₃), 1.26-1.34 (m, 31H, 14CH₂, CCH₃), 0.88 (t, *J* = 6.8 Hz, 6H, 2CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃): δ 111.74, 80.32, 80.21, 66.65, 66.59, 53.04, 53.01, 32.03, 30.55, 30.48, 29.68, 29.44, 29.35, 26.46, 25.71, 24.63, 22.82, 14.24; ³¹P NMR (162 MHz, CDCl₃): δ 6.45. HRMS (ESI) calcd for C₂₇H₅₄NO₅P [M+Na]⁺: 526.3632; found: 526.3611.

N-Didodecylphosphoryl-2,3-O-isopropylidene-1,4-dideoxy-1,4-iminoerythritol (16h)

Compound **16h** was prepared from compound **9** starting from compound **13** (149.3 mg, 0.64 mmol), and the crude product **14h** (870.0 mg, 1.92 mmol) as described in the general procedure B and C, affording **16h** (125.8 mg, 35% yield, two steps, two steps from compound **13**, $R_f = 0.25$, petroleum ether/ EtOAc, 1:1, v/v) as a colorless oil. ¹H

NMR (400 MHz, CDCl₃): δ 4.67-4.69 (br m, 2H, 2OC*H*), 3.95-4.03 (m, 4H, 2OC*H*₂CH₂), 3.48 (dd, J = 12 Hz, J = 2 Hz, 2H, 2NC*H*HCH), 3.02 (d, J = 11.2 Hz, 2H, 2NC*H*HCH), 1.62-1.69 (m, 4H, 2OCH₂CH₂), 1.47 (s, 3H, CCH₃), 1.26-1.31 (m, 39H, 18CH₂, CCH₃), 0.88 (t, J = 6.8 Hz, 6H, 2CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃): δ 111.71, 80.30, 80.19, 66.63, 66.57, 52.03, 52.99, 32.05, 30.53, 30.46, 29.77, 29.71, 29.68, 29.48, 29.34, 26.44, 25.70, 24.61, 22.82, 14.24; ³¹P NMR (162 MHz, CDCl₃): δ 6.45. HRMS (ESI) calcd for C₃₁H₆₃NO₅P [M+H]⁺: 560.4444; found: 560.4438.

N-Diphenylphosphoryl-2,3-O-isopropylidene-1,4-dideoxy-1,4-iminoerythritol (16i)

Compound **16i** was prepared from compound **9** starting from compound **13** (153.2 mg, 0.66 mmol), and **14i** (531.8 mg, 1.98 mmol) as described in the general procedure C, affording **16i** (156.9 mg, 64% yield, two steps, two steps from compound **13**, $R_f = 0.23$, petroleum ether/acetone, 1:1, v/v) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.13-7.34 (m, 10H, 2ph), 4.69-4.71 (br m, 2H, 2OC*H*), 3.71 (dd, *J* = 12.4 Hz, *J* = 2.8 Hz, 2H, 2NC*H*HCH), 3.17 (m, 2H, 2NC*H*HCH), 1.30 (s, 3H, CC*H*₃), 1.28 (s, 3H, CC*H*₃); ¹³C NMR (101 MHz, CDCl₃): δ 151.01, 150.94, 129.81, 125.04, 120.37, 120.32, 111.99, 80.17, 80.06, 53.41, 53.37, 26.13, 24.58; ³¹P NMR (162 MHz, CDCl₃): δ -3.39. HRMS (ESI) calcd for C₁₉H₂₂NO₅P [M+Na]⁺: 398.1128; found: 398.1122.

N-(Methyl-octyl-phosphoryl)-2,3-O-isopropylidene-1,4-dideoxy-1,4-iminoerythritol (16j)

Compound **16i** was prepared from compound **9** starting from compound **13** (59.4 mg, 0.24 mmol), and **15j** (79.1 mg, 0.38 mmol) as described in the general procedure B and C, affording **16j** (42.9 mg, 51% yield, two steps from compound **13**, $R_f = 0.18$, petroleum ether/ EtOAc, 1:3, v/v) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 4.68-4.70 (br m, 2H, 2OC*H*), 3.96-4.04 (m, 2H, OC*H*₂CH₂), 3.72 (d, *J* = 10.8 Hz, 3H, OC*H*₃), 3.46-3.51 (m, 2H, 2NC*H*HCH), 3.03 (d, *J* = 12 Hz, 2H, 2NC*H*HCH), 1.62-1.69 (m, 2H, 2OCH₂CH₂), 1.48 (s, 3H, CCH₃), 1.27-1.37 (m, 13H, 5CH₂, CCH₃), 0.88 (t, *J* = 6.8 Hz, 3H, CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃): δ 111.75, 80.30, 80.20, 66.82, 66.76, 53.04, 53.01, 31.91, 30.52, 30.46, 29.32, 29.29, 26.42, 25.67, 24.58, 22.77, 14.22; ³¹P NMR (162 MHz, CDCl₃): δ 7.65. HRMS (ESI) calcd for C₁₆H₃₂NO₅P [M+H]⁺: 350.2091; found: 350.2096.

N-(Methyl-nonyl-phosphoryl)-2,3-*O*-isopropylidene-1,4-dideoxy-1,4-iminoerythritol (16k)

Compound **16k** was prepared from compound **9** starting from compound **13** (32.7 mg, 0.14 mmol), and **15k** (46.7 mg, 0.21 mmol) as described in the general procedure B and C, affording **16k** (25.2 mg, 50% yield, two steps from compound **13**, $R_f = 0.22$, petroleum ether/EtOAc, 1:3, v/v) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 4.69-4.70 (br m, 2H, 2OC*H*), 3.97-4.03 (m, 2H, OC*H*₂CH₂), 3.72 (d, *J* = 11.2 Hz, 3H, OC*H*₃), 3.46-3.51 (m, 2H, 2NC*H*HCH), 3.03 (d, *J* = 11.6 Hz, 2H, 2NC*H*HCH), 1.63-1.70 (m, 2H, 2OCH₂CH₂), 1.48 (s, 3H, CC*H*₃), 1.27-1.33 (m, 15H, 6C*H*₂, CC*H*₃), 0.88 (t, *J* = 6.8 Hz, 3H, CH₂C*H*₃); ¹³C NMR (101 MHz, CDCl₃): δ 111.74, 80.30, 80.19, 66.82, 66.76, 53.24, 53.18, 53.04, 53.01, 52.97, 31.99, 30.53, 30.46, 29.62, 29.36, 29.34, 26.42, 25.67, 24.58, 22.84, 14.24; ³¹P NMR (162 MHz, CDCl₃): δ 8.42. HRMS (ESI) calcd for C₁₇H₃₄NO₅P [M+H]⁺: 364.2247; found: 364.2257.

N-(Methyl-decyl-phosphoryl)-2,3-*O*-isopropylidene-1,4-dideoxy-1,4-iminoerythritol (16l)

Compound **16** was prepared from compound **9** starting from compound **13** (151.6 mg, 0.65 mmol), and **15** (231.6 mg, 0.98 mmol) as described in the general procedure B and C, affording **16** (97.9 mg, 40% yield, two steps from compound **13**, $R_f = 0.29$, petroleum ether/EtOAc, 1:3, v/v) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 4.68-4.70 (br m, 2H, 2OC*H*), 3.96-4.03 (m, 2H, OC*H*₂CH₂), 3.72 (d, *J* = 11.2 Hz, 3H, OC*H*₃), 3.46-3.51 (m, 2H, 2NC*H*HCH), 3.03 (d, *J* = 12 Hz, 2H, 2NC*H*HCH), 1.62-1.70 (m, 2H, 2OCH₂CH₂), 1.47 (s, 3H, CCH₃), 1.26-1.35 (m, 15H, 6CH₂, CCH₃), 0.88 (t, *J* = 6.8 Hz, 3H, CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃): δ 111.75, 80.31, 80.20,

66.81, 66.76, 53.23, 53.17, 53.05, 53.01, 52.98, 32.03, 30.53, 30.46, 29.68, 29.44, 29.34, 26.43, 25.68, 24.59, 22.82, 14.25; ${}^{31}P$ NMR (162 MHz, CDCl₃): δ 8.43. HRMS (ESI) calcd for C₁₈H₃₆NO₅P [M+H]⁺: 378.2404; found: 378.2413.

General procedure D for the preparation of compounds 8a-8l:

The compound **16a-l** was dissolved in 85% AcOH (2.0 mL) under N₂. The resulting solution was stirred at 80 $^{\circ}$ C for 2-4 h until the reaction was complete. The reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluted with CH₂Cl₂/MeOH to give the compound **8a-l**.

Diethyl ((3S,4R)-3,4-dihydroxypyrrolidin-1-yl)phosphonate (8a)

Compound **8a** was prepared from compound **16a** (82.0 mg, 0.29 mmol) as described in the general procedure D, affording **8a** (24.3 mg, 35% yield, $R_f = 0.18$, CH₂Cl₂/MeOH, 10:1, v/v) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 4.23-4.24 (br m, 2H, 2OC*H*), 4.01-4.11 (m, 4H, 2OC*H*₂CH₂), 3.40-3.45 (m, 2H, 2NC*H*HCH), 3.17-3.23 (m, 4H, 2NC*H*HCH, 2O*H*), 1.32 (t, J = 6.8 Hz, 6H, 2CH₂C*H*₃); ¹³C NMR (101 MHz, CDCl₃): δ 71.83, 71.74, 62.67, 62.61, 51.53, 51.50, 16.38, 16.31; ³¹P NMR (162 MHz, CDCl₃): δ 7.09. HRMS (ESI) calcd for C₈H₁₈NO₅P [M+H]⁺: 240.0995; found: 240.0992.

Dibutyl ((3S,4R)-3,4-dihydroxypyrrolidin-1-yl)phosphonate (8b)

Compound **8b** was prepared from compound **16b** (27.2 mg, 0.08 mmol) as described in the general procedure D, affording **8b** (10.6 mg, 45% yield, $R_f = 0.18$, CH₂Cl₂/MeOH, 10:1, v/v) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 4.21-4.22 (br m, 2H, 2OCH), 3.93-4.01 (m, 4H, 2OCH₂CH₂), 3.65-3.66 (br m, 2H, 2OH), 3.38-3.43 (m, 2H, 2NCHHCH), 3.16-3.21 (m, 2H, 2NCHHCH), 1.61-1.68 (m, 4H, 2OCH₂CH₂), 1.35-1.45 (m, 4H, 2CH₂CH₃), 0.93 (t, *J* = 7.2 Hz, 6H, 2CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃): δ 71.77, 71.68, 66.44, 66.38, 51.52, 51.49, 32.51, 32.44, 18.93, 13.79; ³¹P NMR (162 MHz, CDCl₃): δ 7.24. HRMS (ESI) calcd for C₁₂H₂₆NO₅P [M+Na]⁺: 318.1441; found: 318.1446.

Dihexyl ((3S,4R)-3,4-dihydroxypyrrolidin-1-yl)phosphonate (8c)

Compound **8c** was prepared from compound **16c** (65.1 mg, 0.17 mmol) as described in the general procedure D, affording **8c** (29.5 mg, 51% yield, $R_f = 0.33$, $CH_2Cl_2/MeOH$, 15:1, v/v) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 4.24 (br s, 2H, 2OCH), 3.93-4.02 (m, 4H, 2OCH₂CH₂), 3.42-3.47 (m, 2H, 2NCHHCH), 3.17-3.22 (m, 2H, 2NCHHCH), 2.57 (br s, 2H, 2OH), 1.62-1.69 (m, 4H, 2OCH₂CH₂), 1.25-1.40 (m, 12H, 6CH₂), 0.89 (t, *J* = 6.8 Hz, 6H, 2CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃): δ 71.74, 71.65, 66.75, 66.70, 51.50, 51.47, 31.49, 30.46, 30.39, 25.36, 22.67, 14.14; ³¹P NMR (162 MHz, CDCl₃): δ 7.22. HRMS (ESI) calcd for C₁₆H₃₄NO₅P [M+H]⁺: 352.2247; found: 352.2249.

Diheptyl ((3S,4R)-3,4-dihydroxypyrrolidin-1-yl)phosphonate (8d)

Compound **8d** was prepared from compound **16d** (98.7 mg, 0.24 mmol) as described in the general procedure D, affording **8d** (35.4 mg, 40% yield, $R_f = 0.19$, petroleum ether/acetone, 1:1, v/v) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 4.22 (br s, 2H, 2OCH), 3.90-4.02 (m, 4H, 2OCH₂CH₂), 3.39-3.44 (m, 2H, 2NCHHCH), 3.32 (br s, 2H, 2OH), 3.17-3.22 (m, 2H, 2NCHHCH), 1.62-1.69 (m, 4H, 2OCH₂CH₂), 1.28-1.32 (m, 16H, 8CH₂), 0.88 (t, *J* = 6.8 Hz, 6H, 2CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃): δ 71.82, 71.73, 66.78, 66.72, 51.62, 51.58, 31.87, 30.54, 30.48, 29.01, 25.68, 22.72, 14.20; ³¹P NMR (162 MHz, CDCl₃): δ 7.27. HRMS (ESI) calcd for C₁₈H₃₈NO₅P [M+H]⁺: 380.2566; found: 380.2566.

Dioctyl ((3S,4R)-3,4-dihydroxypyrrolidin-1-yl)phosphonate (8e)

Compound **8e** was prepared from compound **16e** (46.0 mg, 0.10 mmol) as described in the general procedure D, affording **8e** (13.0 mg, 31% yield, $R_f = 0.23$, CH₂Cl₂/MeOH, 15:1, v/v) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 4.21 (br s, 2H, 2OCH), 3.90-4.01 (m, 4H, 2OCH₂CH₂), 3.57 (br s, 2H, 2OH), 3.38-3.43 (m, 2H, 2NCHHCH), 3.17-3.21 (m, 2H, 2NCHHCH), 1.62-1.69 (m, 4H, 2OCH₂CH₂), 1.27-1.32 (m, 20H, 10CH₂), 0.88 (t, J = 6.8 Hz, 6H, 2CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃): δ 71.83, 71.74, 66.76, 66.71, 51.58, 51.55, 31.93, 30.53, 30.46, 29.34, 29.31, 25.72, 22.78, 14.24; ³¹P NMR (162 MHz, CDCl₃): δ 7.30. HRMS (ESI) calcd for C₂₀H₄₂NO₅P [M+H]⁺: 408.2873; found: 408.2884.

Dinonyl ((3S,4R)-3,4-dihydroxypyrrolidin-1-yl)phosphonate (8f)

Compound **8f** was prepared from compound **16f** (45.8 mg, 0.08 mmol) as described in the general procedure D, affording **8f** (16.1 mg, 49% yield, $R_f = 0.33$, CH₂Cl₂/MeOH, 15:1, v/v) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 4.22-4.23 (br m, 2H, 2OCH), 3.91-4.02 (m, 4H, 2OCH₂CH₂), 3.40-3.45 (m, 2H, 2NCHHCH), 3.17-3.22 (m, 2H, 2NCHHCH), 2.90 (br s, 2H, 2OH), 1.62-1.67 (m, 4H, 2OCH₂CH₂), 1.27-1.37 (m, 20H, 12CH₂), 0.88 (t, *J* = 6.8 Hz, 6H, 2CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃): δ 71.88, 71.80, 66.79, 66.73, 51.65, 51.61, 32.00, 30.56, 30.49, 29.65, 29.39, 29.36, 25.73, 22.81, 14.25; ³¹P NMR (162 MHz, CDCl₃): δ 7.35. HRMS (ESI) calcd for C₂₂H₄₆NO₅P [M+H]⁺: 436.3186; found: 436.3201.

Didecyl ((3S,4R)-3,4-dihydroxypyrrolidin-1-yl)phosphonate (8g)

Compound **8g** was prepared from compound **16g** (31.2 mg, 0.06 mmol) as described in the general procedure D, affording **8g** (15.4 mg, 54% yield, $R_f = 0.20$, CH₂Cl₂/MeOH, 20:1, v/v) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 4.25 (m, 2H, 2OC*H*), 3.92-4.02 (m, 4H, 2OC*H*₂CH₂), 3.67 (br s, 2H, 2O*H*), 3.38-3.43 (m, 2H, 2NC*H*HCH), 3.19-3.24 (m, 2H, 2NC*H*HCH), 1.62-1.69 (m, 4H, 2OCH₂C*H*₂), 1.26-1.34 (m, 28H, 14C*H*₂), 0.88 (t, *J* = 6.8 Hz, 6H, 2CH₂C*H*₃); ¹³C NMR (101 MHz, CDCl₃): δ 71.85, 71.76, 66.91, 66.85, 51.66, 51.63, 32.04, 30.55, 30.48, 29.71, 29.46, 29.38, 25.74, 22.83, 14.26; ³¹P NMR (162 MHz, CDCl₃): δ 7.28. HRMS (ESI) calcd for C₂₄H₅₀NO₅P [M+H]⁺: 464.3499, found: 464.3502.

Didodecyl ((3S,4R)-3,4-dihydroxypyrrolidin-1-yl)phosphonate (8h)

Compound **8h** was prepared from compound **16h** (87.7 mg, 0.16 mmol) as described in the general procedure D, affording **8h** (32.4 mg, 40% yield, $R_f = 0.18$, CH₂Cl₂/MeOH, 20:1, v/v) as a pale yellow solid. M.p. 42-43 °C. ¹H NMR (400 MHz, CDCl₃): δ 4.21 (br s, 2H, 2OC*H*), 3.91-4.01 (m, 4H, 2OC*H*₂CH₂), 3.56 (br s, 2H, 2O*H*), 3.38-3.43 (m, 4H, 2NC*H*HCH), 3.17-3.21 (m, 2H, 2NC*H*HCH), 1.63-1.67 (m, 4H, 2OCH₂CH₂), 1.26-1.34 (m, 36H, 18C*H*₂), 0.88 (t, *J* = 6.8 Hz, 6H, 2CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃): δ 71.74, 71.65, 66.78, 66.72, 51.53, 51.50, 32.05, 30.55, 30.48, 29.79, 29.77, 29.74, 29.69, 29.48, 29.37, 25.73, 22.81, 14.22; ³¹P NMR (162 MHz, CDCl₃): δ 7.28. HRMS (ESI) calcd for C₂₈H₅₈NO₅P [M+H]⁺: 520.4131, found: 520.4123.

Diphenyl ((3S,4R)-3,4-dihydroxypyrrolidin-1-yl)phosphonate (8i)

Compound **8i** was prepared from compound **16i** (35.4 mg, 0.09 mmol) as described in the general procedure D, affording **8i** (24.2 mg, 77% yield, $R_f = 0.35$, CH₂Cl₂/MeOH, 15:1, v/v) as a white solid. M.p. 113-114 °C. ¹H NMR (400 MHz, CDCl₃): 7.15-7.36 (m, 10H, 2ph), 4.15-4.16 (br s, 2H, 2OC*H*), 3.53-3.58 (m, 2H, 2NC*H*HCH), 3.29-3.33 (m, 2H, 2NC*H*HCH), 2.61 (br s, 2H, 2O*H*); ¹³C NMR (101 MHz, CDCl₃) δ 150.73, 150.66, 129.92, 125.27, 120.26, 120.21, 71.41, 71.30, 51.61, 51.57; ³¹P NMR (162 MHz, CDCl₃): δ -3.04. HRMS (ESI) calcd for C₁₆H₁₈NO₅P [M+H]⁺: 336.0995, found: 336.1001.

Methyl-octyl-((3S,4R)-3,4-dihydroxypyrrolidin-1-yl)phosphonate (8j)

Compound **8j** was prepared from compound **16j** (20.2 mg, 0.058 mmol) as described in the general procedure D, affording **8j** (9.8 mg, 55% yield, $R_f = 0.39$, $CH_2Cl_2/MeOH$, 7:1, v/v) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 4.23 (br s, 2H, 2OC*H*), 3.93-4.01 (m, 2H, 2OC*H*₂CH₂), 3.70 (d, *J* = 10.8 Hz, 3H, OC*H*₃), 3.39-3.45 (m, 2H, 2NC*H*HCH), 3.17-3.23 (m, 4H, 2NC*H*HCH, 2O*H*), 1.62-1.69 (m, 2H, OCH₂C*H*₂), 1.28-1.35 (m, 10H, 5C*H*₂), 0.88 (t, *J* = 6.8 Hz, 3H, CH₂C*H*₃); ¹³C NMR (101 MHz, CDCl₃): δ 71.85, 71.83, 71.76, 71.74, 66.92, 66.86, 53.25, 53.19, 51.62, 51.58, 51.54, 51.51, 31.92, 30.54, 30.47, 29.32, 29.29, 25.70, 22.77, 14.21; ³¹P NMR (162 MHz, CDCl₃): δ 9.19. HRMS (ESI) calcd for C₁₃H₂₈NO₅P [M+H]⁺: 310.1783, found: 310.1788.

Methyl-nonyl-((3S,4R)-3,4-dihydroxypyrrolidin-1-yl)phosphonate (8k)

Compound **8k** was prepared from compound **16k** (26.3 mg, 0.072 mmol) as described in the general procedure D, affording **8k** (10.1 mg, 43% yield, $R_f = 0.44$, CH₂Cl₂/MeOH, 7:1, v/v) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 4.23 (br s, 2H, 2OCH), 3.93-4.01 (m, 2H, 2OCH₂CH₂), 3.70 (d, J = 11.2 Hz, 3H, OCH₃), 3.39-3.45 (m, 2H, 2NCHHCH), 3.17-3.23 (m, 4H, 2NCHHCH, 2OH), 1.62-1.69 (m, 2H, OCH₂CH₂), 1.27-1.33 (m, 12H, 6CH₂), 0.88 (t, J = 6.8 Hz, 3H, CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃): δ 71.83, 71.81, 71.74, 71.72, 66.92, 66.86, 53.26, 53.20, 51.59, 51.56, 51.52, 51.48, 31.99, 30.53, 30.46, 29.62, 29.37, 29.34, 25.69, 22.80, 14.24; ³¹P NMR (162 MHz, CDCl₃): δ 8.43. HRMS (ESI) calcd for C₁₄H₃₀NO₅P [M+Na]⁺: 346.1754, found: 346.1761.

Methyl-decyl-((3S,4R)-3,4-dihydroxypyrrolidin-1-yl)phosphonate (8l)

Compound **8I** was prepared from compound **16I** (15.0 mg, 0.040 mmol) as described in the general procedure D, affording **8I** (7.2 mg, 53% yield, $R_f = 0.29$, $CH_2Cl_2/MeOH$, 10:1, v/v) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 4.24 (br s, 2H, 2OC*H*), 3.93-4.02 (m, 2H, 2OC*H*₂CH₂), 3.70 (d, *J* = 10.8 Hz, 3H, OC*H*₃), 3.39-3.42 (m, 2H, 2NC*H*HCH), 3.18-3.22 (m, 2H, 2NC*H*HCH), 2.84 (m, 2H, 2O*H*), 1.61-1.68 (m, 2H, OCH₂C*H*₂), 1.26 (br m, 14H, 7C*H*₂), 0.88 (t, *J* = 6.4 Hz, 3H, CH₂C*H*₃); ¹³C NMR (101 MHz, CDCl₃): δ 71.85, 71.83, 71.76, 71.74, 66.91, 66.85, 53.25, 53.20, 51.61, 51.57, 51.54, 51.50, 32.03, 30.54, 30.47, 29.67, 29.44, 29.34, 25.70, 22.82, 14.25; ³¹P NMR (162 MHz, CDCl₃): δ 9.19. HRMS (ESI) calcd for C₁₅H₃₂NO₅P [M+H]⁺: 338.2091, found: 338.2014.

Biology Section

All experiments were performed in compliance with the relevant laws and institutional guidelines, and were approved by the Ethics Committee of Peking University Health Science Center.

Mouse-Splenocyte-Proliferation-Inhibition Assay

Male BALB/c mouse splenocytes (5×10^5 cells per well), which had been pretreated with Con A (Sigma) ($5 \mu g/mL$) and each compound ($30 \mu M$), were incubated at 37 °C for 48 h under 5% CO₂ in a RPMI-1640 medium (Hyclone) that contained 10% fetal bovine serum (Hyclone). CCK-8 ($10 \mu L$, Dojindo) was added to each well and the plates were further incubated for 3 h at 37 °C. The optical density was measured by using a Microplate Reader (Tecan) at 450 nm. The IC₅₀ values were determined from the results of three independent experiments and calculated from the inhibition curves.

Mouse-Cytokine-Secretion-Inhibition Assay

Male BALB/c mouse splenocytes were pretreated with Con A (5 μ g/mL) and each compound (30 μ M) in 5% CO₂ at 37 °C. After 48 h, the supernatant was collected and stored at -20 °C. The concentration of IL-4 or IFN- γ was

detected with instant ELISA kits (eBioscience). The 96-well plates were precoated with the capture antibody of IFN- γ or IL-4 and blotted. Then, the standards and the detecting samples were added to the appropriate wells. The plates were covered and incubated at room temperature for 2 h until the addition of detection antibody and Avilin-HRP. The wells were washed with PBST after each step above. Finally, the substrate solution was added to each well for 15 min. The reaction was stopped and read at 450 nm. The density of IFN- γ or IL-4 in the samples was determined according to the standard curve.

References:

P. Srihari, B. Kumaraswamy and J. S. Yadav, *Tetrahedron*, 2009, **65**, 6304-6309.
T. M. Chapman, S. Courtney, P. Hay and B. G. Davis, *Chem. Eur. J.*, 2003, **9**, 3397-3414.

¹H NMR Spectrum of Compound **15**j

³¹P NMR Spectrum of Compound 15j

¹H NMR Spectrum of Compound 15k

¹³C NMR Spectrum of Compound **15**k

³¹P NMR Spectrum of Compound **15k**

¹H NMR Spectrum of Compound 15l

¹³C NMR Spectrum of Compound 15l

³¹P NMR Spectrum of Compound 15l

¹H NMR Spectrum of Compound **16a**

¹³C NMR Spectrum of Compound 16a

³¹P NMR Spectrum of Compound 16a

¹H NMR Spectrum of Compound 16b

¹³C NMR Spectrum of Compound 16b

³¹P NMR Spectrum of Compound 16b

¹H NMR Spectrum of Compound 16c

¹³C NMR Spectrum of Compound 16c

³¹P NMR Spectrum of Compound **16c**

¹H NMR Spectrum of Compound 16d

¹³C NMR Spectrum of Compound 16d

³¹P NMR Spectrum of Compound 16d

¹³C NMR Spectrum of Compound 16e

³¹P NMR Spectrum of Compound 16e

¹H NMR Spectrum of Compound **16f**

¹³C NMR Spectrum of Compound 16f

³¹P NMR Spectrum of Compound 16f

¹³C NMR Spectrum of Compound 16g

³¹P NMR Spectrum of Compound 16g

¹H NMR Spectrum of Compound **16h**

¹³C NMR Spectrum of Compound 16h

³¹P NMR Spectrum of Compound **16h**

¹H NMR Spectrum of Compound 16i

¹³C NMR Spectrum of Compound 16i

³¹P NMR Spectrum of Compound 16i

H-H COSY Spectrum of Compound 16i

HSQC Spectrum of Compound 16i

¹H NMR Spectrum of Compound **16j**

¹³C NMR Spectrum of Compound 16j

³¹P NMR Spectrum of Compound 16j

¹³C NMR Spectrum of Compound 16k

³¹P NMR Spectrum of Compound **16k**

H-H COSY Spectrum of Compound 16k

HSQC Spectrum of Compound 16k

¹H NMR Spectrum of Compound 16l

³¹P NMR Spectrum of Compound 161

¹H NMR Spectrum of Compound 8a

¹³C NMR Spectrum of Compound 8a

³¹P NMR Spectrum of Compound 8a

¹H NMR Spectrum of Compound 8b

³¹P NMR Spectrum of Compound **8b**

¹H NMR Spectrum of Compound 8c

¹³C NMR Spectrum of Compound 8c

³¹P NMR Spectrum of Compound 8c

¹H NMR Spectrum of Compound 8d

³¹P NMR Spectrum of Compound 8d

¹H NMR Spectrum of Compound 8e

¹³C NMR Spectrum of Compound 8e

³¹P NMR Spectrum of Compound 8e

¹H NMR Spectrum of Compound 8f

³¹P NMR Spectrum of Compound 8f

¹H NMR Spectrum of Compound 8g

¹³C NMR Spectrum of Compound 8g

³¹P NMR Spectrum of Compound 8g

¹H NMR Spectrum of Compound 8h

¹³C NMR Spectrum of Compound 8h

³¹P NMR Spectrum of Compound 8h

¹H NMR Spectrum of Compound 8i

¹³C NMR Spectrum of Compound 8i

³¹P NMR Spectrum of Compound 8i

¹H NMR Spectrum of Compound 8j

¹³C NMR Spectrum of Compound 8j

³¹P NMR Spectrum of Compound 8j

¹³C NMR Spectrum of Compound 8k

³¹P NMR Spectrum of Compound 8k

H-H COSY Spectrum of Compound 8k

¹H NMR Spectrum of Compound 81

¹³C NMR Spectrum of Compound 81

³¹P NMR Spectrum of Compound 81