A Facile Approach to β-Amino Acid Derivatives via

Palladium-Catalyzed Hydrocarboxylation of Enimides with Formic Acid

Jie Dai,^a Wenlong Ren,^a Haining Wang,^a and Yian Shi^{*,a,b,c}

^aState Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Center for Multimolecular Organic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China; ^bBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; ^cDepartment of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States.

Supporting Information

Table of Contents

Experimental procedures and characterization data	S-2
X-ray structure of 2a	S-9
NMR spectra	S-21

General Methods. All commercially available reagents were used without further purification. All solvents used for the reaction were purified with solvent purification system. Column chromatography was performed on silica gel (200-300 mesh). ¹H NMR spectra were recorded on a 400 MHz NMR spectrometer and ¹³C NMR spectra were recorded on a 100 MHz NMR spectrometer. IR spectra were recorded on a FT-IR spectrometer. Melting points were uncorrected. Compound **1a** was purchased from the commercial supplier and other enimides were synthesized according to the literature procedures.^{1,2}

1) V. I. Timokhin, N. R. Anastasi, S. S. Stahl, J. Am. Chem. Soc., 2003, 125, 12996.

2) J. L. Brice, J. E. Harang, V. I. Timokhin, N. R. Anastasi, S. S. Stahl, J. Am. Chem. Soc., 2005, 127, 2868.

Representative procedure for hydrocarboxylation (Table 2, 2b). To a mixture of $(\eta^3-C_3H_5)_2Pd_2Cl_2$ (0.00090 g, 0.0025 mmol), L3 (0.0054 g, 0.010 mmol), and toluene (0.50 mL) in a vial (5.0 mL) were added enimide 1b (0.1146 g, 0.50 mmol), HCOOPh (0.0122 g, 0.10 mmol) and HCOOH (0.046 g, 1.00 mmol) successively via syringe. The vial was purged with Ar to remove the air and tightly sealed with a septum cap. The reaction mixture was stirred at 80 °C for 24 h, cooled to rt, and purified by flash chromatography (silica gel, eluent: petroleum ether/ethyl acetate/HOAc = 10/1/0.11) to give compound 2b as a light yellow solid (0.1283 g, 93% yield).

Table 2, 2a

Yellow solid; mp. 161-163°C; IR (film) 3062, 1770, 1709, 1393 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.88-7.83 (m, 2H), 7.75-7.70 (m, 2H), 4.01 (t, *J* = 7.3 Hz, 2H), 2.80 (t, *J* = 7.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 176.3, 168.2, 134.3, 132.2, 123.6, 33.6, 32.7; HRMS (ESI) Calcd for C₁₁H₉NNaO₄ (M+Na): 242.0424; Found: 242.0422.

E. Guénin, M. Monteil, N. Bouchemal, T. Prangé, M. Lecouvey, *Eur. J. Org. Chem.*, 2007, 3380.

Table 2, 2b

Yellow solid; mp. 118-119 °C; IR (film) 3225, 1773, 1706, 722 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.84-7.79 (m, 2H), 7.74-7.68 (m, 2H), 4.66-4.58 (m, 1H), 3.20 (dd, J = 16.5, 9.2 Hz, 1H), 2.81 (dd, J = 16.5, 5.4 Hz, 1H), 2.11-1.98 (m, 1H), 1.76-1.65 (m, 1H), 1.39-1.10 (m, 4H), 0.83 (t, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.9, 168.5, 134.2, 131.9, 123.5, 47.9, 36.9, 32.3, 28.6, 22.4, 14.1; HRMS (ESI) Calcd for C₁₅H₁₇NNaO₄ (M+Na): 298.1050; Found: 298.1043.

Table 2, 2c

Yellow oil; IR (film) 3222, 1770, 1709, 722 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.84-7.79 (m, 2H), 7.73-7.68 (m, 2H), 4.67-4.58 (m, 1H), 3.21 (dd, J = 16.5, 9.2 Hz, 1H),

2.81 (dd, J = 16.5, 5.5 Hz, 1H), 2.10-1.99 (m, 1H), 1.76-1.65 (m, 1H), 1.34-1.13 (m, 8H), 0.83 (t, J = 6.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.0, 168.5, 134.2, 131.9, 123.5, 47.9, 36.9, 32.6, 31.8, 28.9, 26.4, 22.7, 14.2; HRMS (ESI) Calcd for C₁₅H₁₇NNaO₄ (M+Na): 326.1363; Found: 326.1358.

Table 2, 2d

Yellow oil; IR (film) 3225, 1773, 1710, 720 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.80-7.74 (m, 2H), 7.71-7.66 (m, 2H), 7.18-7.01 (m, 5H), 4.75-4.66 (m, 1H), 3.20 (dd, J = 16.6, 9.0 Hz, 1H), 2.85 (dd, J = 16.6, 5.7 Hz, 1H), 2.71-2.61 (m, 3H), 2.59-2.43 (m, 2H), 2.08-1.98 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.7, 168.5, 140.7, 134.1, 131.8, 128.5, 128.4, 126.1, 123.5, 47.8, 37.0, 33.7, 33.0; HRMS (ESI) Calcd for C₁₉H₁₆NNaO₄ (M+Na): 346.1050; Found: 346.1048.

A. Temperini, R. Terlizzi, L. Testaferri, M. Tiecco, Chem. Eur. J., 2009, 15, 7883.

Table 2, 2e

Yellow oil; IR (film) 3219, 1770, 1733, 1706, 719 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.83-7.78 (m, 2H), 7.73-7.67 (m, 2H), 4.66-4.57 (m, 1H), 4.03-3.91 (m, 2H), 3.15 (dd, J = 16.5, 8.9 Hz, 1H), 2.80 (dd, J = 16.5, 5.6 Hz, 1H), 2.14-2.02 (m, 1H), 1.96 (s, 3H), 1.77-1.51 (m, 3H), 1.39-1.19 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 176.3, 171.5, 168.5, 134.3, 131.8, 123.5, 64.3, 47.7, 37.0, 32.0, 28.1, 22.9, 21.1; HRMS (ESI) Calcd for C₁₇H₁₉NNaO₆ (M+Na): 356.1105; Found: 356.1106.

Table 2, 2f

Yellow oil; IR (film) 3224, 1770, 1709, 719 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.77 (m, 2H), 7.73-7.67 (m, 2H), 4.36-4.27 (m, 1H), 3.30-3.20 (m, 1H), 2.84 (dt, J = 16.5, 4.2 Hz, 1H), 2.06-1.43 (m, 6H), 1.33-0.80 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 177.6, 168.6, 134.1, 131.7, 123.5, 52.9, 39.6, 34.2, 30.5, 29.8, 26.1, 25.9, 25.8; HRMS (ESI) Calcd for C₁₇H₁₉NNaO₄ (M+Na): 324.1206; Found: 324.1207.

A. Temperini, R. Terlizzi, L. Testaferri, M. Tiecco, Chem. Eur. J., 2009, 15, 7883.

Table 2, 2g

Yellow solid; mp. 177-178 °C; IR (film) 3219, 1770, 1711, 719, cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.77 (m, 2H), 7.71-7.66 (m, 2H), 7.54-7.49 (m, 2H), 7.35-7.25 (m, 3H), 5.79 (dd, J = 9.9, 5.8 Hz, 1H), 3.85 (dd, J = 17.1, 9.9 Hz, 1H), 3.28 (dd, J = 17.1, 5.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.5, 168.2, 138.5, 134.2, 131.9, 129.0, 128.5, 127.9, 123.6, 50.7, 35.9; HRMS (ESI) Calcd for C₁₇H₁₃NNaO₄ (M+Na): 318.0737; Found: 318.0739.

Table 2, 2h

Yellow solid; mp. 175-176 °C; IR (film) 3094, 1770, 1704, 717 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.81-7.76 (m, 2H), 7.70-7.65 (m, 2H), 7.40 (d, J = 8.1 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 5.76 (dd, J = 9.8, 5.9 Hz, 1H), 3.81 (dd, J = 17.0, 9.8 Hz, 1H), 3.27 (dd, J = 17.0, 5.9 Hz, 1H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.7, 168.2, 138.2, 135.5, 134.2, 131.9, 129.6, 127.8, 123.5, 50.4, 35.9, 21.2; HRMS (ESI) Calcd for C₁₈H₁₅NNaO₄ (M+Na): 332.0893; Found: 332.0894.

Table 2, 2i

Yellow oil; IR (film) 3213, 1767, 1709, 716 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.81-7.76 (m, 2H), 7.70-7.66 (m, 2H), 7.46 (d, J = 8.7 Hz, 2H), 6.84 (d, J = 8.7 Hz, 2H), 5.75 (dd, J = 9.8, 6.0 Hz, 1H), 3.80 (dd, J = 17.0, 9.8 Hz, 1H), 3.76 (s, 3H), 3.28 (dd, J = 17.0, 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.3, 168.3, 159.6, 134.2, 132.0, 130.7, 129.3, 123.5, 114.2, 55.4, 50.2, 36.0; HRMS (ESI) Calcd for C₁₈H₁₅NNaO₅ (M+Na): 348.0842; Found: 348.0846.

Table 2, 2j

Yellow solid; mp. 149-151 °C; IR (film) 3222, 1771, 1712, 717 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.83-7.77 (m, 2H), 7.72-7.67 (m, 2H), 7.46 (d, *J* = 8.5 Hz, 2H), 7.29 (d, *J* = 8.5 Hz, 2H), 5.76 (dd, *J* = 9.4, 6.2 Hz, 1H), 3.76 (dd, *J* = 17.1, 9.4 Hz, 1H), 3.30 (dd, *J* = 17.1, 6.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.3, 168.1, 136.9, 134.4, 131.8, 129.5, 129.1,

123.7, 50.0, 35.8; HRMS (ESI) Calcd for $C_{17}H_{12}CINNaO_4$ (M+Na): 352.0347; Found: 352.0350.

Table 2, 2k

Yellow solid; mp.118-119 °C; IR (film) 3219, 1770, 1711, 721 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.77 (m, 2H), 7.71-7.66 (m, 2H), 7.24 (t, *J* = 8.1 Hz, 1H), 7.12-7.05 (m, 2H), 6.81 (dd, *J* = 8.2, 2.4 Hz, 1H), 5.76 (dd, *J* = 10.0, 5.8 Hz, 1H), 3.84 (dd, *J* = 17.1, 10.0 Hz, 1H), 3.78 (s, 3H), 3.27 (dd, *J* = 17.1, 5.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.3, 168.2, 160.0, 140.0, 134.2, 131.9, 130.0, 123.6, 120.2, 114.0, 113.7, 55.4, 50.8, 35.9; HRMS (ESI) Calcd for C₁₈H₁₅NNaO₅ (M+Na): 348.0842; Found: 348.0846.

Table 2, 2l

Yellow solid; mp. 173-175 °C; IR (film) 3463, 1770, 1705 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.86-7.75 (m, 5H), 7.71-7.61 (m, 3H), 7.50-7.42 (m, 2H), 5.97 (dd, J = 9.8, 5.9 Hz, 1H), 3.94 (dd, J = 17.0, 9.8 Hz, 1H), 3.42 (dd, J = 17.0, 5.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 168.3, 135.8, 134.3, 133.3, 133.2, 131.9, 128.9, 128.4, 127.8, 127.1, 126.6, 126.57, 125.7, 123.6, 50.9, 35.8; HRMS (ESI) Calcd for C₂₁H₁₆NO₄ (M+H): 346.1074; Found: 346.1076.

Table 1, 3b

Yellow solid; mp. 100-101 °C; IR (film) 1756, 1708, 1638, 1370 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.86-7.80 (m, 2H), 7.73-7.67 (m, 2H), 7.34-7.28 (m, 2H), 7.20-7.14 (m, 1H), 7.01-6.96 (m, 2H), 4.82-4.73 (m, 1H), 3.44 (dd, *J* = 15.9, 9.8 Hz, 1H), 3.02 (dd, *J* = 15.9, 5.0 Hz, 1H), 2.23-2.10 (m, 1H), 1.88-1.77 (m, 1H), 1.44-1.19 (m, 4H), 0.87 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 168.6, 150.6, 134.2, 132.0, 129.6, 126.1, 123.5, 121.6, 48.3, 37.4, 32.4, 28.7, 22.4, 14.1; HRMS (ESI) Calcd for C₂₁H₂₂NO₄ (M+H): 352.1543; Found: 352.1545.

Procedure for the hydrolysis in Scheme 3

To a solution of compound **2c** (0.1517 g, 0.50 mmol) in EtOH (14 mL) was added hydrazine hydrate (0.41 g, 8.3 mmol) dropwise. The reaction mixture was stirred at reflux for 4 h, cooled to room temperature, filtered, and washed with ether (3x). The filtrate was concentrated to give amino acid **3c** (0.085 g, 98%) as a white solid; mp. 212-213 °C; IR (film) 3405, 2955, 2926, 2859, 1573, 1396 cm⁻¹; ¹H NMR (400 MHz, D₂O) δ 3.54-3.45 (m, 1H), 2.57 (dd, *J* = 16.6, 4.8 Hz, 1H), 2.43 (dd, *J* = 16.6, 8.3 Hz, 1H), 1.66 (m, 2H), 1.45-1.24 (m, 8H), 0.88 (t, *J* = 5.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 178.2, 49.4, 38.5, 32.1, 30.7, 28.0, 24.3, 21.8, 13.3; HRMS (ESI) Calcd for C₉H₂₀NO₂ (M+H): 174.1489; Found: 174.1484.

B. Weiner, A. Baeza, T. Jerphagnon, B. L. Feringa, J. Am. Chem. Soc., 2009, 131, 9473.

The X-ray structure of compound 2a

S-9

		<i>a</i> .	
Identification code	2a		
Empirical formula	C ₁₁ H ₉ N O ₄		
Formula weight	219.19		
Temperature	173.1500 K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	a = 8.629(2) Å	a= 80.505(11)°.	
	b = 10.440(3) Å	b= 76.238(11)°.	
	c = 12.379(4) Å	$g = 65.983(9)^{\circ}$.	
Volume	986.5(5) Å ³		
Ζ	4		
Density (calculated)	1.476 Mg/m ³		
Absorption coefficient	0.114 mm ⁻¹		
F(000)	456		
Crystal size	0.43 x 0.32 x 0.24 mm ³		
Theta range for data collection	2.630 to 27.497°.		
Index ranges	-10<=h<=11, -13<=k<=12, -	15<=l<=16	
Reflections collected	8415		
Independent reflections	4432 [R(int) = 0.0257]		
Completeness to theta = 26.000°	98.0 %		
Absorption correction	Semi-empirical from equival	ents	
Max. and min. transmission	1.0000 and 0.8664		
Refinement method	Full-matrix least-squares on	F ²	
Data / restraints / parameters	4432 / 0 / 291		
Goodness-of-fit on F^2	1.127		
Final R indices [I>2sigma(I)]	R1 = 0.0492, $wR2 = 0.1175$		
R indices (all data)	R1 = 0.0553, wR2 = 0.1215		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.248 and -0.252 e.Å ⁻³		

Table 1. Crystal data and structure refinement for 2a.

	X	у	Z	U(eq)
01	2179(2)	4723(1)	376(1)	39(1)
O2	2132(2)	9137(1)	-688(1)	39(1)
O3	-1203(2)	7294(1)	-2604(1)	29(1)
O4	-3599(2)	8611(1)	-1488(1)	33(1)
N1	1908(2)	6969(1)	-350(1)	27(1)
C1	2480(2)	5757(2)	361(1)	26(1)
C2	3498(2)	6036(2)	1046(1)	25(1)
C3	4341(2)	5203(2)	1882(1)	32(1)
C4	5164(2)	5770(2)	2390(1)	37(1)
C5	5144(2)	7109(2)	2066(1)	36(1)
C6	4310(2)	7944(2)	1211(1)	31(1)
C7	3486(2)	7375(2)	715(1)	24(1)
C8	2458(2)	7994(2)	-185(1)	27(1)
C9	962(2)	7099(2)	-1219(1)	33(1)
C10	-975(2)	7823(2)	-850(1)	27(1)
C11	-1916(2)	7873(2)	-1742(1)	25(1)
O1A	7350(2)	4462(1)	4622(1)	39(1)
O2A	8693(2)	-23(1)	6221(1)	40(1)
O3A	5061(2)	1644(2)	3108(1)	43(1)
O4A	2678(2)	2080(2)	4405(1)	49(1)
N1A	7796(2)	2160(1)	5259(1)	27(1)
C1A	7964(2)	3436(2)	5234(1)	26(1)
C2A	9022(2)	3237(2)	6083(1)	24(1)
C3A	9587(2)	4153(2)	6400(1)	30(1)
C4A	10595(2)	3645(2)	7220(1)	33(1)
C5A	11013(2)	2277(2)	7694(1)	33(1)
C6A	10435(2)	1360(2)	7375(1)	29(1)
C7A	9435(2)	1871(2)	6563(1)	23(1)
C8A	8646(2)	1164(2)	6040(1)	26(1)
C9A	7000(2)	1851(2)	4476(1)	32(1)
C10A	5125(2)	2077(2)	4927(1)	29(1)
C11A	4302(2)	1902(2)	4054(1)	28(1)

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for **2a**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

01-C1	1.205(2)
O2-C8	1.206(2)
O3-C11	1.2161(19)
O4-H4	0.8200
O4-C11	1.3244(19)
N1-C1	1.396(2)
N1-C8	1.394(2)
N1-C9	1.4564(19)
C1-C2	1.490(2)
C2-C3	1.379(2)
C2-C7	1.387(2)
С3-Н3	0.9300
C3-C4	1.388(3)
C4-H4A	0.9300
C4-C5	1.384(3)
С5-Н5	0.9300
C5-C6	1.395(2)
С6-Н6	0.9300
C6-C7	1.381(2)
C7-C8	1.487(2)
С9-Н9А	0.9700
С9-Н9В	0.9700
C9-C10	1.515(2)
C10-H10A	0.9700
C10-H10B	0.9700
C10-C11	1.502(2)
O1A-C1A	1.2101(19)
O2A-C8A	1.208(2)
O3A-C11A	1.211(2)
O4A-H4AA	0.8200
O4A-C11A	1.308(2)
N1A-C1A	1.392(2)
N1A-C8A	1.393(2)
N1A-C9A	1.4538(19)
C1A-C2A	1.487(2)
C2A-C3A	1.378(2)

Table 3. Bond lengths [Å] and angles $[\circ]$ for **2a**.

C2A-C7A	1.386(2)
СЗА-НЗА	0.9300
C3A-C4A	1.391(2)
C4A-H4AB	0.9300
C4A-C5A	1.385(3)
C5A-H5A	0.9300
C5A-C6A	1.389(2)
C6A-H6A	0.9300
C6A-C7A	1.379(2)
C7A-C8A	1.485(2)
С9А-Н9АА	0.9700
С9А-Н9АВ	0.9700
C9A-C10A	1.512(2)
C10A-H10C	0.9700
C10A-H10D	0.9700
C10A-C11A	1.498(2)
С11-О4-Н4	109.5
C1-N1-C9	123.58(14)
C8-N1-C1	112.17(12)
C8-N1-C9	124.09(14)
01-C1-N1	124.74(15)
O1-C1-C2	129.49(15)
N1-C1-C2	105.77(13)
C3-C2-C1	130.34(15)
C3-C2-C7	121.70(15)
C7-C2-C1	107.96(13)
С2-С3-Н3	121.5
C2-C3-C4	117.08(16)
С4-С3-Н3	121.5
С3-С4-Н4А	119.4
C5-C4-C3	121.29(16)
С5-С4-Н4А	119.4
С4-С5-Н5	119.2
C4-C5-C6	121.63(16)
С6-С5-Н5	119.2
С5-С6-Н6	121.7
C7-C6-C5	116.66(16)

С7-С6-Н6	121.7
C2-C7-C8	108.38(13)
C6-C7-C2	121.65(15)
C6-C7-C8	129.96(15)
O2-C8-N1	125.22(15)
O2-C8-C7	129.05(15)
N1-C8-C7	105.73(13)
N1-C9-H9A	109.1
N1-C9-H9B	109.1
N1-C9-C10	112.61(13)
Н9А-С9-Н9В	107.8
С10-С9-Н9А	109.1
С10-С9-Н9В	109.1
С9-С10-Н10А	109.4
С9-С10-Н10В	109.4
H10A-C10-H10B	108.0
С11-С10-С9	111.26(13)
C11-C10-H10A	109.4
С11-С10-Н10В	109.4
O3-C11-O4	123.86(14)
O3-C11-C10	123.37(14)
O4-C11-C10	112.77(13)
C11A-O4A-H4AA	109.5
C1A-N1A-C8A	111.99(12)
C1A-N1A-C9A	123.99(13)
C8A-N1A-C9A	123.66(13)
O1A-C1A-N1A	124.52(15)
O1A-C1A-C2A	129.50(15)
N1A-C1A-C2A	105.98(13)
C3A-C2A-C1A	130.58(14)
C3A-C2A-C7A	121.49(14)
C7A-C2A-C1A	107.93(13)
С2А-С3А-Н3А	121.4
C2A-C3A-C4A	117.11(15)
С4А-С3А-Н3А	121.4
СЗА-С4А-Н4АВ	119.4
C5A-C4A-C3A	121.29(15)
С5А-С4А-Н4АВ	119.4

119.3
121.38(15)
119.3
121.5
117.01(15)
121.5
108.24(13)
121.72(14)
130.04(15)
124.85(14)
129.29(15)
105.86(13)
109.0
109.0
112.87(13)
107.8
109.0
109.0
109.4
109.4
108.0
111.15(13)
109.4
109.4
123.37(14)
123.10(14)
113.51(14)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
01	43(1)	35(1)	45(1)	-6(1)	-6(1)	-21(1)	
02	45(1)	30(1)	40(1)	6(1)	-19(1)	-11(1)	
03	33(1)	30(1)	27(1)	-3(1)	-13(1)	-10(1)	
O4	29(1)	39(1)	35(1)	-10(1)	-14(1)	-8(1)	
N1	28(1)	29(1)	27(1)	-5(1)	-12(1)	-9(1)	
C1	24(1)	28(1)	26(1)	-5(1)	-3(1)	-9(1)	
C2	21(1)	29(1)	22(1)	-3(1)	-4(1)	-7(1)	
C3	27(1)	35(1)	26(1)	4(1)	-4(1)	-6(1)	
C4	24(1)	54(1)	23(1)	-1(1)	-9(1)	-4(1)	
C5	23(1)	58(1)	31(1)	-13(1)	-6(1)	-13(1)	
C6	26(1)	37(1)	33(1)	-7(1)	-6(1)	-13(1)	
C7	21(1)	28(1)	24(1)	-3(1)	-6(1)	-7(1)	
C8	26(1)	26(1)	26(1)	-3(1)	-8(1)	-7(1)	
C9	31(1)	43(1)	28(1)	-10(1)	-13(1)	-9(1)	
C10	29(1)	28(1)	26(1)	-4(1)	-12(1)	-11(1)	
C11	28(1)	21(1)	28(1)	-1(1)	-10(1)	-11(1)	
O1A	39(1)	35(1)	39(1)	9(1)	-18(1)	-11(1)	
O2A	49(1)	30(1)	49(1)	0(1)	-17(1)	-20(1)	
O3A	29(1)	70(1)	32(1)	-19(1)	-9(1)	-13(1)	
O4A	35(1)	91(1)	34(1)	-21(1)	-4(1)	-32(1)	
N1A	26(1)	30(1)	27(1)	-4(1)	-11(1)	-9(1)	
C1A	22(1)	28(1)	25(1)	-2(1)	-6(1)	-7(1)	
C2A	20(1)	27(1)	24(1)	-3(1)	-4(1)	-9(1)	
C3A	29(1)	30(1)	34(1)	-5(1)	-3(1)	-14(1)	
C4A	28(1)	45(1)	36(1)	-12(1)	-4(1)	-20(1)	
C5A	27(1)	51(1)	25(1)	-5(1)	-8(1)	-16(1)	
C6A	29(1)	34(1)	26(1)	3(1)	-10(1)	-12(1)	
C7A	22(1)	27(1)	23(1)	-3(1)	-4(1)	-10(1)	
C8A	26(1)	28(1)	27(1)	-3(1)	-7(1)	-10(1)	
C9A	29(1)	44(1)	28(1)	-11(1)	-10(1)	-13(1)	
C10A	31(1)	32(1)	26(1)	-5(1)	-11(1)	-12(1)	
C11A	28(1)	30(1)	28(1)	-4(1)	-10(1)	-10(1)	

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for **2a**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$

	х	У	Z	U(eq)
H4	-4065	8583	-1984	50
Н3	4357	4302	2097	39
H4A	5740	5239	2960	44
Н5	5700	7461	2426	44
Н6	4309	8839	985	37
H9A	1225	6168	-1432	40
H9B	1346	7628	-1870	40
H10A	-1357	7323	-178	32
H10B	-1250	8774	-677	32
H4AA	2247	2109	3874	74
H3A	9306	5070	6080	36
H4AB	10995	4236	7455	40
H5A	11696	1966	8237	40
H6A	10709	443	7695	35
Н9АА	7638	881	4295	39
H9AB	7077	2447	3793	39
H10C	5051	1406	5561	34
H10D	4504	3015	5182	34

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10^3) for **2a**.

01-C1-C2-C3	-1.0(3)		
01-C1-C2-C7	179.53(16)		
N1-C1-C2-C3	179.39(16)		
N1-C1-C2-C7	-0.06(16)		
N1-C9-C10-C11	-177.04(13)		
C1-N1-C8-O2	-179.60(15)		
C1-N1-C8-C7	0.20(17)		
C1-N1-C9-C10	97.04(18)		
C1-C2-C3-C4	-178.71(15)		
C1-C2-C7-C6	179.23(14)		
C1-C2-C7-C8	0.17(16)		
C2-C3-C4-C5	-0.3(2)		
C2-C7-C8-O2	179.56(16)		
C2-C7-C8-N1	-0.23(17)		
C3-C2-C7-C6	-0.3(2)		
C3-C2-C7-C8	-179.33(14)		
C3-C4-C5-C6	-0.5(3)		
C4-C5-C6-C7	0.9(2)		
C5-C6-C7-C2	-0.5(2)		
C5-C6-C7-C8	178.34(15)		
C6-C7-C8-O2	0.6(3)		
C6-C7-C8-N1	-179.18(16)		
C7-C2-C3-C4	0.7(2)		
C8-N1-C1-O1	-179.70(15)		
C8-N1-C1-C2	-0.09(17)		
C8-N1-C9-C10	-87.92(19)		
C9-N1-C1-O1	-4.1(2)		
C9-N1-C1-C2	175.47(13)		
C9-N1-C8-O2	4.9(3)		
C9-N1-C8-C7	-175.35(13)		
C9-C10-C11-O3	5.8(2)		
C9-C10-C11-O4	-174.22(13)		
O1A-C1A-C2A-C3A	-0.1(3)		
01A-C1A-C2A-C7A	-179.38(16)		
N1A-C1A-C2A-C3A	179.59(15)		
N1A-C1A-C2A-C7A	0.28(16)		

Table 6. Torsion angles [°] for **2a**.

N1A-C9A-C10A-C11A	173.72(14)
C1A-N1A-C8A-O2A	180.00(15)
C1A-N1A-C8A-C7A	-0.13(17)
C1A-N1A-C9A-C10A	-96.83(18)
C1A-C2A-C3A-C4A	-179.01(15)
C1A-C2A-C7A-C6A	179.10(14)
C1A-C2A-C7A-C8A	-0.36(16)
C2A-C3A-C4A-C5A	0.1(2)
C2A-C7A-C8A-O2A	-179.82(17)
C2A-C7A-C8A-N1A	0.31(16)
C3A-C2A-C7A-C6A	-0.3(2)
C3A-C2A-C7A-C8A	-179.74(14)
C3A-C4A-C5A-C6A	-0.4(3)
C4A-C5A-C6A-C7A	0.4(2)
C5A-C6A-C7A-C2A	0.0(2)
C5A-C6A-C7A-C8A	179.32(15)
C6A-C7A-C8A-O2A	0.8(3)
C6A-C7A-C8A-N1A	-179.09(15)
C7A-C2A-C3A-C4A	0.2(2)
C8A-N1A-C1A-O1A	179.59(15)
C8A-N1A-C1A-C2A	-0.09(17)
C8A-N1A-C9A-C10A	90.54(19)
C9A-N1A-C1A-O1A	6.2(2)
C9A-N1A-C1A-C2A	-173.48(13)
C9A-N1A-C8A-O2A	-6.6(3)
C9A-N1A-C8A-C7A	173.29(13)
C9A-C10A-C11A-O3A	-1.5(2)
C9A-C10A-C11A-O4A	179.63(16)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
O4-H4O3A#1	0.82	1.89	2.7088(17)	175.3	•
O4A-H4AAO3#1	0.82	1.89	2.6858(18)	163.8	
O4A-H4AAO2A#2	0.82	2.64	3.1091(19)	117.7	

Table 7. Hydrogen bonds for **2a** [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y+1,-z #2 -x+1,-y,-z+1

×0

-COOH

റ

S-31

Table 2, 2g 0= 0) COOH

S-33

S-34

COOPh

Ö

NH₂

соон

