Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Informations

A radical approach for fluorescent turn 'on' detection, differentiation and bioimaging of methanol

Virendra Kumar,^a Ajit Kumar,^a Uzra Diwan,^a Manish Kumar Singh,^b and K. K. Upadhyay^a*

Department of Chemistry (Centre of Advanced Study), Faculty of Science, Banaras Hindu University, Varanasi, Uttar Pradesh-221005, India. Department of Zoology (Centre of Advanced Study), Faculty of Science, Banaras Hindu University, Varanasi, Uttar Pradesh-221005, India. **E-mail:** drkaushalbhu@ yahoo.co.in; kku@bhu.ac.in, Tel No.: +91-542-6702488

S. No.	Figures	Captions			
1.		Experimental section	3-5		
2.	Figure S1	¹ H NMR spectrum of RC in CDCl ₃	6		
3.	Figure S2	13 C NMR spectrum of RC in CDCl ₃	7		
4.	Figure S3	IR spectrum of RC	8		
5.	Figure S4	Mass spectrum of RC	9		
6.	Figure S5	UV-visible absorbance spectrum of RC in different solvent	10		
7.	Figure S6a & b	Visible/fluorescence color changes of RC in different solvents	11		
8.	Figure S7	¹ H NMR spectrum of RO in CDCl ₃	12		
9.	Figure S8	Proposed mechanism of nucleophile attack of methanol over RC	13		
10.	Figure S9	IR spectrum of RO	14		
11.	Figure S10	Overlay IR spectrum of RC and RO	15		
12.	Figure S11	Mass spectrum of RO	16		
13.	Figure S12	HOMO-LUMO orbitals of RC and RO their calculated energy and energy gaps	17		

TABLE OF CONTENTS

		are shown	
14.	Figure S13	Fluorescence reaction time profile of receptor \mathbf{RC} at 0.5µM in MeOH	18
15.	Figure S14	Calibration curve of RC in water with increasing MeOH%	19
16.	Table S1	Important bond length and bond angle of RO	20
17.	Table S2	Crystal data and structure refinement for RO	21
18.	Table S3	The selected experimental and calculated dihedral angles in RC and RO	22
19.	Table S4	Theoretical calculation of absorption maxima of RC and RO in MeOH using	23
		TD-DFT study	

Experimental section

1.1. Synthesis of RC: RC was synthesized by adding 2.0 mM acetonitrile solution of 7-(diethylamino)-2-oxo-2H-chromene-3-carbaldehyde to the equimolar acetonitrile solution of 3-aminorhodanine followed by constant stirring for three hours at room temperature (Scheme 1). A brick red solid was precipitated which was filtered and washed with diethyl ether and finally dried under vacuum over anhydrous CaCl₂. RC was characterized through various spectroscopic techniques like IR, ¹H & ¹³C NMR spectral studies along with mass determination through ESI-MS (ESI; Fig. S1-S4).

Spectroscopic characterization data: Yield: 86%, IR/cm⁻¹: 2971, 2929, 1741, 1709, 1620, 1598, 1563, 1513, 1483, 1428, 1379, 1350, 1311, 1295, 1259, 1233, 1188, 1133, 1078, 1029, 955, 904, 875, 835, 796, 761, 688, 637; ¹H NMR (**300 MHz, CDCl₃, 298K, TMS**): δ = 1.233-1.279 (t, 6H, CH₃), 3.433-3.504 (q, 4H, CH₂), 4.077 (s, 2H, CH₂), 6.490 (s, 1H, Ar-H), 6.613-6.635, (d, 1H, Ar-H), 7.369-7.399 (d, 1H, Ar-H), 8.587, (s, 1H, Ar-H), 8.740 (s, 1H, -CH=N) δ ppm; ¹³C NMR (**75**

MHz, CDCl₃, 298K, TMS): δ=194.83, 169.03, 161.07, 158.34, 152.90, 143.23, 131.79, 131.41, 110.23, 109.81, 108.46, 97.30, 96.92, 45.17, 33.73, 12.63, 12.27 δ ppm; **MS m/z (ESI) = 376.00** Calc. for, C₁₇H₁₇N₃O₃S₂= **375.47.**

- **1.2. Apparatus:** IR Spectra were recorded with a Perkin-Elmer spectrometer using KBr pellets. The corresponding ¹H NMR and ¹³C NMR spectra were recorded in **CDCl**₃ with a JEOL AL 300 FT NMR Spectrometer instrument using tetramethylsilane (Si(CH₃)₄) as an internal standard. ¹H and ¹³C chemical shifts are reported in parts per million (ppm) relative to the residual proton signal of the deuterated solvents. Mass spectrometric analysis was carried out on a MDS Sciex API 2000 LCMS spectrometer while HRMS of **RO** was recorded at Water-Q-Tof Premier-HAB213. The electronic spectra and UV-visible titrations were carried out room temperature (298 K) on a UV-1700/1800 Pharmaspec spectrophotometer with quartz cuvette (path length=1 cm). The emission spectra were recorded at JY HORIBA Fluorescence spectrophotometer.
- **1.3. Materials:** All the reagents and solvents for synthesis were purchased from Sigma-Aldrich and were used without further purification. All reactions were carried out using commercial-grade solvents.
- 1.4. Theoretical Calculations: The geometric and energy optimizations were performed with the Gaussian 03 program based on the density functional theory (DFT) method.^{S1} Becke's three parameter hybrid functional with the Lee-Yang-Parr correlation functional (B3LYP) was employed for all the calculations. The 3-21G** basis set was used to treat all atoms.
- **1.5.** X-ray diffraction studies: Single crystal X-ray diffraction measurements were carried out on an Oxford Diffraction Xcalibur system with a Ruby CCD detector using graphite-monochromated MoKa radiation (k = 0.71073 Å). All the determinations of unit cell and intensity data were performed with graphite-mono-chromated Mo-Ka radiation ($\lambda = 0.71073$ Å^o). Data for the ligand and metal complexes were collected at room temperature/liquid nitrogen temperature. The structures were solved by direct methods, using Fourier techniques, and refined by full-matrix least-squares on F² using the SHELXTL-97 program package.^{S2}
- **1.6.** Cell Imaging Studies: *E. coli* strains (DH5-α) were grown in LB media at 37° C overnight in shaker incubator. The cells were collected in sterile water and vortexed to make the suspension homogeneous. These cell cultures were incubated with **RC**

(10μM) from 1.0 mM stock in 50mM phosphate buffer (pH 7.54) for 1 hour. The treated cells were examined by the excitation range from 450-490 nm and emission range from 500-560 nm on a fluorescence microscope (Nikon-E800, Japan). *References:*

S1. M. J. Frisch, et al., GAUSSIAN 03, (Revision D.01), Gaussian, Inc., Wallingford, CT, 2004.

S2. (a) G. M. Sheldrick, SHELXL-97, Program for X-ray Crystal Structure Refinement, Göttingen University, Göttingen, Germany, 1997; (b) G. M. Sheldrick, SHELXS-97, Program for X-ray Crystal Structure Solution, Göttingen University, Göttingen, Germany, 1997.

Figure S2: ¹³C NMR spectrum of RC:

Figure S4: Mass spectrum of RC:

Figure S5: UV-visible absorbance spectrum of **RC** in different solvent:

Figure S6a: Selective visible color changes of **RC** in various solvents; from left to right: CHCl₃, DCM, Toluene, THF, Ethylacetate, ACN, Acetone, MeOH, EtOH, Propanol, Butanol, DMF, and DMSO

Figure S6b: Selective fluorescence color changes (Under UV light) of **RC** in various solvents; from left to right: **RC**, MeOH, EtOH, Propanol, Butanol, Acetone, Ethyl acetate, Toluene, DCM, CHCl₃, THF, ACN, DMF, DMSO and Water.

Figure S9: IR spectrum of RO:

Figure S11: Mass spectrum of RO:

Figure S12: HOMO-LUMO orbitals of RC and RO their calculated energy and energy gaps are shown:

Atom	Bond Length(Å)	Atom	Bond angle
S(2)- C(16)	1.786(3)	C(16)-S(2)-C(15)	100.(1)
S(2)-C(15)	1.752(2)	C(9)-O(1)-C(13)	122.7(2)
S(1)-C(15)	1.643(2)	N(3)-N(2)-C(14)	116.1(2)
O(1)- C(9)	1.377(3)	C(17)-O(4)-C(18)	115.1(2)
O(1)-C(13)	1.381(3)	N(2)-N(3)-C(15)	119.2(2)
N(2)-N(3)	1.383(2)		
N(2)-C(14)	1.271(4)		
O(4)-C(17)	1.343(4)		
O(4)-C(18)	1.445(3)		
O(2)-C(13)	1.202(3)		
N(3)-C(15)	1.339(4)		

Table S1: Important bond length and bond angle of **RO**:

Showing intermolecular hydrogen bonding in **RO**

Table S2:	Crystal	data and	structure	refinement	for	RO:
-----------	---------	----------	-----------	------------	-----	-----

Identification code	RO				
CCDC No.	980304				
Empirical formula	C18 H21 N3 O4 S2				
Formula weight	407				
Temperature	293(2) K				
Wavelength	0.71073Å				
Crystal system, space group	Triclinic, P-1				
Unit cell dimensions					
Volume	1012.0(3) Å3				
Z, Calculated density	2, 1.334 Mg/m3				
Absorption coefficient	0.291 mm-1				
F(000)	428.0				
Crystal size	0.34 x 0.28 x 0.22 mm				
Theta range for data collection	2.97 to 28.99 deg.				
Limiting indices	-8<=h<=9, -9<=k<=13, -19<=l<=19				
Reflections collected / unique	6963 / 4036 [R(int) = 0.0397]				
Completeness to theta $= 25.00$	99.0 %				
Max. and min. transmission	1.00000 and 0.94362				
Refinement method	Full-matrix least-squares on F2				
Data / restraints / parameters	4036 / 0 / 248				
Goodness-of-fit on F2	0.960				
Final R indices [I>2sigma(I)]	R1 = 0.0574, wR2 = 0.0556				
R indices (all data)	R1 = 0.1294, $wR2 = 0.0712$				
Largest diff. peak and hole	0.213 and -0.161 e.Å-3				

 $RC \qquad RO \qquad Crystal structure RO$

Table S3: The selected experimental and calculated dihedral angles in RC and RO:

Dihedral angles of RC and RO

DA1 = C1-C2-C3=N1 DA2= C2-C3=N1-N2 DA3 = C3-N1-N2-C4 DA4 = N1-N2-C4-S1

DFT calculated structure							Si	ngle Crys	tal Structu	re	
RC				RO			RO				
DA1	DA2	DA3	DA4	DA1	DA2	DA3	DA4	DA1	DA2	DA3	DA4
177.19	177.62	139.15	-11.13	178.96	179.64	-179.97	179.73	166.62	177.61	-171.71	179.80

Table S4: Theoretical calculation of absorption maxima of RC and RO in MeOH using TD-DFT study:

RO

Entry	Major transitions	Wavelength	Oscillator strength	Energy	Contributions of Excitation %
RO	107 →108 0.63996	449.17 nm	f=1.3047	2.7603 eV	HOMO \rightarrow LUMO = 81.9
RC	$\begin{array}{c} 98 \rightarrow 99 \\ 0.63028 \end{array}$	428.38 nm	f=0.9064	2.8943 eV	$HOMO \rightarrow LUMO = 79.45$