Electronic Supplementary Information (ESI)

Synthesis of 2- and 6-thienylazulenes by palladium-catalyzed direct arylation of 2- and 6-haloazulenes with thiophene derivatives

Taku Shoji,*^{a,b} Akifumi Maruyama,^b Takanori Araki,^a Shunji Ito,^c and Tetsuo Okujima^d

^a Department of Chemistry, Faculty School of Science, Shinshu University, Matsumoto 390-8621, Nagano, Japan.

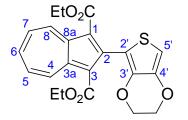
^b Department of Material Science, Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Nagano, Japan.

^c Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Aomori, Japan.

^d Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Ehime, Japan

Contents

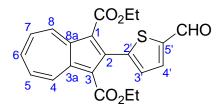
- 1. Experimental details of thienylazulenes **9–16** and bis(azulenyl)thiophenes **19–22**. S2–S14
- 2. Copies of ¹H NMR and ¹³C NMR of thienylazulenes **9–16** and bis(azulenyl)thiophenes **19–22**.


S15-S27

- UV/Vis spectra of thienylazulenes 9–16, bis(azulenyl)thiophenes 19–22, and azulene derivatives 1 and 23 as references. S28–S33
 Frontier Kohn–Sham orbitals of 1, 9, 14 and 23 at the B3LYP/6-31G** level. S34–S37
- 5. Cyclic and differential pulse voltammograms of thienylazulenes 9–16 and bis(azulenyl)thiophenes 19–22.
 S38–S41

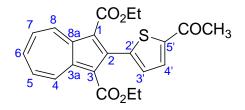
General

Melting points were determined with a Yanagimoto MPS3 micromelting apparatus, and the solvent in the parenthesis shows the solvent used for recrystallization. The HRMS data were obtained with a JEOL JMS-700 instrument using 3-nitrobenzylalcohol as a matrix of FAB–MS. The IR and UV/Vis spectra were recorded with JASCO FTIR-4100 and Shimadzu UV-2550 spectrophotometers, respectively. The ¹H and ¹³C NMR spectra were recorded with a JEOL ECA500 spectrometer at 500 and 125 MHz, respectively. The voltammetry measurements were performed with a BAS 100B/W electrochemical workstation equipped and with a standard three-electrode configuration and all measurements were carried out under an argon atmosphere. Tetraethylammonium perchlorate (0.10 M) in benzonitrile was used as a supporting electrolyte, with a platinum wire auxiliary and disk working electrodes. Reference electrode was formed from Ag/AgNO3 (0.01 M) in acetonitrile containing tetrabutylammonium perchlorate (0.10 M). The half-wave potential of the ferrocene/ferrocenium ion couple (Fc/Fc⁺) under these conditions using this reference electrode was observed at +0.15 V on CV. Accuracy of the reference electrode was confirmed by CV measurements of the couple in each sample as an internal ferrocene standard.


1,3-Bis(ethoxycarbonyl)-2-(3,4-ethylenedioxythiophen-2-yl)azulene (9)

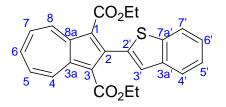
To a solution of 2 (307 mg, 1.00 mmol), EDOT (4) (284 mg, 2.00 mmol), $PCy_3 \cdot HBF_4$ (37 mg, 0.10 mmol), PivOH (31 mg, 0.30 mmol) and K_2CO_3 (207 mg, 1.50 mmol) in toluene (3 mL) was added $Pd(OAc)_2$ (11 mg, 0.05 mmol). The resulting mixture was stirred at 100 °C for 12 h under an Ar atmosphere. The reaction mixture was poured into water and extracted with toluene. The organic layer was washed with brine, dried with Na_2SO_4 , and concentrated under reduced pressure. The residue was purified by silica gel column chromatography with CH_2Cl_2 to give 9 (334 mg, 81%, red crystals) and 19 (46 mg, 7%, red crystals).

M.p. 110.0–111.0 °C (EtOH); IR (KBr disk): $v_{max} = 2979$ (w), 2941 (w), 1693 (m), 1678 (s), 1579 (w), 1514 (m), 1479 (w), 1432 (m), 1418 (m), 1386 (w), 1371 (m), 1354 (w), 1314 (w), 1302 (w), 1272 (w), 1256 (w), 1244 (w), 1185 (s), 1153 (m), 1114 (w), 1065 (s), 1030 (m), 992 (w), 977 (w), 934 (w), 909 (m), 885 (w), 859 (w), 800 (w), 789 (m), 740 (w), 713 (w), 699 (w), 670 (w), 661 (w) cm⁻¹; UV/Vis (CH₂Cl₂): λ_{max} (log ε) = 236 (4.44), 274 sh (4.44), 291 (4.57), 342 (4.29), 419 (3.81), 528 (2.79) nm; ¹H NMR (500 MHz, CDCl₃): $\delta_{H} = 9.46$ (d, 2H, J = 10.0 Hz, 4,8-H), 7.86 (t, 1H, J = 10.0 Hz, 6-H), 7.64 (t, 2H, J = 10.0 Hz, 5,7-H), 6.50 (s, 1H, 5'-H of Th), 4.26 (q, 4H, J = 7.0 Hz, CO₂Et), 4.19–4.16 (m, 4H, OCH₂CH₂O), 1.19 (t, 6H, J = 7.0 Hz, CO₂Et) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta_{C} = 165.64$ (CO₂Et), 143.66 (C-2), 142.34 (C-3a,8a), 140.89 (C-3' or C-4' of Th), 140.39 (C-6), 138.88 (C-3' or C-4' of Th), 138.61 (C-4,8), 130.12 (C-5,7), 118.33 (C-1,3), 113.16 (C-2' of Th), 99.98 (C-5' of Th), 64.88 (OCH₂), 64.74 (OCH₂), 60.31 (CO₂Et), 14.18 (CO₂Et) ppm; HR-EI-MS: calcd for C₂₂H₂₀O₆S⁺ [M]⁺ 412.0981; found: 412.0985.


1,3-Bis(ethoxycarbonyl)-2-(5'-formylthiophen-2'-yl)azulene (10)

To a solution of 2 (307 mg, 1.00 mmol), 2-formylthiophene (5) (224 mg, 2.00 mmol), $PCy_3 \cdot HBF_4$ (37 mg, 0.10 mmol), PivOH (31 mg, 0.30 mmol) and K_2CO_3 (207 mg, 1.50 mmol) in toluene (3 mL) was added $Pd(OAc)_2$ (11 mg, 0.05 mmol). The resulting mixture was stirred at 100 °C for 12 h under an Ar atmosphere. The reaction mixture was poured into water and extracted with toluene. The organic layer was washed with brine, dried with Na_2SO_4 , and concentrated under reduced pressure. The residue was purified by silica gel column chromatography with CH_2Cl_2 to give **10** (345 mg, 90%) as red crystals.

M.p. 108.0–109.0 °C (EtOH); IR (KBr disk): $v_{max} = 2980$ (w), 2802 (w), 1674 (s), 1659 (s), 1532 (w), 1486 (w), 1460 (w), 1427 (s), 1408 (s), 1380 (w), 1354 (w), 1315 (w), 1294 (w), 1254 (m), 1234 (m), 1222 (m), 1197 (m), 1182 (m), 1132 (w), 1091 (w), 1055 (m), 1031 (w), 982 (w), 947 (w), 908 (w), 886 (w), 868 (w), 823 (w), 796 (w), 755 (w), 745 (w), 705 (w), 687 (w), 666 (w), 658 (w) cm⁻¹; UV/Vis (CH₂Cl₂): λ_{max} (log ϵ) = 236 (4.45), 272 (4.38), 296 sh (4.55), 307 (4.65), 328 (4.45), 364 sh (4.05), 525 (2.86) nm; 'H NMR (500 MHz, CDCl₃): $\delta_{H} = 9.96$ (s, 1H, CHO), 9.69 (d, 2H, *J* = 10.0 Hz, 4,8-H), 8.01 (t, 1H, *J* = 10.0 Hz, 6-H), 7.79–7.75 (m, 3H, 5,7-H and 4'-H of Th), 7.10 (d, 1H, *J* = 3.5 Hz, 3'-H of Th), 4.17 (q, 4H, *J* = 7.0 Hz, CO₂Et) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta_{C} = 182.98$ (CHO), 164.92 (CO₂Et), 150.55 (C-5' of Th), 145.33 (C-2), 143.77 (C-2' of Th), 142.57 (C-3a,8a), 141.73 (C-6), 140.17 (C-4,8), 135.65 (C-4' of Th), 131.05 (C-5,7), 128.56 (C-3' of Th), 117.86 (C-1,3), 60.39 (CO₂Et), 13.84 (CO₂Et) ppm; HR-EI-MS: calcd for C₂₁H₁₈O₅S⁺ [M]⁺ 382.0875; found: 382.0869.


1,3-Bis(ethoxycarbonyl)-2-(5'-acetylthiophen-2'-yl)azulene (11)

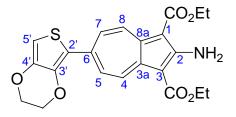
To a solution of 2 (307 mg, 1.00 mmol), 2-acetylthiophene (6) (252 mg, 2.00 mmol), $PCy_3 \cdot HBF_4$ (37 mg, 0.10 mmol), PivOH (31 mg, 0.30 mmol) and K_2CO_3 (207 mg, 1.50 mmol) in toluene (3 mL) was added $Pd(OAc)_2$ (11 mg, 0.05 mmol). The resulting mixture was stirred at 100 °C for 12 h under an Ar atmosphere. The reaction mixture was poured into water and extracted with toluene. The organic layer was washed with brine, dried with Na_2SO_4 , and concentrated under reduced pressure. The residue was purified by silica gel column chromatography with CH_2Cl_2 to give 11 (351 mg, 89%) as red crystals.

M.p. 102.0–104.0 °C (MeOH); IR (KBr disk): $v_{max} = 2983$ (w), 2898 (w), 1692 (s), 1671 (m), 1655 (s), 1581 (w), 1530 (w), 1478 (w), 1453 (w), 1432 (s), 1406 (s), 1368 (w), 1354 (w), 1317 (w), 1275 (m), 1250 (m), 1214 (m), 1190 (s), 1122 (w), 1072 (w), 1060 (m), 1028 (m), 973 (w), 929 (w), 883 (w), 815 (w), 795 (m), 760 (w), 747 (w), 732 (w), 722 (w), 701 (w), 684 (w), 663 (w) cm⁻¹; UV/Vis (CH₂Cl₂): λ_{max} (log ε) = 236 (4.44), 274 (4.35), 296 sh (4.57), 306 (4.64), 333 (4.40), 363 sh (4.03), 514 (2.85) nm; ¹H NMR (500 MHz, CDCl₃): $\delta_{H} = 9.64$ (d, 2H, *J* = 10.0 Hz, 4,8-H), 7.99 (t, 1H, *J* = 10.0 Hz, 6-H), 7.76 (t, 2H, *J* = 10.0 Hz, 5,7-H), 7.69 (d, 1H, *J* = 3.5 Hz, 4'-H of Th), 7.03 (d, 1H, *J* = 3.5 Hz, 3'-H of Th), 4.18 (q, 4H, *J* = 7.0 Hz, CO₂Et), 2.59 (s, 3H, COCH₃), 1.06 (t, 6H, *J* = 7.0 Hz, CO₂Et) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta_{C} = 190.76$ (COCH₃), 165.05 (CO₂Et), 148.57 (C-5' of Th), 145.75 (C-2), 144.28 (C-2' of Th), 142.46 (C-3a,8a), 141.49 (C-6), 139.93 (C-4,8), 131.70 (C-4' of Th), 130.87 (C-5,7), 128.38 (C-3' of Th), 118.01 (C-1,3), 60.39 (CO₂Et), 26.95 (CO₂Et), 13.90 (COCH₃) ppm; HR-EI-MS: calcd for C₂₂H₂₀O₅S⁺ [M]⁺ 396.1031; found: 396.1036.

1,3-Bis(ethoxycarbonyl)-2-(benzothiopen-2'-yl)azulene (12)

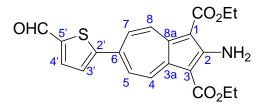
To a solution of 2 (307 mg, 1.00 mmol), benzothiophene (7) (268 mg, 2.00 mmol), $PCy_3 \cdot HBF_4$ (37 mg, 0.10 mmol), PivOH (31 mg, 0.30 mmol) and K_2CO_3 (207 mg, 1.50 mmol) in toluene (3 mL) was added $Pd(OAc)_2$ (11 mg, 0.05 mmol). The resulting mixture was stirred at 100 °C for 12 h under an Ar atmosphere. The reaction mixture was poured into water and extracted with toluene. The organic layer was washed with brine, dried with Na_2SO_4 , and concentrated under reduced pressure. The residue was purified by silica gel column chromatography with CH_2Cl_2 to give 12 (353 mg, 87%) as red crystals.

M.p. 110.0–111.0 °C (CHCl₃/EtOH); IR (KBr disk): $v_{max} = 2984$ (w), 2898 (w), 1672 (s), 1656 (w), 1536 (w), 1454 (m), 1427 (s), 1411 (m), 1380 (w), 1348 (w), 1312 (w), 1293 (w), 1256 (m), 1217 (m), 1197 (m), 1178 (m), 1158 (w), 1134 (w), 1113 (m), 1069 (w), 1057 (m), 1031 (m), 969 (w), 934 (w), 886 (w), 834 (w), 790 (w), 744 (s), 726 (w), 705 (w), 689 (w), 666 (w), 652 (w) cm⁻¹; UV/Vis (CH₂Cl₂): λ_{max} (log ε) = 235 (4.67), 274 sh (4.47), 298 (4.68), 330 (4.28), 364 sh (4.00), 392 (3.61), 522 (2.82) nm; ¹H NMR (500 MHz, CDCl₃): $\delta_{H} = 9.62$ (d, 2H, *J* = 10.0 Hz, 4,8-H), 7.98 (t, 1H, *J* = 10.0 Hz, 6-H), 7.84 (d, 1H, *J* = 7.5 Hz, 7'-H of BzTh), 7.77 (d, 1H, *J* = 7.5 Hz, 4'-H of BzTh), 7.75 (t, 2H, *J* = 10.0 Hz, 5,7-H), 7.69 (dd, 1H, *J* = 7.5, 7.5 Hz, 5'-H of BzTh), 7.32 (dd, 1H, *J* = 7.5, 7.5 Hz, 6'-H of BzTh), 7.23 (s, 1H, 3'-H of BzTh), 4.15 (q, 4H, *J* = 7.5 Hz, CO₂Et), 0.88 (t, 6H, *J* = 7.5 Hz, CO₂Et) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta_{C} = 165.47$ (CO₂Et), 146.90 (C-2'), 142.43 (C-3a',7a' of BzTh), 141.01 (C-3a,8a), 140.95 (C-2 or C-6), 139.83 (C-2 or C-6), 139.46 (C-4,8), 130.55 (C-5,7), 124.10 (C-3' of BzTh), 123.89 (C-5' and C-6' of BzTh), 123.44 (C-4' of BzTh), 121.83 (C-7' of BzTh), 118.42 (C-1,3), 60.34 (CO₂Et), 13.71 (CO₂Et) ppm; HR-EI-MS: calcd for C₂₄H₂₀O₄S⁺ [M]⁺ 404.1082; found: 404.1089.


1,3-Bis(ethoxycarbonyl)-2-(5',2"-bithiophen-2'-yl)azulene (13)

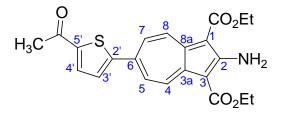
To a solution of **1** (307 mg, 1.00 mmol), 2,2'-bithiophene (**8**) (333 mg, 2.00 mmol), $PCy_3 \cdot HBF_4$ (37 mg, 0.10 mmol), PivOH (31 mg, 0.30 mmol) and K_2CO_3 (207 mg, 1.50 mmol) in toluene (3 mL) was added $Pd(OAc)_2$ (11 mg, 0.05 mmol). The resulting mixture was stirred at 100 °C for 24 h under an Ar atmosphere. The reaction mixture was poured into water and extracted with toluene. The organic layer was washed with brine, dried with Na_2SO_4 , and concentrated under reduced pressure. The residue was purified by silica gel column chromatography with CH_2Cl_2 to give **13** (371 mg, 85%, red crystals) and **20** (39 mg, 11%, red crystals).

M.p. 108.0–109.0 °C (EtOH); IR (KBr disk): $v_{max} = 2979$ (w), 1686 (s), 1586 (w), 1557 (w), 1532 (w), 1507 (w), 1480 (w), 1455 (w), 1420 (m), 1382 (w), 1354 (w), 1316 (w), 1302 (w), 1256 (w), 1190 (s), 1125 (w), 1057 (w), 1029 (w), 991 (w), 934 (w), 883 (w), 867 (w), 839 (w), 808 (w), 788 (w), 779 (w), 756 (w), 742 (w), 693 (m), 659 (w) cm⁻¹; UV/Vis (CH₂Cl₂): λ_{max} (log ε) = 238 (4.48), 274 sh (4.35), 304 (4.63), 344 sh (4.37), 426 (3.92), 541 sh (2.82) nm; ¹H NMR (500 MHz, CDCl₃): $\delta_{H} = 9.53$ (d, 2H, *J* = 10.0 Hz, 4,8-H), 7.93 (t, 1H, *J* = 10.0 Hz, 6-H), 7.71 (t, 2H, *J* = 10.0 Hz, 5,7-H), 7.22 (dd, 1H, *J* = 4.0, 1.0 Hz, 3"-H of Th), 7.19 (dd, 1H, *J* = 4.0, 1.0 Hz, 5"-H of Th), 7.18 (d, 1H, *J* = 4.0 Hz, 4'-H of Th), 7.03 (dd, 1H, *J* = 4.0, 4.0 Hz, 4"-H of Th), 6.96 (d, 1H, *J* = 4.0 Hz, 3'-H of Th), 4.24 (q, 4H, *J* = 7.0 Hz, CO₂Et), 1.13 (t, 6H, *J* = 7.0 Hz, CO₂Et) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta_{C} = 165.53$ (CO₂Et), 145.99 (C-2' or C-5' of Th), 142.22 (C-3a,8a), 140.56 (C-6), 138.93 (C-4,8), 138.24 (C-2 or C-2' of Th), 137.58 (C-2 or C-2' of Th), 137.53 (C-2" of Th), 123.12 (C-4' or C-5" of Th), 127.82 (C-4" of Th), 124.23 (C-3" of Th), 123.48 (C-4' or C-5" of Th), 123.12 (C-4' or C-5" of Th), 118.27 (C-1,3), 60.38 (CO₂Et), 13.84 (CO₂Et) ppm; HR-EI-MS: calcd for $C_{24}H_{20}O_4S_2^+$ [M]⁺ 436.0803; found: 436.0812.


2-Amino-1,3-bis(ethoxycarbonyl)-6-(3',4'-ethylenedioxythiophen-2'-yl)azulene (14)

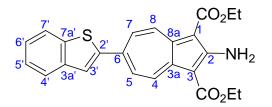
To a solution of **3** (366 mg, 1.00 mmol), EDOT (**4**) (284 mg, 2.00 mmol), $PCy_3 \cdot HBF_4$ (37 mg, 0.10 mmol), PivOH (31 mg, 0.30 mmol) and K_2CO_3 (207 mg, 1.50 mmol) in toluene (3 mL) was added $Pd(OAc)_2$ (11 mg, 0.05 mmol). The resulting mixture was stirred at 100 °C for 24 h under an Ar atmosphere. The reaction mixture was poured into water and extracted with toluene. The organic layer was washed with brine, dried with Na_2SO_4 , and concentrated under reduced pressure. The residue was purified by silica gel column chromatography with CH_2Cl_2 to give 14 (342 mg, 80%) as orange crystals.

M.p. 210.0–211.0 °C (EtOH); IR (KBr disk): $v_{max} = 3492$ (w), 3364 (w), 2980 (w), 2929 (w), 2873 (w), 1681 (m), 1656 (s), 1568 (s), 1540 (m), 1479 (s), 1428 (s), 1384 (w), 1373 (m), 1360 (m), 1324 (w), 1286 (w), 1258 (w), 1248 (w), 1176 (s), 1122 (s), 1110 (s), 1067 (s), 1037 (m), 1023 (w), 953 (m), 914 (w), 882 (w), 854 (s), 806 (w), 787 (w), 714 (w), 694 (w), 658 (w) cm⁻¹; UV/Vis (CH₂Cl₂): λ_{max} (log ε) = 249 (4.60), 272 sh (4.19), 329 sh (4.51), 353 (4.65), 361 sh (4.61), 433 sh (4.42), 451 (4.51) nm; UV/Vis (50% CF₃CO₂H/CH₂Cl₂): λ_{max} (log ε) = 272 (4.31), 292 (4.30), 345 (4.43), 357 (4.42), 440 (4.57), 463 sh (4.51), 512 sh (4.12), 590 (3.35), 722 sh (2.75), 776 sh (2.77) nm; 'H NMR (500 MHz, CDCl₃): δ_{H} = 9.06 (d, 2H, J = 11.5 Hz, 4,8-H), 7.99 (d, 2H, J = 11.5 Hz, 5,7-H), 7.75 (br. s, 2H, NH₂), 6.43 (s, 1H, 5'-H of Th), 4.46 (q, 4H, J = 7.5 Hz, CO₂Et), 4.38–4.36 (m, 2H, OCH₂), 4.29–4.27 (m, 2H, OCH₂), 1.49 (t, 6H, J = 7.5 Hz, CO₂Et) ppm; 'H NMR (500 MHz, acetone- d_6): δ_{H} = 9.11 (d, 2H, J = 11.5 Hz, 4,8-H), 8.06 (d, 2H, J = 11.5 Hz, 5,7-H), 7.86 (br. s, 2H, NH₂), 6.63 (s, 1H, 5'-H of Th), 4.430 (m, 2H, OCH₂), 1.43 (t, 6H, J = 7.5 Hz, CO₂Et) ppm; ¹³C NMR (125 MHz, CDCl₃): δ_{C} = 166.57 (CO₂Et), 162.23 (C-2), 144.42 (C-3a,8a), 142.45 (C-3' of Th), 139.34 (C-4' of Th), 138.39 (C-6), 130.95 (C-5,7), 130.66 (C-4,8), 119.84 (C-2' of Th), 100.22 (C-5' of Th), 100.03 (C-1,3), 64.93 (OCH₂), 64.28 (OCH₂), 59.79 (CO₂Et), 14.74 (CO₂Et) ppm; HR-EI-MS: calcd for C₂₂H₂NO₆S^{*} [M]* 427.1090; found: 427.1100.


2-Amino-1,3-bis(ethoxycarbonyl)-6-(5'-formylthiophen-2'-yl)azulene (15)

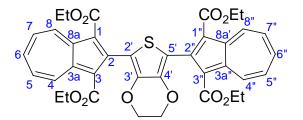
To a solution of **3** (366 mg, 1.00 mmol), 2-formylthiophene (**5**) (224 mg, 2.00 mmol), $PCy_3 \cdot HBF_4$ (37 mg, 0.10 mmol), PivOH (31 mg, 0.30 mmol) and K_2CO_3 (207 mg, 1.50 mmol) in toluene (3 mL) was added $Pd(OAc)_2$ (11 mg, 0.05 mmol). The resulting mixture was stirred at 100 °C for 24 h under an Ar atmosphere. The reaction mixture was poured into water and extracted with toluene. The organic layer was washed with brine, dried with Na_2SO_4 , and concentrated under reduced pressure. The residue was purified by silica gel column chromatography with CH_2Cl_2 to give **15** (346 mg, 87%) as orange crystals.

M.p. 189.0–190.0 °C (EtOH); IR (KBr disk): $v_{max} = 3484$ (w), 3357 (w), 3096 (w), 2987 (w), 2806 (w), 1666 (s), 1594 (s), 1573 (s), 1542 (m), 1508 (w), 1493 (m), 1444 (m), 1433 (s), 1389 (w), 1361 (w), 1329 (w), 1288 (w), 1213 (m), 1155 (m), 1133 (m), 1119 (m), 1070 (w), 1027 (m), 971 (w), 931 (w), 914 (w), 891 (w), 853 (w), 841 (w), 818 (m), 786 (w), 754 (w), 691 (w), 672 (w) cm⁻¹; UV/Vis (CH₂Cl₂): λ_{max} (log ε) = 249 (4.61), 275 sh (4.12), 310 sh (4.10), 354 (4.72), 457 (4.48) nm; ¹H NMR (500 MHz, CDCl₃): $\delta_{H} = 9.91$ (s, 1H, CHO), 9.09 (d, 2H, *J* = 11.0 Hz, 4,8-H), 7.91 (br. s, 2H, NH₂), 7.89 (d, 2H, *J* = 11.0 Hz, 5,7-H), 7.77 (d, 1H, *J* = 4.0 Hz, 4'-H of Th), 7.52 (d, 1H, *J* = 4.0 Hz, 3'-H of Th), 4.48 (q, 4H, *J* = 7.5 Hz, CO₂Et), 1.50 (t, 6H, *J* = 7.5 Hz, CO₂Et) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta_{C} = 182.75$ (CHO), 166.43 (CO₂Et), 163.07 (C-2), 156.39 (C-5' of Th), 145.34 (C-3a,8a), 144.59 (C-2' of Th), 137.37 (C-4' of Th), 136.58 (C-6), 130.73 (C-5,7), 130.20 (C-4,8), 125.99 (C-3' of Th), 101.11 (C-1,3), 60.23 (CO₂Et), 14.80 (CO₂Et) ppm; HR-EI-MS: calcd for C₂₁H₁₉NO₅S⁺ [M]⁺ 397.0984; found: 397.0981.


2-Amino-1,3-bis(ethoxycarbonyl)-6-(5'-acetylthiophen-2'-yl)azulene (16)

To a solution of **3** (366 mg, 1.00 mmol), 2-acetylthiophene (**6**) (252 mg, 2.00 mmol), $PCy_3 \cdot HBF_4$ (37 mg, 0.10 mmol), PivOH (31 mg, 0.30 mmol) and K_2CO_3 (207 mg, 1.50 mmol) in toluene (3 mL) was added $Pd(OAc)_2$ (11 mg, 0.05 mmol). The resulting mixture was stirred at 100 °C for 24 h under an Ar atmosphere. The reaction mixture was poured into water and extracted with toluene. The organic layer was washed with brine, dried with Na_2SO_4 , and concentrated under reduced pressure. The residue was purified by silica gel column chromatography with CH_2Cl_2 to give **16** (342 mg, 83%) as orange crystals.

M.p. 202.0–203.0 °C (EtOH); IR (KBr disk): $v_{max} = 3566$ (w), 3484 (w), 3355 (m), 2983 (w), 1665 (s), 1592 (s), 1574 (s), 1542 (m), 1507 (m), 1496 (m), 1433 (s), 1387 (m), 1362 (w), 1339 (w), 1322 (w), 1274 (s), 1250 (m), 1210 (m), 1159 (s), 1132 (s), 1070 (m), 1029 (s), 970 (m), 932 (w), 915 (w), 889 (w), 855 (w), 840 (m), 812 (w), 792 (s), 749 (w), 691 (w), 672 (w) cm⁻¹; UV/Vis (CH₂Cl₂): λ_{max} (log ε) = 250 (4.60), 271 sh (4.15), 353 (4.72), 455 (4.48) nm; 'H NMR (500 MHz, CDCl₃): $\delta_{H} = 9.08$ (d, 2H, *J* = 11.5 Hz, 4,8-H), 7.89 (d, 2H, *J* = 11.5 Hz, 5,7-H), 7.88 (br. s, 2H, NH₂), 7.68 (d, 1H, *J* = 4.0 Hz, 4'-H of Th), 7.44 (d, 1H, *J* = 4.0 Hz, 3'-H of Th), 4.48 (q, 4H, *J* = 7.5 Hz, CO₂Et), 2.59 (s, 3H, COCH₃), 14.9 (t, 6H, *J* = 7.5 Hz, CO₂Et) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta_{C} = 190.50$ (COCH₃), 166.46 (CO₂Et), 162.93 (C-2), 154.82 (C-5' of Th), 145.21 (C-3a,8a), 144.59 (C-2' of Th), 137.04 (C-6), 133.54 (C-4' of Th), 130.66 (C-5,7), 130.30 (C-4,8), 125.88 (C-3' of Th), 100.96 (C-1,3), 60.18 (CO₂Et), 26.76 (COCH₃), 14.80 (CO₂Et) ppm; HR-EI-MS: calcd for $C_{22}H_{21}NO_5S^+$ [M]⁺ 411.1140; found: 411.1134.


2-Amino-1,3-bis(ethoxycarbonyl)-6-(benzothiophen-2'-yl)azulene (17)

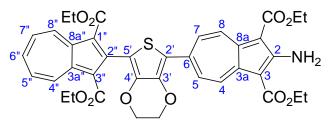
To a solution of **3** (366 mg, 1.00 mmol), benzothiophene (7) (268 mg, 2.00 mmol), $PCy_3 \cdot HBF_4$ (37 mg, 0.10 mmol), PivOH (31 mg, 0.30 mmol) and K_2CO_3 (207 mg, 1.50 mmol) in toluene (3 mL) was added $Pd(OAc)_2$ (11 mg, 0.05 mmol). The resulting mixture was stirred at 100 °C for 24 h under an Ar atmosphere. The reaction mixture was poured into water and extracted with toluene. The organic layer was washed with brine, dried with Na_2SO_4 , and concentrated under reduced pressure. The residue was purified by silica gel column chromatography with CH_2Cl_2 to give 17 (343 mg, 82%) as orange crystals.

M.p. 169.0 – 170.0 °C (EtOH); IR (KBr disk): $v_{max} = 3485$ (w), 3321 (w), 2979 (w), 2910 (w), 1691 (s), 1657 (s), 1589 (s), 1542 (m), 1515 (m), 1480 (m), 1431 (s), 1400 (w), 1384 (m), 1355 (w), 1312 (w), 1281 (w), 1247 (m), 1195 (m), 1133 (m), 1119 (s), 1105 (s), 1074 (m), 1036 (m), 1023 (m), 962 (m), 930 (w), 893 (w), 857 (m), 831 (w), 821 (m), 787 (m), 739 (m), 720 (m), 688 (w), 675 (w), 663 (w) cm⁻¹; UV/Vis (CH₂Cl₂): λ_{max} (log ε) = 249 (4.61), 274 sh (4.15), 348 (4.73), 366 sh (4.58), 430 sh (4.41), 451 (4.51) nm; ¹H NMR (500 MHz, CDCl₃): $\delta_{H} = 9.11$ (d, 2H, *J* = 11.5 Hz, 4,8-H), 7.98 (d, 2H, *J* = 11.5 Hz, 5,7-H), 7.84 (d, 1H, *J* = 8.0 Hz, 4'-H or 7'-H of BzTh), 7.83 (br. s, 2H, NH₂), 7.80 (d, 1H, *J* = 8.0 Hz, 4'-H or 7'-H of BzTh), 7.69 (s, 1H, 3'-H of BzTh), 7.40–7.34 (m, 2H, 5,6'-H of BzTh), 4.48 (q, 4H, *J* = 7.5 Hz, CO₂Et), 1.50 (t, 6H, *J* = 7.5 Hz, CO₂Et) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta_{C} = 166.57$ (CO₂Et), 162.70 (C-2), 146.46 (C-3a' or C-7a' of BTh), 144.98 (C-3a,8a), 140.78 (C-3a' or C-7a' of BzTh), 140.34 (C-2' of BzTh), 138.50 (C-6), 131.13 (C-5,7), 130.48 (C-4,8), 125.17 (C-5' or C-6' of BzTh), 124.98 (C-5' or C-6' of BzTh), 124.09 (C-4' or C-7' of BzTh), 122.37 (C-4' or C-7' of BzTh), 122.07 (C-3' of BzTh), 100.64 (C-1,3), 60.09 (CO₂Et), 14.82 (CO₂Et) ppm; HR-EI-MS: calcd for C₂₄H₂₁NO₄S⁺ [M]⁺ 419.1191; found: 419.1188.

2,5-Bis[1,3-bis(ethoxycarbonyl)azulen-2-yl]-3',4'-ethylenedioxythiophene (19)

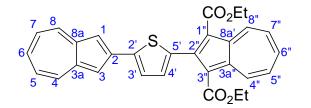
To a solution of 2 (218 mg, 0.50 mmol), 9 (206 mg, 0.50 mmol), PCy₃·HBF₄ (19 mg, 0.05 mmol), PivOH (16 mg, 0.15 mmol) and K₂CO₃ (104 mg, 0.75 mmol) in toluene (3 mL) was added Pd(OAc)₂ (6 mg, 0.025 mmol). The resulting mixture was stirred at 100 °C for 24 h under an Ar atmosphere. The reaction mixture was poured into water and extracted with CH_2Cl_2 . The organic layer was washed with brine, dried with Na_2SO_4 , and concentrated under reduced pressure. The residue was purified by silica gel column chromatography with $CH_2Cl_2/AcOEt$ (10 : 1) to give 19 (300 mg, 88%) as red crystals.

M.p. 203.0–205.0 °C (CHCl₃/EtOH); IR (KBr disk): $v_{max} = 2976$ (w), 1697 (s), 1590 (w), 1510 (w), 1457 (m), 1430 (s), 1381 (w), 1361 (w), 1312 (w), 1268 (w), 1248 (w), 1222 (w), 1193 (s), 1165 (m), 1151 (m), 1114 (w), 1087 (m), 1049 (w), 1027 (m), 969 (w), 924 (w), 875 (w), 855 (w), 782 (w), 767 (w), 744 (w), 733 (w), 712 (w), 688 (w), 674 (w) cm⁻¹; UV/Vis (CH₂Cl₂) λ_{max} (log ε) = 236 (4.64), 274 sh (4.61), 294 (4.80), 348 (4.61), 463 (4.38) nm; ¹H NMR (500 MHz, CDCl₃): $\delta_{H} = 9.33$ (d, 4H, *J* = 10.0 Hz, 4,8,4,8,8"-H), 7.85 (t, 2H, *J* = 10.0 Hz, 6,6"-H), 7.63 (t, 4H, *J* = 10.0 Hz, 5,7,5",7"-H), 4.35 (q, 8H, *J* = 7.0 Hz, CO₂Et), 4.23 (s, 4H, OCH₂CH₂O), 1.29 (t, 12H, *J* = 7.0 Hz, CO₂Et) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta_{C} = 166.01$ (CO₂Et), 141.97 (C-4,8,4,8"), 141.85 (C-2,5" of Th), 139.84 (C-6,6"), 138.84 (C-2,2"), 137.93 (C-4,8,4,8"), 129.72 (C-5,7,5",7"), 118.21 (C-1,3,1",3"), 114.62 (C-3,4" of Th), 64.77 (OCH₂CH₂O), 60.66 (CO₂Et), 14.44 (CO₂Et) ppm; HR-FAB-MS: calcd for C₃₈H₃₄O₁₀S⁺ [M]⁺ 682.1873; found: 682.1883.

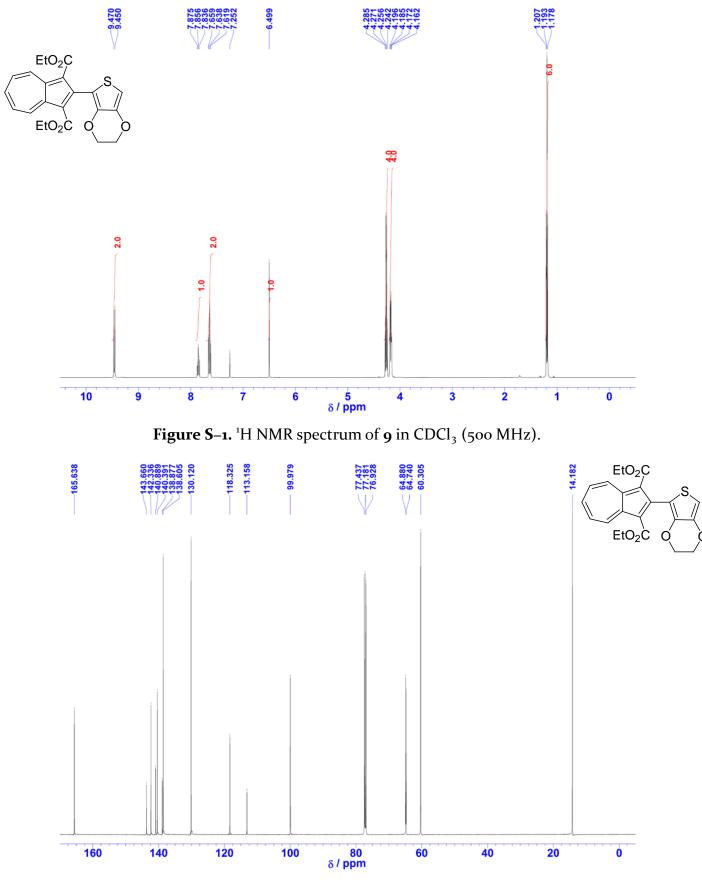

5,5'-Bis[1,3-bis(ethoxycarbonyl)azulen-2-yl]-2,2'-bithiophene (20)

To a solution of 2 (218 mg, 0.50 mmol), 13 (230 mg, 0.75 mmol), PCy₃·HBF₄ (19 mg, 0.05 mmol), PivOH (16 mg, 0.15 mmol) and K₂CO₃ (104 mg, 0.75 mmol) in toluene (3 mL) was added Pd(OAc)₂ (6 mg, 0.025 mmol). The resulting mixture was stirred at 100 °C for 24 h under an Ar atmosphere. The reaction mixture was poured into water and extracted with CH_2Cl_2 . The organic layer was washed with brine, dried with Na_2SO_4 , and concentrated under reduced pressure. The residue was purified by silica gel column chromatography with $CH_2Cl_2/AcOEt$ (10 : 1) to give 20 (325 mg, 92%) as brown crystals.

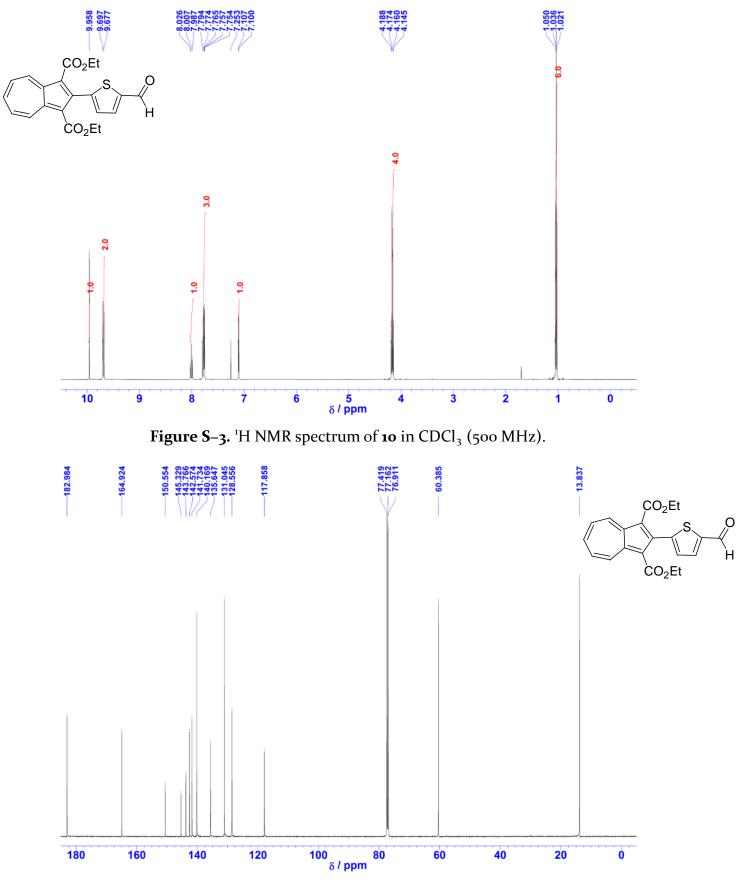
M.p. 230.0–231.0 °C (CHCl₃/EtOH); IR (KBr disk): $v_{max} = 2977$ (w), 2927 (w), 1682 (s), 1585 (w), 1534 (w), 1485 (w), 1460 (w), 1427 (s), 1416 (s), 1377 (m), 1354 (w), 1311 (w), 1296 (w), 1243 (m), 1216 (m), 1183 (s), 1138 (m), 1111 (w), 1093 (w), 1055 (m), 1035 (m), 982 (w), 948 (w), 882 (w), 865 (w), 823 (w), 797 (w), 778 (w), 747 (w), 710 (w), 676 (w) cm⁻¹; UV/Vis (CH₂Cl₂) λ_{max} (log ε) = 238 (4.71), 276 (4.61), 304 (4.84), 341 (4.59), 356 (4.60), 446 (4.26) nm; 'H NMR (500 MHz, CDCl₃): $\delta_{\rm H} = 9.54$ (d, 4H, *J* = 10.0 Hz, 4",8",4"",8""-H), 7.95 (t, 2H, *J* = 10.0 Hz, 6",6"'-H), 7.73 (t, 4H, *J* = 10.0 Hz, 5",7",5"",7"'-H), 7.20 (d, 2H, *J* = 4.0 Hz, 3,3'-H or 4,4'-H of Th), 6.97 (d, 2H, *J* = 4.0 Hz, 3,3'-H or 4,4'-H of Th), 4.25 (q, 8H, *J* = 7.0 Hz, CO₂Et), 1.14 (t, 12H, *J* = 7.0 Hz, CO₂Et) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta_{\rm C} = 165.56$ (CO₂Et), 146.09 (C-2,2' or C-5,5' of Th), 142.31 (C-3"a,8"a,3a"',8a"'), 140.59 (C-6",6"'), 138.95 (C-4",8",4"',8"'), 138.39 (C-2",2"'), 137.54 (C-2,2' or C-5,5' of Th), 130.35 (C-5",7",5"',7"'), 128.45 (C-3,3' or C-4,4' of Th), 122.83 (C-3,3' or C-4,4' of Th), 118.24 (C-1",3",1"',3"'), 60.35 (CO₂Et), 13.73 (CO₂Et) ppm; HR-FAB-MS: calcd for C₄₀H₃₄O₈S₂+ [M]⁺ 706.1695; found: 706.1698.


2'-[2-Amino-1,3-bis(ethoxycarbonyl)azulen-6-yl]-5'-[1",3"-bis(ethoxycarbonyl)azulen-2"-yl]-3',4' -ethylenedioxythiophene (21)

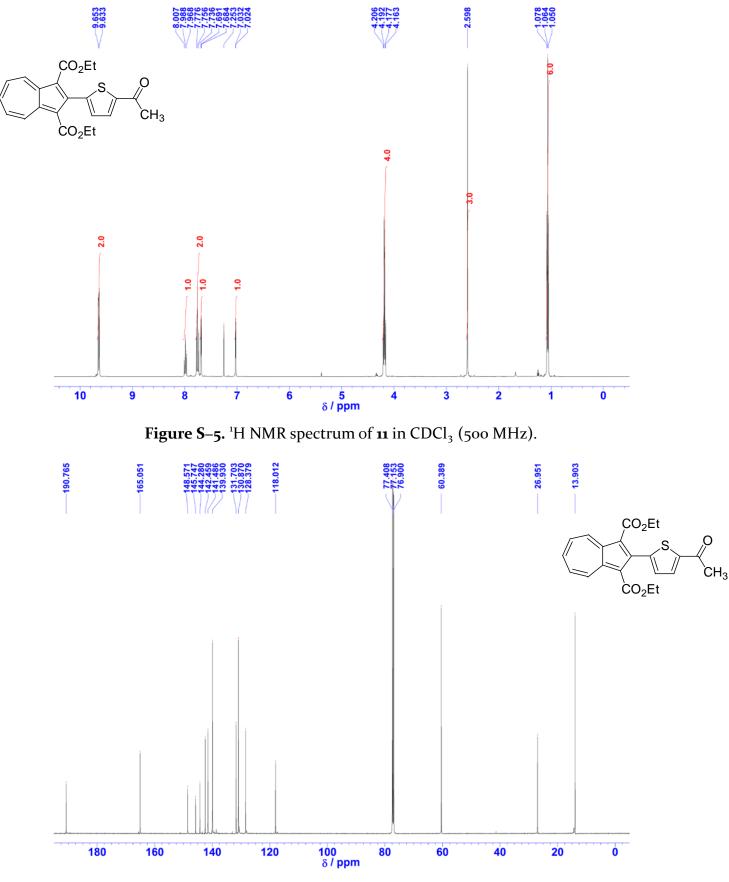
To a solution of **2** (59 mg, 0.19 mmol), **14** (55 mg, 0.13 mmol), PCy₃·HBF₄ (5 mg, 0.013 mmol), PivOH (4 mg, 0.038 mmol) and K₂CO₃ (27 mg, 0.19 mmol) in toluene (2 mL) was added Pd(OAc)₂ (1.4 mg, 0.006 mmol). The resulting mixture was stirred at 100 °C for 24 h under an Ar atmosphere. The reaction mixture was poured into water and extracted with CH_2Cl_2 . The organic layer was washed with brine, dried with Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography with CH_2Cl_2 to give **21** (73 mg, 82%) as brown crystals. M.p. 216.0–218.0 °C decomp. (CHCl₃/EtOH); IR (KBr disk): $\nu_{max} = 3445$ (w), 3315 (w), 2981 (w), 1706 (w), 1675 (s), 1635 (w), 1591 (m), 1539 (w), 1500 (w), 1450 (m), 1424 (s), 1382 (w), 1365 (m), 1336 (w), 1316

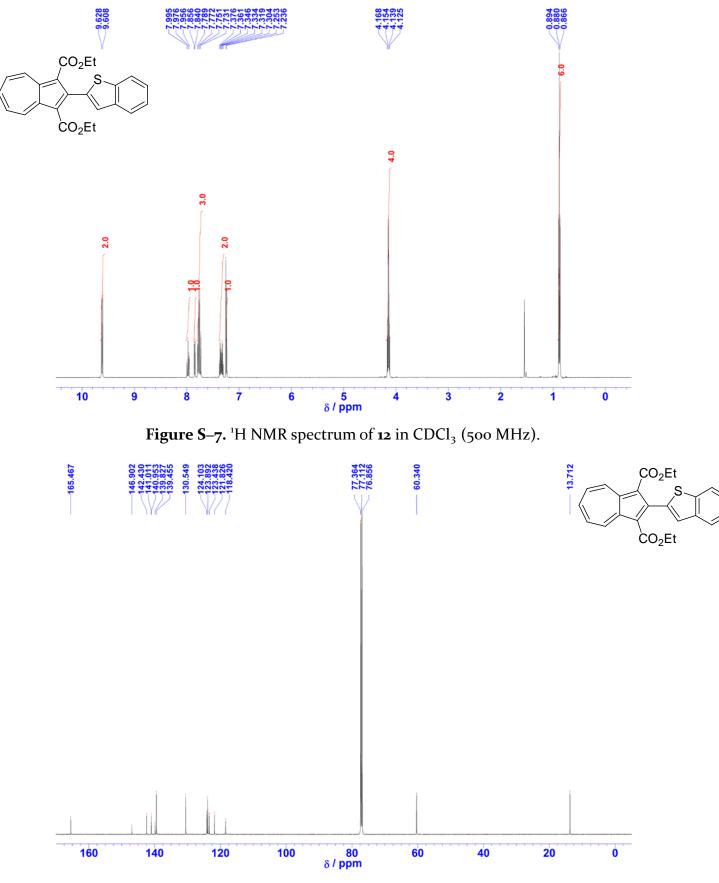

(w), 1675 (s), 1635 (w), 1591 (m), 1539 (w), 1500 (w), 1450 (m), 1424 (s), 1382 (w), 1365 (m), 1336 (w), 1316 (w), 1298 (w), 1271 (w), 1244 (w), 1211 (m), 1188 (s), 1149 (m), 1106 (m), 1083 (m), 1026 (m), 970 (w), 951 (w), 925 (w), 879 (w), 857 (w), 840 (w), 811 (w), 792 (m), 763 (w), 737 (w), 706 (w), 685 (w), 670 (w), 658 (w) cm⁻¹; UV/Vis (CH₂Cl₂) λ_{max} (log ϵ) = 238 sh (4.61), 250 (4.65), 275 sh (4.52), 295 (4.54), 300 sh (4.54), 334 (4.51), 359 (4.61), 479 (4.58) nm; ¹H NMR (500 MHz, CDCl₃): δ_{H} = 9.54 (d, 2H, *J* = 10.5 Hz, 4,"8"-H), 9.07 (d, 2H, *J* = 11.5 Hz, 4,8-H), 8.07 (d, 2H, *J* = 11.5 Hz, 5,7-H), 7.94 (t, 1H, *J* = 10.5 Hz, 6"-H), 7.75 (s, 2H, NH₂), 7.71 (dd, 2H, *J* = 10.5, 10.5 Hz, 5","7"-H), 4.47 (q, 4H, *J* = 7.0 Hz, CO₂Et), 4.40–4.39 (m, 2H, OCH₂), 4.32 (q, 4H, *J* = 7.0 Hz, CO₂Et), 4.28–4.26 (m, 2H, OCH₂), 1.49 (t, 6H, *J* = 7.0 Hz, CO₂Et), 162.18 (C-6), 144.30 (C-3a,8a), 142.58 (C-3"a,8"a), 142.36 (Th), 140.63 (C-6"), 139.48 (Th), 138.87 (C-4",8"), 138.76 (Th), 138.64 (Th), 130.75 (C-4.8 or C-5,7), 130.71 (C-4.8 or C-5,7), 130.27 (C-5",7"), 120.24 (C-2 or C-2"), 118.16 (C-1",3"), 114.16 (C-2 or C-2"), 100.05 (C-1,3), 64.95 (OCH₂), 64.41 (OCH₂), 60.37 (CO₂Et), 59.79 (CO₂Et), 14.75 (CO₂Et), 14.13 (CO₂Et) ppm; HR-FAB-MS: calcd for C₃8H₃₅NO₁₀S⁺ [M]⁺ 697.1982; found: 697.1995.

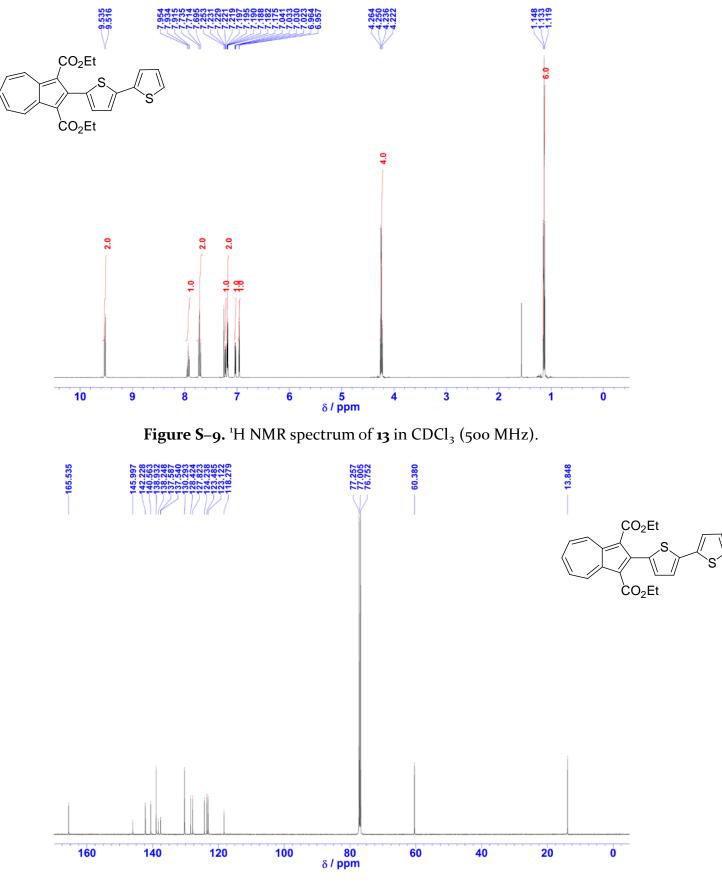
2'-(Azulen-2-yl)-5'-[1",3"-bis(ethoxycarbonyl)azulen-2"-yl]thiophene (22)

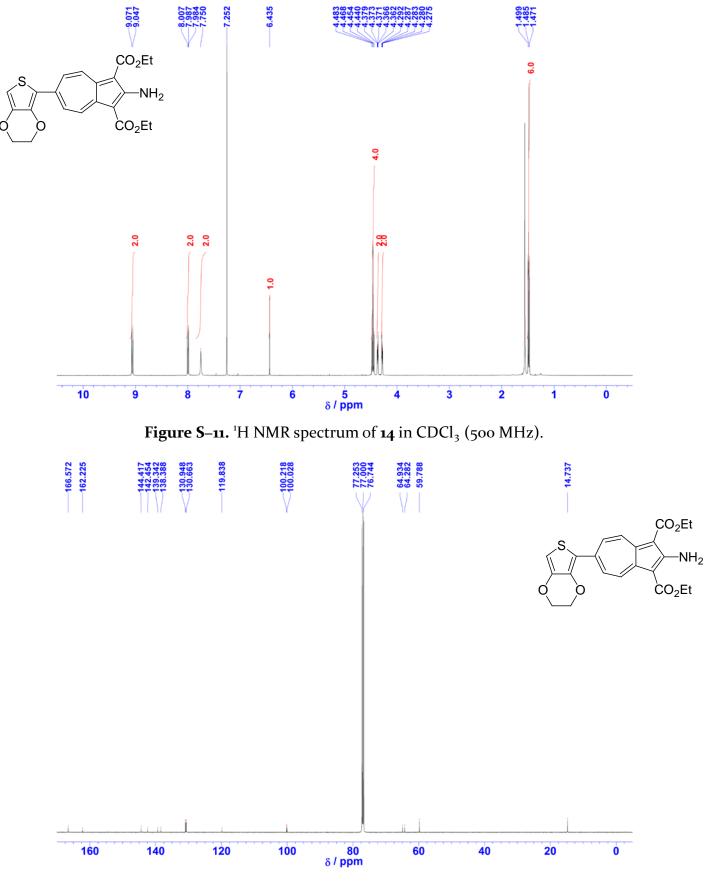


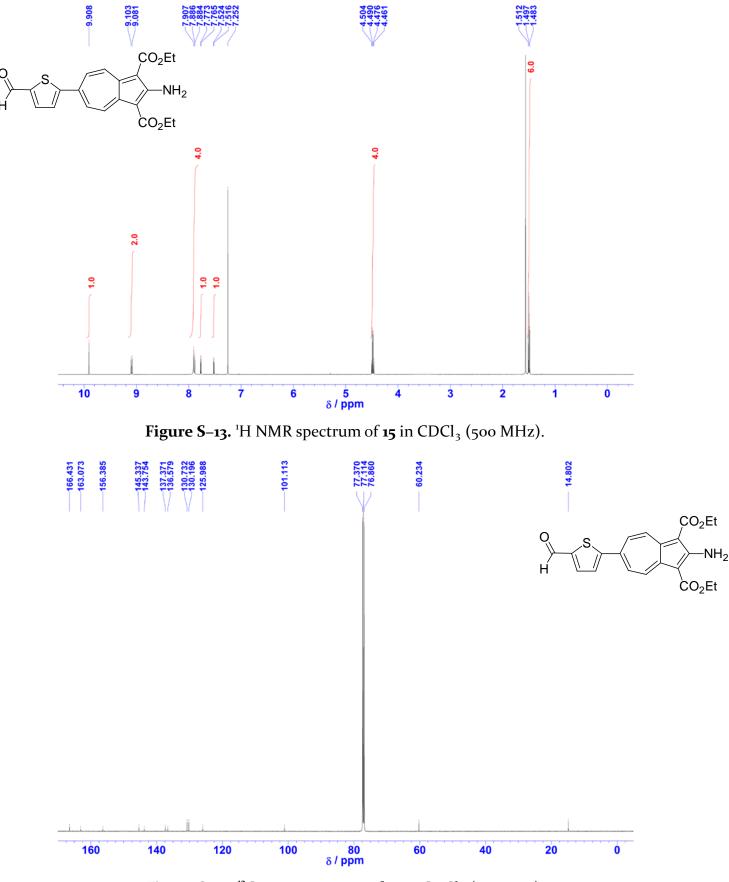
To a solution of **2** (307 mg, 1.00 mmol), **18** (210 mg, 1.00 mmol), PCy₃·HBF₄ (37 mg, 0.10 mmol), PivOH (31 mg, 0.30 mmol) and K₂CO₃ (207 mg, 1.50 mmol) in toluene (3 mL) was added Pd(OAc)₂ (11 mg, 0.05 mmol). The resulting mixture was stirred at 100 °C for 12 h under an Ar atmosphere. The reaction mixture was poured into water and extracted with toluene. The organic layer was washed with brine, dried with Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography with CH₂Cl₂ to give **22** (417 mg, **8**7%) as brown crystals.

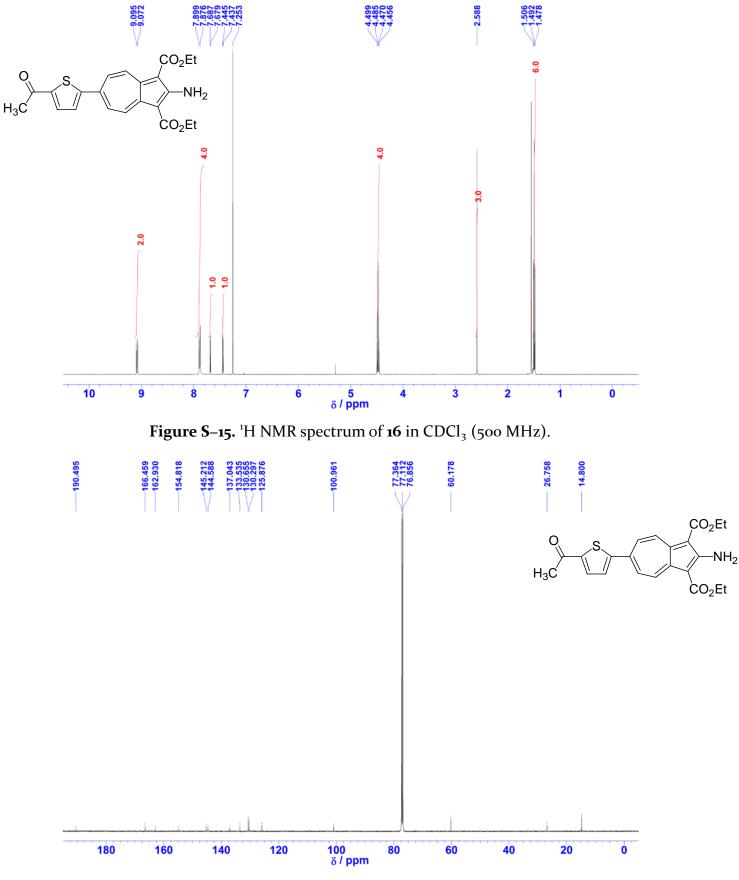

M.p. 148.0–149.0 °C (CHCl₃/EtOH); IR (KBr disk): $v_{max} = 2978$ (w), 1684 (s), 1577 (w), 1533 (w), 1510 (w), 1480 (w), 1453 (m), 1431 (m), 1413 (s), 1379 (m), 1316 (w), 1299 (w), 1265 (w), 1245 (w), 1188 (s), 1115 (m), 1094 (w), 1057 (m), 1028 (m), 948 (w), 898 (w), 885 (w), 847 (w), 811 (m), 750 (w), 726 (m), 698 (w), 681 (w), 653 (w) cm⁻¹; UV/Vis (CH₂Cl₂): λ_{max} (log ε) = 237 (4.53), 272 (4.51), 313 (4.77), 323 (4.77), 352 sh (4.24), 402 sh (4.34), 428 (4.46), 546 sh (3.09), 610 sh (2.77), 633 sh (2.50) nm; 'H NMR (500 MHz, CDCl₃): $\delta_{H} = 9.54$ (d, 2H, *J* = 10.0 Hz, 4,"8"-H), 8.21 (d, 2H, *J* = 10.0 Hz, 4,8-H), 7.93 (t, 1H, *J* = 10.0 Hz, 6"-H), 7.72 (t, 2H, *J* = 10.0 Hz, 5",7"-H), 7.61 (d, 1H, *J* = 4.0 Hz, 3'-H of Th), 7.56 (s, 2H, 1,3-H), 7.46 (t, 1H, *J* = 10.0 Hz, 6-H), 7.14 (t, 2H, *J* = 10.0 Hz, 5,7-H), 7.11 (d, 1H, *J* = 4.0 Hz, 4'-H of Th), 4.24 (q, 4H, *J* = 7.0 Hz, CO₂Et), 1.11 (t, 6H, *J* = 7.0 Hz, CO₂Et) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta_{C} = 165.55$ (CO₂Et), 146.23 (C-2"), 143.33 (C-2), 142.24 (C-3"a,8"a), 141.85 (C-2' or C-5' of Th), 141.31 (C-3a,8a), 140.53 (C-6"), 139.92 (C-2' or C-5' of Th), 138.89 (C-4",8"), 135.84 (C-6), 135.17 (C-4,8), 130.27 (C-5",7"), 129.22 (C-4' of Th), 125.13 (C-3' of Th), 124.12 (C-5,7), 118.23 (C-1",3"), 113.77 (C-1,3), 60.37 (CO₂Et), 13.84 (CO₂Et) ppm; HR-EI-MS: calcd for C₃₀H₂₄O₄S⁺ [M]⁺ 480.1395; found: 480.1398.

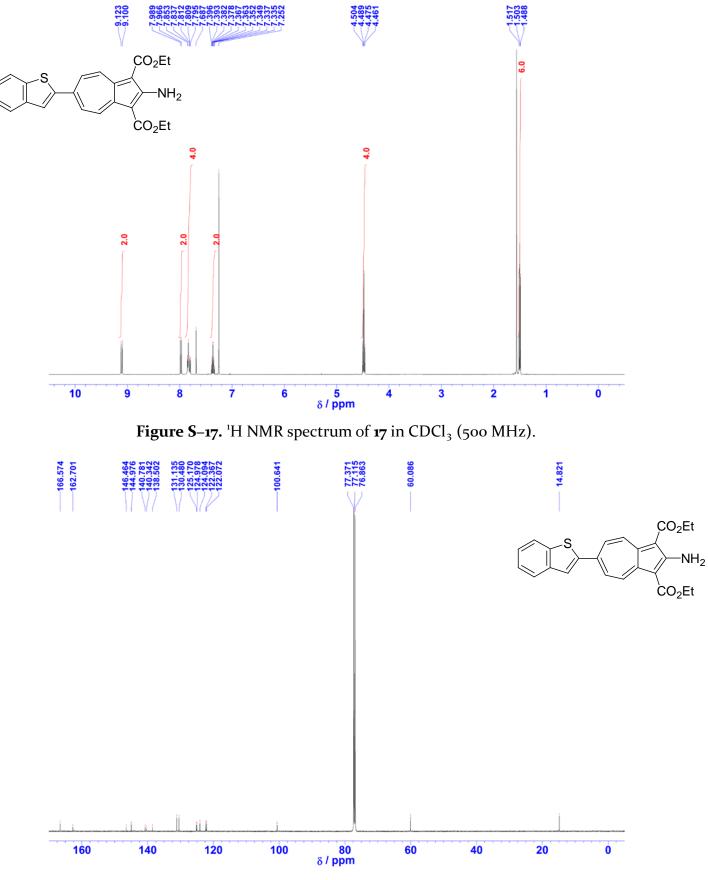

Figure S–2. ¹³C NMR spectrum of **9** in $CDCl_3$ (125 MHz).

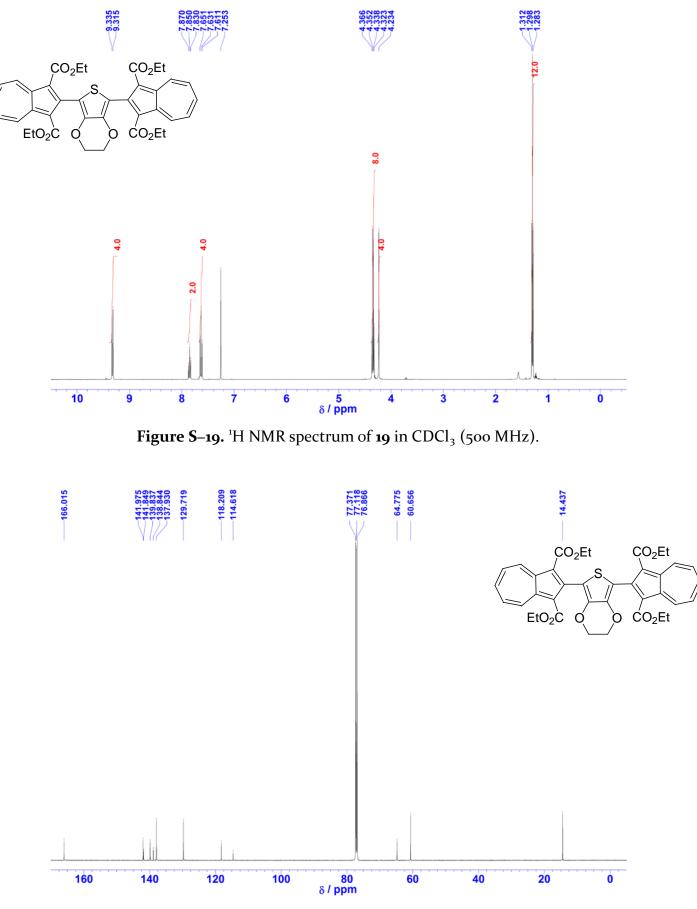

Figure S–4. ¹³C NMR spectrum of **10** in $CDCl_3$ (125 MHz).

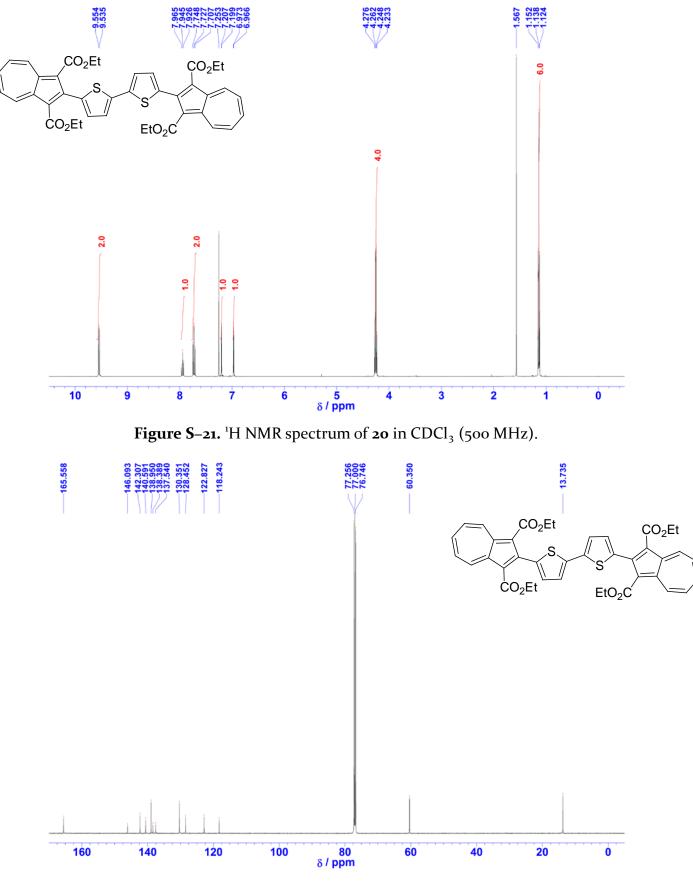

Figure S–6. ¹³C NMR spectrum of $\mathbf{11}$ in CDCl₃ (125 MHz).

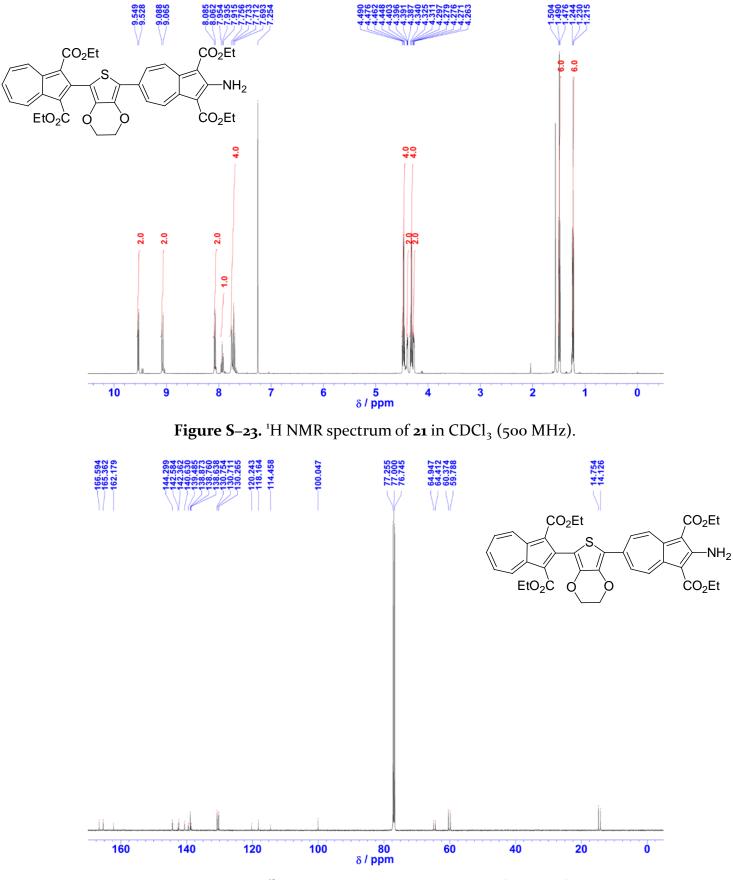

Figure S–8. 13 C NMR spectrum of **12** in CDCl₃ (125 MHz).


Figure S–10. ¹³C NMR spectrum of **13** in $CDCl_3$ (125 MHz).


Figure S–12. ¹³C NMR spectrum of **14** in $CDCl_3$ (125 MHz).


Figure S–14. ¹³C NMR spectrum of **15** in $CDCl_3$ (125 MHz).


Figure S–16. 13 C NMR spectrum of **16** in CDCl₃ (125 MHz).


Figure S–18. ¹³C NMR spectrum of 17 in CDCl₃ (125 MHz).

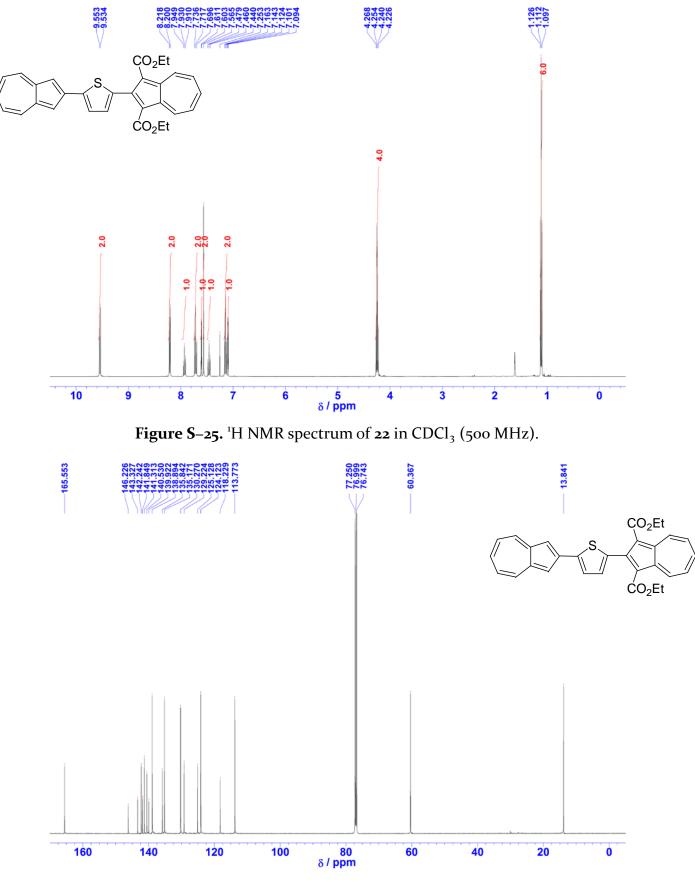
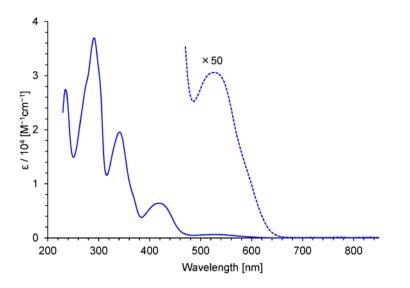

Figure S–20. ¹³C NMR spectrum of **19** in $CDCl_3$ (125 MHz).

Figure S–22. ¹³C NMR spectrum of **20** in $CDCl_3$ (125 MHz).


Figure S–24. ¹³C NMR spectrum of **21** in $CDCl_3$ (125 MHz).

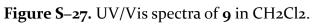


Figure S–26. ¹³C NMR spectrum of 22 in CDCl₃ (125 MHz).

Sample	$\lambda \max (\log \varepsilon)$
9	419 (3.81), 528 (2.79)
10	525 (2.86)
11	514 (2.85)
12	392 (3.61), 522 (2.82)
13	426 (3.92), 541 sh (2.82)
14	433 sh (4.42), 451 (4.51)
15	457 (4.48)
16	455 (4.48)
17	430 sh (4.41), 451 (4.51)
19	463 (4.38)
20	446 (4.26)
21	479 (4.58)
22	402 sh (4.34), 428 (4.46), 546 sh (3.09), 610 sh (2.77), 633 sh (2.50)
1	388 (3.85), 404 sh (3.76), 452 (3.37)
23	505 (2.81), 534 sh (2.75)

Table S–1. Absorption maxima [nm] and their coefficients (log ε) in visible region of thienylazulene derivatives **9–17** and di(azulenyl)thiophenes **19–22** in CH₂Cl₂, and **1** and **23** for references

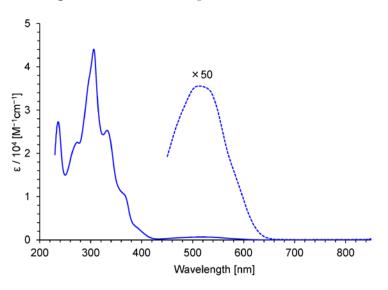


Figure S–28. UV/Vis spectra of 10 in CH2Cl2.

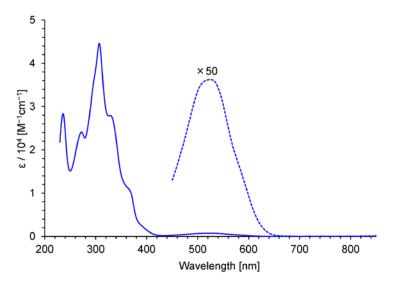
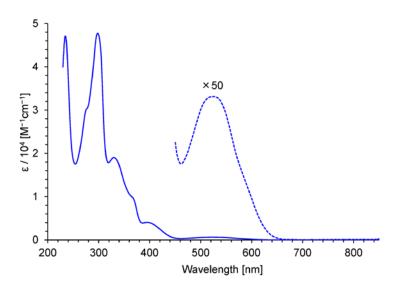



Figure S–29. UV/Vis spectra of 11 in CH2Cl2.

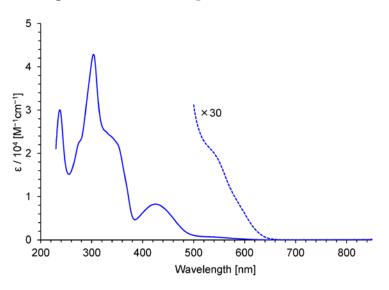


Figure S–31. UV/Vis spectra of 13 in CH2Cl2.

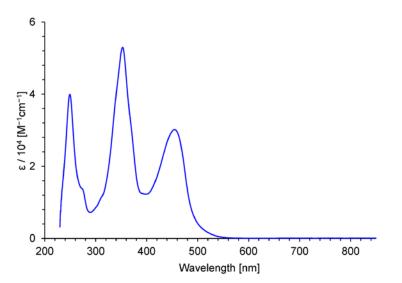
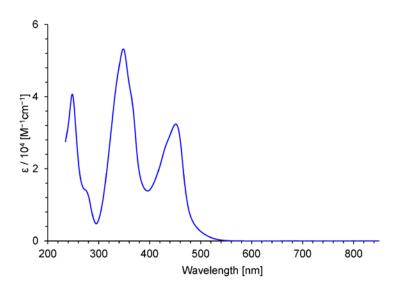
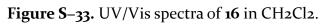




Figure S–32. UV/Vis spectra of 15 in CH2Cl2.

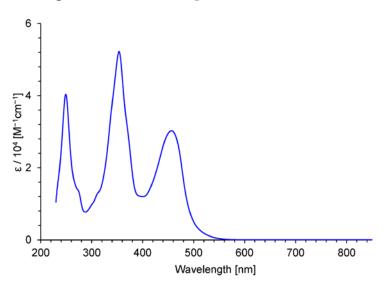


Figure S-34. UV/Vis spectra of 17 in CH2Cl2.

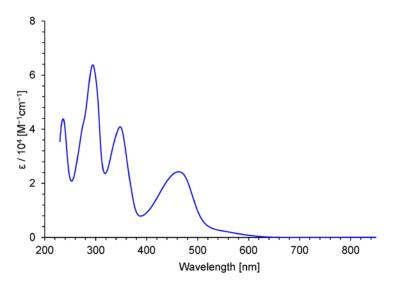
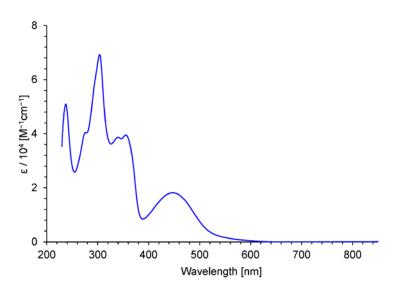
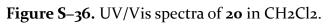




Figure S–35. UV/Vis spectra of 19 in CH2Cl2.

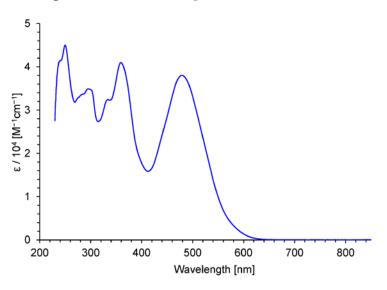
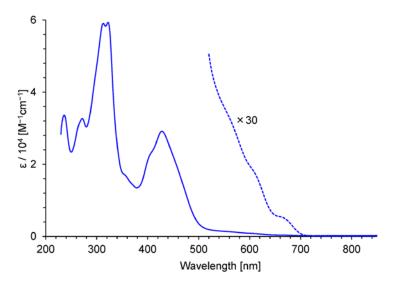
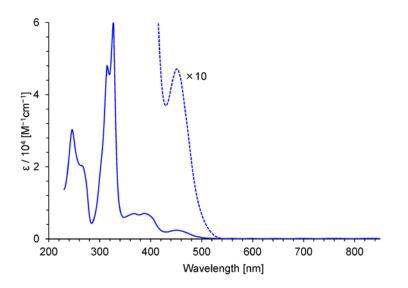
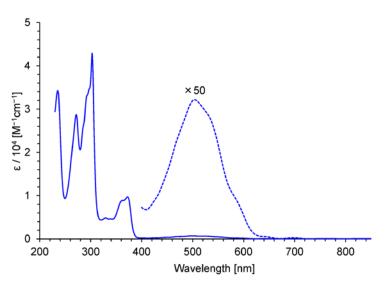
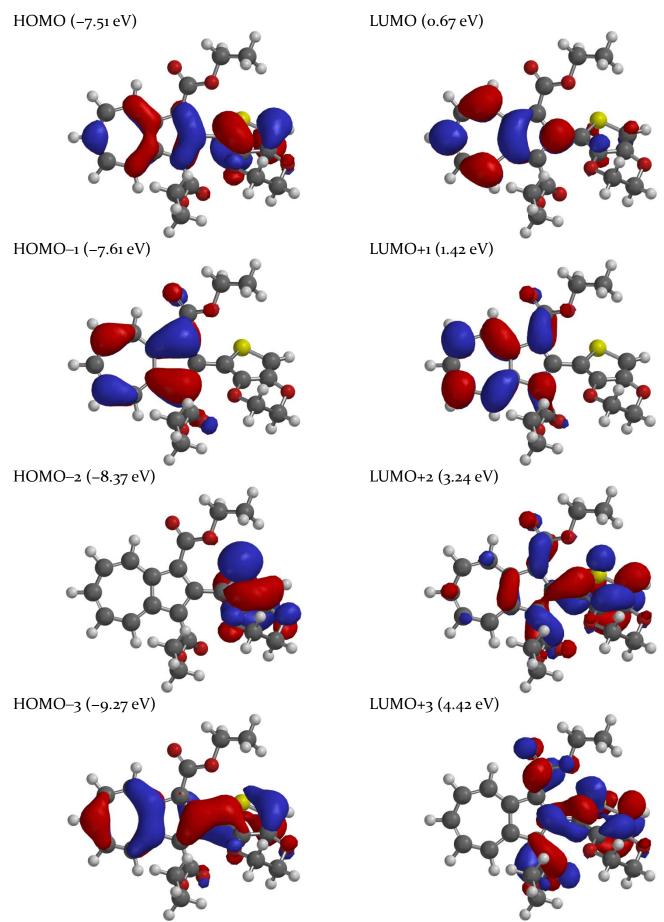
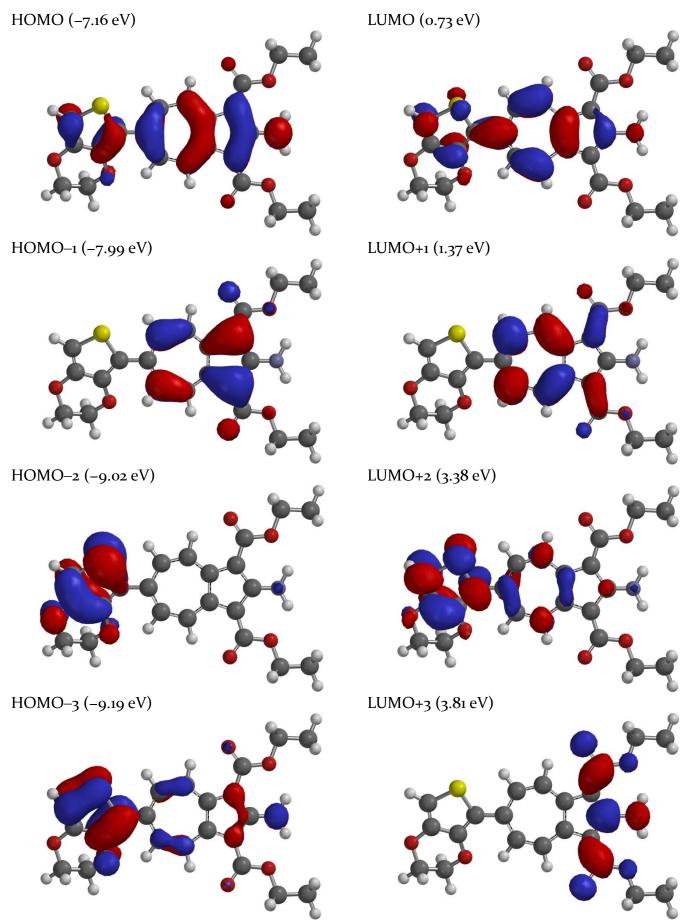
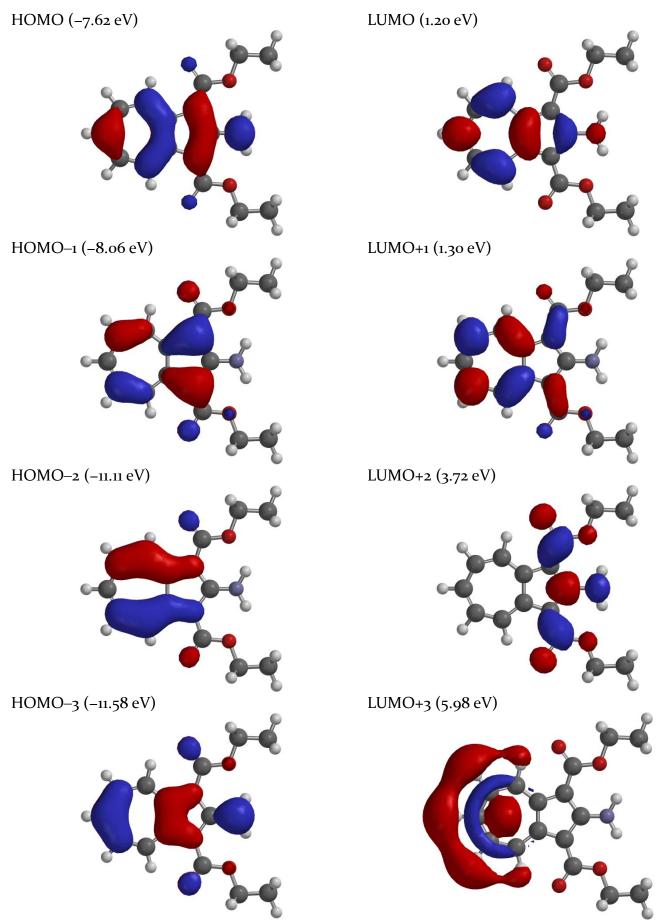


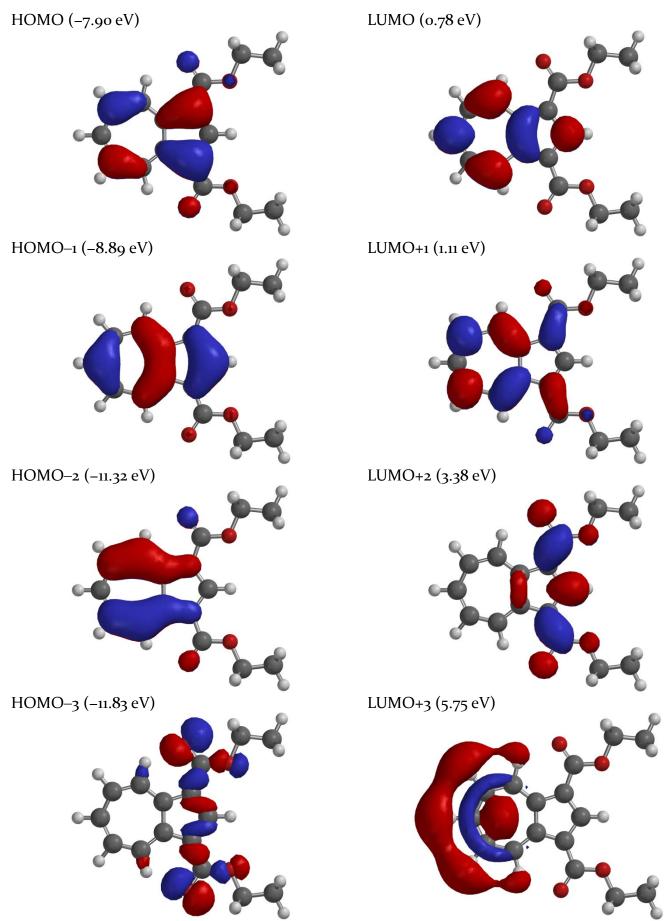
Figure S-37. UV/Vis spectra of 21 in CH2Cl2.

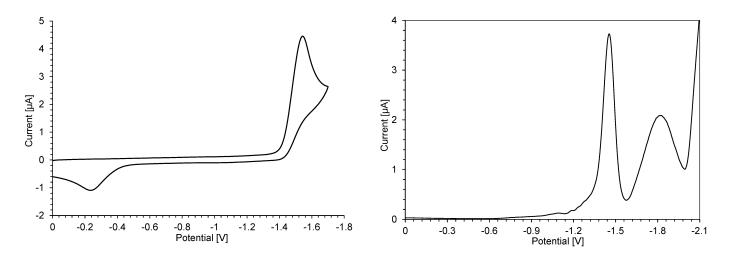




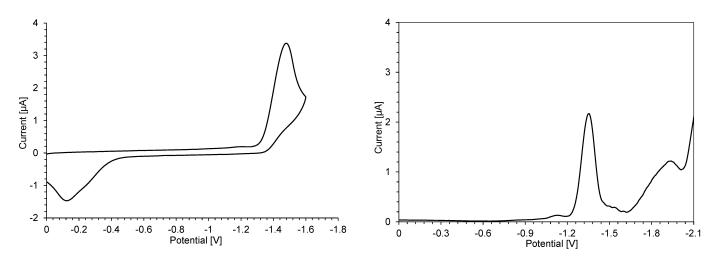

Figure S–38. UV/Vis spectra of 22 in CH2Cl2.

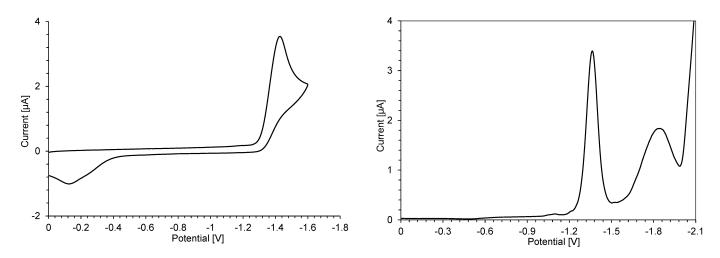


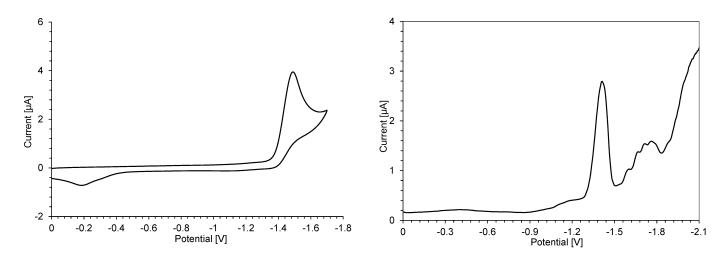

Figure S–40. UV/Vis spectra of **23** in CH₂Cl₂.

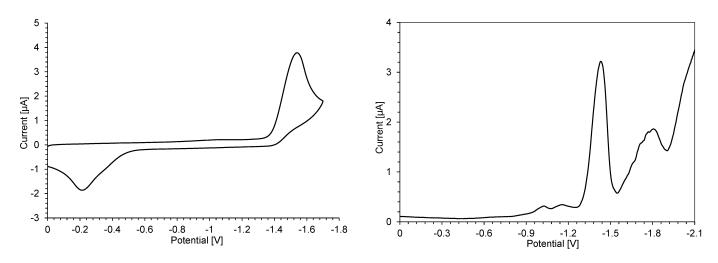

Figure S-41. Frontier Kohn–Sham orbitals of **9** at the B3LYP/6-31G** level.

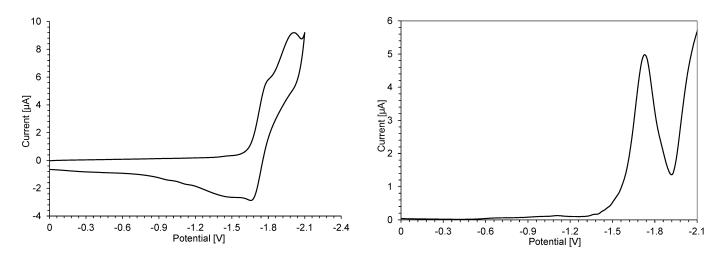

Figure S-42. Frontier Kohn–Sham orbitals of **14** at the B3LYP/6-31G** level.

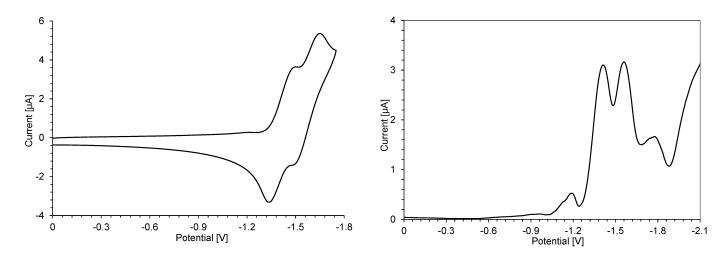

Figure S-43. Frontier Kohn–Sham orbitals of **1** at the B₃LYP/6-3₁G** level.

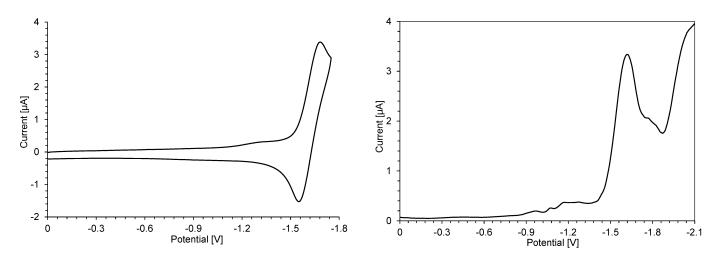

Figure S-44. Frontier Kohn–Sham orbitals of **23** at the B3LYP/6-31G** level.


Figure S-45. Cyclic voltammogram (left) and differential pulse voltammogram (right) of **9** (1 mM) in benzonitrile containing Et_4NClO_4 (0.1M) as the supporting electrolyte.


Figure S-46. Cyclic voltammogram (left) and differential pulse voltammogram (right) of **10** (1 mM) in benzonitrile containing Et_4NClO_4 (0.1M) as the supporting electrolyte.


Figure S-47. Cyclic voltammogram (left) and differential pulse voltammogram (right) of $\mathbf{11}$ (1 mM) in benzonitrile containing Et_4NClO_4 (0.1M) as the supporting electrolyte.


Figure S-48. Cyclic voltammogram (left) and differential pulse voltammogram (right) of 12 (1 mM) in benzonitrile containing Et_4NClO_4 (0.1M) as the supporting electrolyte.


Figure S-49. Cyclic voltammogram (left) and differential pulse voltammogram (right) of **13** (1 mM) in benzonitrile containing Et_4NClO_4 (0.1M) as the supporting electrolyte.

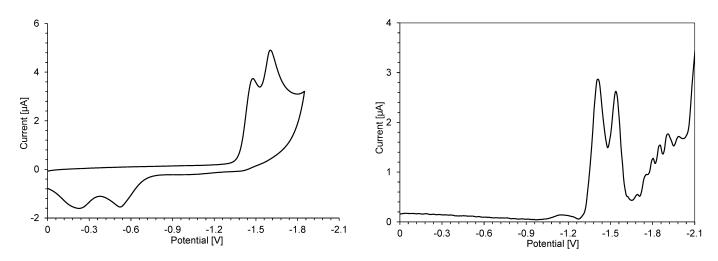

Figure S-50. Cyclic voltammogram (left) and differential pulse voltammogram (right) of **14** (1 mM) in benzonitrile containing Et_4NClO_4 (0.1M) as the supporting electrolyte.

Figure S-51. Cyclic voltammogram (left) and differential pulse voltammogram (right) of **15** (1 mM) in benzonitrile containing Et_4NClO_4 (0.1M) as the supporting electrolyte.

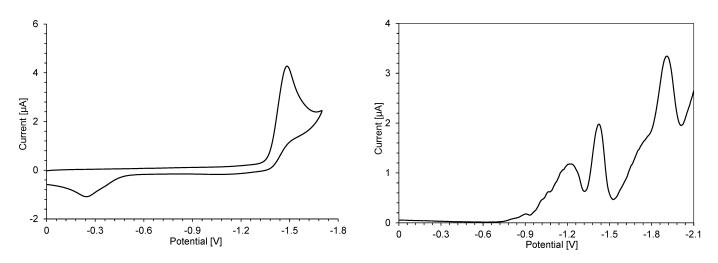

Figure S-52. Cyclic voltammogram (left) and differential pulse voltammogram (right) of 17 (1 mM) in benzonitrile containing Et₄NClO₄ (0.1M) as the supporting electrolyte.

Figure S-53. Cyclic voltammogram (left) and differential pulse voltammogram (right) of **19** (1 mM) in benzonitrile containing Et_4NClO_4 (0.1M) as the supporting electrolyte.

Figure S-54. Cyclic voltammogram (left) and differential pulse voltammogram (right) of **20** (1 mM) in benzonitrile containing Et_4NClO_4 (0.1M) as the supporting electrolyte.

Figure S-55. Cyclic voltammogram (left) and differential pulse voltammogram (right) of 22 (1 mM) in benzonitrile containing Et₄NClO₄ (0.1M) as the supporting electrolyte.