Concise Synthesis of Single Components of Partially Sulfated

Oligomannans

Kwok-Kong Tony Mong,^{*a} Kai-Sheng Shiau,^a Yu Hsien Lin,^a Kuang-Chun Cheng,^a and

Chun-Hung Lin^b

^aApplied Chemistry Department, National Chiao Tung University of Taiwan, 1001, University Road, Hsinchu, Taiwan, Republic of China.

E-mail: tmong@mail.ncut.edu.tw; Fax: +886-3-5723764

^bInstitute of Biological Chemistry, Academia Sinica, Room 802, 128, Academia Road Sec. 2, Nankang, Taipei 115, Taiwan, Republic of China.

Supporting information

General Procedures:

Reagent-grade chemical reagents were purchased from vendors and used without further purification. All reactions were executed with flame-dried vessels under a positive pressure of nitrogen. Acetonitrile, dichloromethane, and tetrahydrofuran were dried through solvent purification system AWS-1000. Chemical reactions were monitored by thin-layer chromatography (TLC) on silica gel 60 F-254 plate. Compounds trapped in TLC plate were visualized by UV absorption and/or by staining with acidic ceric ammonium molybdate or *p*-anilaldehyde. Silica gels (Si-60, 0.063-0.200 mm) used in purification were attained from Merck. Co. NMR spectra were recorded on 500MHz (¹H NMR) and 125MHz (¹³C NMR) or 400MHz (¹H NMR) and 100MHz (¹³C NMR) in CDCl₃. Chemical shifts were reported in ppm referred to TMS

(0.00 ppm for ¹H) and the central line of CDCl₃ (77.5ppm for ¹³C) as internal standards. Coupling constants were reported in Hz derived from ¹H NMR.

NIS and TMSOTF (or NIS and TfOH) promoted glycosylation Protocol: Thiomannosyl donor (1.1~1.3 equiv.), thiomannosyl acceptor (1.0 equiv.), and flamedried MS (4Å) (10 wt% to solvent volume) were added to dry CH₂Cl₂ (final concentration of acceptor = ca 50 mM) and the mixture was stirred at RT for 15 to 30 min. The reaction mixture was then cooled to -20 °C, followed by addition of *N*-Iodosuccinimide (NIS, 1.1~1.3 equiv) and trimethylsilyl trifluoromethanesulfonate (TMSOTf) [or trimethylsilyl trifluoromethanesulfonic acid (TfOH)] (0.1~0.3 equiv). The progress of the reaction was monitored by TLC examination. When the mannosyl acceptor was consumed, the reaction was quenched by addition of triethylamine, followed by Na₂S₂O₃ and satd. NaHCO₃. The crude mixture was filtered over celite and concentrated for flash column chromatography.

DMF-Modulated glycosylation Protocol: Thiomannosyl donor (1.1~1.3 equiv.), activated MS (4Å), and DMF (1.2~1.5 equiv.) were added to dried CH₂Cl₂ (final concentration of acceptor = ca 50 mM) and the mixture was stirred at RT for 15 to 30 min. The reaction mixture was then cooled to -20 °C, followed by addition of NIS (1.2~1.5 equiv.) and TMSOTf or TfOH (1.5~1.8 equiv.). After the activation of the donor (evidenced by TLC), the thiomannosyl acceptor (1.0 equiv.) was added. The reaction temperature was increased to effect the glycosylation. When the acceptor was nearly (or completely) consumed, the reaction was quenched by triethylamine, followed by Na₂S₂O_{3(s)} and satd. NaHCO₃. The crude product mixture was filtered over celite and concentrated for purification with flash column chromatography.^{S1}

Me₂S₂-Tf₂O promoted glycosylation protocol: Thiomannosyl donor (1.1~1.3 equiv.), thiomannosyl acceptor (1.0 equiv.), and flame-dried MS (4Å) (10 wt% to solvent volume) were added to dry CH₂Cl₂ (final concentration of acceptor = ca 50 mM). The reaction mixture was stirred at RT for 15 min. and at -20 or -10 °C for 15 min, followed

by addition of Me_2S_2 -Tf₂O complex (1.3~1.5 equiv) and di-*t*-butylmethyl pyridine (DTBMP, 1.5 equiv). Progress of the reaction was monitored by TLC. When the glycosyl acceptor was consumed, the reaction was quenched by addition of triethylamine. The crude reaction mixture was filtered over celite to remove MS and concentrated for purification with flash column chromatography.

Preparation of Me₂S₂-Tf₂O reagent: a 1.0 M reagent was made by mixing triflic anhydride (Tf₂O) (0.168 mL, 1.0 mmol) with dimethylsulfide (Me₂S₂) (0.10 mL, 1.1 mmol) in dry CH₂Cl₂ (0.75 mL) at 0 °C. The resulting mixture was stirred for 30 min before use.^{S2}

Thiomannoside 1^{S1}

Step (a): To a stirred suspension of known ortho-ester **4** (20.0 g, 39.22 mmol) in anhydrous CH₂Cl₂ was added thiocresol (7.40 g, 59.28 mmol) and BF₃·OEt₂ (7.5 mL, 59.22 mmol) in ice bath. The mixture was vigorously stirred from 0 °C to RT for 18h, the reaction was then quenched with addition of H₂O. The crude mixture was washed with H₂O, satd. NaHCO₃, and brine. The organic layer was dried over MgSO₄ and the filtrate was concentrated for purification with flash chromatography (EtOAc/CH₂Cl₂/Hexanes 1:1:6) to afford thiomannoside **1a** (20.17 g, 86%).

Step (b): To a stirred suspension of thiomannoside **1a** (20.17 g, 33.71 mmol) in methanol was added a piece of Na metal. After vigorously stirring at RT for 3h, the reaction was quenched with addition of H₂O. The crude was washed with H₂O, satd. NaHCO₃, and brine. The organic layer was dried over MgSO₄ and concentrated for purification with flash chromatography (EtOAc/CH₂Cl₂/Hexanes 1:1:3).

Step (c): The crude product from procedure (b) was stirred in CH₂Cl₂ at RT. BzCl

(12.5 mL, 46.88 mmol), triethylamine (8.9 mL, 46.88 mmol), and 4dimethylaminopyridine (DMAP) (795 mg, 0.15 mmol) were added. After vigorously stirring for 3 h, the reaction was quenched with H₂O. The crude was washed with H₂O, satd. NaHCO₃, and brine. The organic layer was dried over MgSO₄ and concentrated for purification with flash chromatography (EtOAc/Hexanes/CH₂Cl₂ 5:1:1) to afford thiomannoside **1** (15.8 g, 72% over two steps).^{S1}

Methyl mannoside 3^{S3}

(a) MeOH, BF₃·OEt₂, CH₂Cl₂, 0°C to RT, 4h, 60% (b) Na, MeOH, 76%

Procedure (a): To a stirred suspension of known ester **4** (10.0 g, 19.61 mmol) in CH₂Cl₂ was added MeOH (3.5 mL, 91.50 mmol) and BF₃·OEt₂ (3.8 mL, 29.70 mmol) in ice bath. The mixture was vigorously stirred from 0 °C to RT for 4 h and was quenched with addition of H₂O. The crude was washed with H₂O, satd. NaHCO₃, and brine. The organic layer was dried over MgSO₄ and concentrated for purification with flash chromatography (EtOAc/CH₂Cl₂/Hexanes 1:1:4) to afford the reducing end mannoside **3a** (5.9 g, 60%).

Procedure (b): To a stirred suspension of reducing end mannoside **3a** (5.9 g, 12.0 mmol) in methanol without further distillation was added a piece of sodium solid at RT. After vigorously stirred for 4 h, the reaction was quenched with addition of H₂O. The crude was washed with H₂O, satd. NaHCO₃, and brine. The organic layer was dried over MgSO₄ and then concentrated for purification with flash chromatography (EtOAc/hexanes/CH₂Cl₂ 3:1:1) to afford the reducing end mannoside **3** (4.2 g, 76%).

Thiomannoside 6

$$\begin{array}{cccc} Ph & O & OH \\ O & OH \\ HO & & & \\ STol \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

(a) Bu₂SnO, Toluene, reflux, 3h ; (b) 2-NapBr, CsF, 70 °C, 15 h, 71% (2 steps)

To a stirred suspension of known thiomannoside 5 (10.7 g, 28.56 mmol) in toluene (100 mL) was added di-butyltin oxide (10.8 g, 42.9 mmol). The mixture was heated under reflux for 3 h, and then cooled down to RT. To the stannylene acetal generated in previous step was added naphthylmethylene bromide (NapBr, 9.5 g, 42.9 mmol) and cesium fluoride (CsF, 6.5 g, 42.9 mmol). The mixture was stirred at 70 °C for 6-15 h, and then cooled down to RT. The reaction mixture was filtered over celite, and the filtrate concentrated purification with was for flash chromatography (EtOAc/CH₂Cl₂/Hexanes 1:1:5) to afford thiomannoside 6. For thiomannoside 6, $R_{\rm f}$ 0.2 (EtOAc/CH₂Cl₂/Hexanes 1:1:5); $[\alpha]_{D}^{23}$ +176.6 (*c* 2.05, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.84-7.81 (m, 3H, ArH), 7.76-7.73 (m, 1H, ArH), 7.54-7.46 (m, 5H, ArH), 7.41-7.38 (m, 3H, ArH), 7.31 (d, *J* = 8.0 Hz, 2H, ArH), 7.10 (d, *J* = 8.0 Hz, 2H, ArH), 5.64 (s, 1H, benzylidene-H), 5.51 (s, 1H, H-1), 5.01 (d, J = 12.0 Hz, 1H), 4.91 (d, J = 12.0 Hz, 1H), 4.35-4.31 (m, 2H), 4.23-4.18 (m, 2H), 4.02 (dd, J = 9.6, 3.4 Hz,1H), 3.85 (t, J = 10.3 Hz, 1H), 2.89 (s, 1H, OH), 2.32 (s, 3H, CH₃): ¹³C NMR (100 MHz, CDCl₃): δ 138.0, 137.5, 135.1, 133.2, 133.1, 132.4, 129.9, 129.3, 129.0, 128.33, 128.26, 128.0, 127.7, 126.7, 126.2, 126.14, 126.10, 125.6, 101.7, 88.1 (C-1), 79.0, 75.7, 73.1, 71.3, 68.6, 64.5, 21.1. HRMS (ESI) m/z calcd for C₃₁H₃₀NaO₅S [M + Na]⁺: 537.1706, found: 537. 1706.

Thiomannosides 7, 8, and 8'.

To thiomannoside **6** (10.24 g, 19.9 mmol) was added 1.0 M BH₃ THF (60 mL, 60 mmol) at 0°C. Then TMSOTf (180 μ L) was added under nitrogen and the mixture was stirred from 0°C to RT. After stirring at RT for 2 h, the borane reagent was quenched with the addition of MeOH at 0°C and the solvent was reduced by rotary evaporator. The residue was concentrated for chromatography purification (EtOAc/Hexanes 1:4 to 1:1) to obtain the diol intermediate **7** (8.8 g, 17.1 mmol).

The diol 7 (9.4 g, 17.1 mmol), BnBr (2.2 mL, 18.3 mmol) and TBAB (5.9 g, 18.3 mmol) were treated with 10% NaOH in THF (13 mL) at RT. The reaction mixture was vigorously stirred at RT. After stirring at RT for 1.5 h, the solvent was reduced by rotary evaporator and the residue was dissolved in EtOAc, which was washed with dilute HCl, brine, and dried (MgSO₄). After filtration and concentration, the crude mixture was subjected to chromatography purification (EtOAc:CH₂Cl₂:Hexanes 1: 1:5) to obtain the product 8 (8.9 g, 14.7 mmol) The alkylation product 8 (from previous step) in CH2Cl2 was treated with BzCl (2.6 mL, 22.0 mmol), Et3N (4 mL, 29.4 mmol), and DMAP (180 mg, 1.47 mmol). Upon completion of benzoylation, satd. NaHCO3 was added to the mixture and the benzoylation product was extracted with EtOAc. The EtOAc solution was wshed with diluted HCl solution, H2O, brine, dried (over NgSO4), filtered, and concentrated for chromatography purification to afford 8' in 75% yield. For 8', ¹H NMR (500 MHz, CDCl₃): δ8.00 (dd, J = 1.0, 8.0 Hz, 2H, ArH), 7.84-7.80 (m, 3H, ArH), 7.76 (dd, J = 3.5, 6.0 Hz, 1H, ArH), 7.54-7.50 (m, 1H, ArH), 7.49-7.45 (m, 3H, ArH), 7.38-7.36 (m, 3H, ArH), 7.34-7.32 (m, 2H, ArH), 7.30-7.25 (m, 8H, ArH), 7.24-7.21 (m, 1H, Ar*H*), 6.98 (d, *J* = 8.0 Hz, 2H, Ar*H*), 5.55 (d, *J* = 1.5 Hz, 1H), 5.00 (d, *J* = 11.0 Hz, 1H), 4.80 (s, 2H), 4.72 (d, J = 12.0 Hz, 1H), 4.65 (d, J = 12.5 Hz, 2H), 4.58 (d, J = 3.5 Hz, 2H), 4.49-4.46 (m, 1H), 4.15 (t, J = 9.5 Hz, 1H), 4.07 (dd, J = 1.5, 2.5 Hz, 1H), 4.01 $(dd, J = 3.0, 9.5 Hz, 1H), 2.27 (s, 3H, CH_3); {}^{13}C NMR (125 MHz, CDCl_3): d 166.87$ (C=O), 138.5, 138.3, 138.2, 135.9, 133.8, 133.5, 133.3, 132.5, 130.6, 130.5, 130.3, 130.2, 128.89, 128.86, 128.7, 128.2, 127.1, 126.6, 126.4, 126.3, 86.3, 80.7, 76.7, 75.8, 75.1, 72.7, 72.4, 71.5, 64.4, 21.6 (CH₃). HRMS (ESI) m/z calcd for C₄₅H₄₂NaO₆S⁺ [M + Na]⁺: 733.2594, found: 733.2606.

Thiomannoside 9

To a well-stirred suspension thiomannoside 6 (6.3 g, 12.25 mmol) in anhydrous CH₂Cl₂ was added triethylamine (3.4 mL, 24.4 mmol), benzoyl chloride (2.2 mL, 18.4 mmol) and 4-dimethylaminopyridine (DMAP) (147 mg, 1.25 mmol). After vigorously stirred at RT for 3 h, the reaction was quenched with addition of H₂O. The crude mixture was washed with H₂O, satd. NaHCO₃, and brine. The organic layer was dried over MgSO₄, concentrated for purification with flash and chromatography (EtOAc/CH₂Cl₂/Hexanes 1:1:7) to give thiomannoside 9 (5.4 g, 76%). For 9, $R_f 0.25$ (EtOAc/CH₂Cl₂/Hexanes 1:1:7); $[\alpha]_D^{23}$ +60 (*c* 0.46, CHCl₃); ¹H NMR (500 MHz, CDCl₃): *δ* 8.07-8.14 (m, 2H), 7.70-7.82 (m, 3H), 7.52-7.62 (m, 4H), 7.32-7.47 (m, 10H), 7.06-7.11 (m, 2H), 5.90 (d, J = 2.7Hz, 1H, H-2), 5.71 (s, 1H, benzylidene-H), 5.55 (s, 1H, H-1), 4.93 (d, J = 12.8 Hz, 1H, Naphthylmethylene-H), 4.87 (d, J = 12.8 Hz, 1H, Naphthylmethylene-H), 4.45 (dt, J = 3.9, 4.7 Hz, 1H), 4.24-4.33 (m, 2H), 4.19 (dd, J =3.2, 9.9 Hz, 1H), 3.92 (t, J = 10.2 Hz, 1H), 2.32 (s, 3H, CH₃); ¹³C NMR (125 MHz, CDCl₃): δ 166.1 (C=O), 138.8, 137.9, 135.7, 133.8, 133.7, 133.4, 133.2, 130.5, 130.4, 130.1, 129.6, 129.5, 128.9, 128.7, 128.5, 128.4, 128.1, 126.8, 126.7, 126.4, 126.2, 126.0, 103.3, 88.0 (C-1), 79.3, 74.7, 72.4, 72.2 (C-2), 69.0, 65.6, 21.6; HRMS (MALDI) m/z calcd for C₃₈H₃₄NaO₆S [M + Na]⁺: 641.2076, found: 641.2105.

Thiomannoside 10

To a stirred suspension thiomannoside **9** (7.1 g, 12.15 mmol) in anhydrous THF was added 1.0 M Borane-THF complex (36.6 mL, 36.6 mmol), and TMSOTf (0.5 mL,

3.00 mmol). After vigorously stirred for 1h, the reaction was slowly quenched with MeOH under ice bath. The crude mixture was then concentrated for purification with flash chromatography (EtOAc/CH₂Cl₂/Hexanes 1:1:4) to afford thiomannoside **10** (6.8 g, 95%). For thiomannoside **10**, R_f 0.2 (EtOAc/CH₂Cl₂/Hexanes 1:1:4); $[\alpha]_D^{23}$ +43.3 (*c* 2.40, CHCl₃): ¹H NMR (400 MHz, CDCl₃): δ 8.08-8.07 (m, 2H, ArH), 7.80-7.73 (m, 3H, ArH), 7.61-7.67 (m, 1H, ArH), 7.58 (tt, *J* = 7.2, 1.2 Hz, 1H, ArH), 7.39-7.50 (m, 5H, ArH), 7.27-7.37 (m, 7H, ArH), 7.05-7.15 (d, *J* = 8.0 Hz, 2H, ArH), 5.90 (dd, *J* = 1.8, 2.9 Hz, 1H, H-2), 5.52 (d, *J* = 1.5 Hz, 1H, H-1), **5.27** (s, signal arising from contamination of CH₂Cl₂), 4.97 (d, *J* = 13.7 Hz, 1H), 4.95 (d, *J* = 14.5 Hz, 1H), 4.77 (d, *J* = 14.5 Hz, 1H), 4.07 (t, *J* = 9.5 Hz, 1H), 3.76-3.92 (m, 2H, OH), 2.31 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 166.1 (C=O), 138.8, 138.6, 135.6, 133.84 133.7, 133.5, 133.3, 130.44, 130.36, 130.2, 129.9, 129.0, 128.9, 128.63, 128.59, 128.4, 128.3, 128.1, 127.4, 126.5, 126.5, 87.2 (C-1), 78.9, 75.8, 74.6, 73.4, 72.2, 71.2, 62.5, 21.6. HRMS (ESI) *m/z* calcd for C₃₈H₃₆NaO₆S [M + Na]⁺: 643.2131, found: 643.2125.

Thiomannoside 2a

TMSOTf (229 µL, 1.27 mmol) was added to a solution of thiomannoside **10** (1.57 g, 2.53 mmol) and HMDS (369 µL, 1.77 mmol) in CH₂Cl₂. After stirring for 1 h, a stream of N₂ was purged over the reaction to get rid of the ammonia byproduct generated in the silylation. Then, activated MS (500 mg) and benzaldehyde (772 µL, 7.59 mmol) were added, and the mixture was stirred at 0 °C for 1 h. Subsequently, the the reaction temperature was brought to -20 °C, and triethylsilane (TES) (1.2 mL, 7.59 mmol) and TMSOTf (2.29 µL, 1.27 mmol) were added. After stirring at -20 °C for 3 h, the desired product **2a** was formed. The crude mixture was neutralized with Et₃N and

concentrated for purification with flash chromatography then (Elution: EtOAc/CH₂Cl₂/Hexane 1:1:8) to afford thiomannoside 2a (1.5 g, 84%). For thiomannoside 2a, R_f 0.3 (EtOAc/CH₂Cl₂/Hexanes 1:1:8); $[\alpha]_D^{23}$ +39.0 (c 2.67, CHCl₃); ¹H NMR (400 MHz , CDCl₃): δ 8.07 (d, J = 7.2 Hz, 2H, ArH), 7.80-7.70 (m, 3H, ArH), 7.67-7.61 (m, 1H, ArH), 7.58-7.47 (m, 1H, ArH), 7.46-7.40 (m, 3H), 7.38-7.23 (m, 12H, ArH), 7.17-7.24 (m, 2H, ArH), 7.05 (d, J = 8.0 Hz, 1H, ArH), 5.92 (t, J = 2.1Hz, 1H, H-2), 5.59 (d, J = 1.5 Hz, 1H, H-1), 4.92 (d, J = 10.2 Hz, 1H), 4.86 (m, 2H), 4.60 (m, 1H), 4.58 (d, J = 10.4 Hz), 4.41 (dd, J = 2.5, 9.3 Hz, 1H), 4.16 (m, 2H), 3.95 (dd, J = 4.2, 10.9 Hz, 1H), 3.79 (dd, J = 1.6, 10.8 Hz, 1H), 2.29 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 166.1 (C=O), 138.9, 138.8, 138.4, 135.6, 133.72, 133.67, 133.5, 132.9, 130.4, 130.3, 128.9, 128.82, 128.78, 128.6, 128.4, 128.14, 128.10, 128.0, 127.9, 127.4, 126.6, 126.4, 126.3, 87.2 (C-1), 79.1, 75.8, 75.0, 73.9, 73.1, 72.2, 71.1, 69.6, 21.6. **HRMS** (ESI) m/z calcd for C₄₅H₄₂NaO₆S [M + Na]⁺: 733.2594 found: 733.2601.

Thiomannoside 2a'

To a stirred suspension thiomannoside 2a (3.04g, 4.28 mmol) in 8:1:1 CH₂Cl₂-MeOH-PBS (20 mL) solvent mixture was added DDQ (1.46 g, 6.42 mmol). After vigorously stirred from 0° C to RT for 3 h, the reaction was quenched with addition of satd. NaHCO3 and Na₂S₂O₃. The crude was washed with H₂O, satd. NaHCO3, and brine. The organic layer was dried over MgSO₄, concentrated, followed by purification with EtOAc/CH₂Cl₂/Hexanes flash chromatography (Elution: 1:1:7)afford to thiomannoside 2a' (1.9)g, 75%). For thiomannoside 2a', $R_{\rm f}$ 0.2 (EtOAc/CH₂Cl₂/Hexanes 1:1:7); $[\alpha]_D^{23}$ +103.5 (*c* 2.67, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, J = 6.4, 1.2 Hz, 2H, ArH), 7.51 (t, J = 7.2, 1.2 Hz, 1H, ArH), 7.227.38 (m, 14H, ArH), 7.03 (d, J = 8.0 Hz, 2H, ArH), 5.61 (dd, J = 3.2, 2 Hz, 1H, H-2), 5.57 (d, J = 1.6 Hz, 1H, H-1), 4.83 (d, J = 11.2 Hz, 1H), 4.67 (dd, J = 13.4, 12.0 Hz, 2H), 4.48 (d, J = 11.8 Hz, 1H), 4.38 (ddd, J = 9.6, 4.0, 1.6 Hz, 1H), 4.21 (ddd, J = 9.2, 4.8, 3.2 Hz, 1H) 4.06 (t, J = 9.2 Hz, 1H) 3.94 (dd, J = 10.8, 4.0 Hz, 1H), 3.78 (dd, J =11.2, 1.6 Hz, 1H) 2.62 (d, J = 4.8 Hz, 1H) 2.26 (s, 3H, CH₃) 2.24 (d, J = 5.2 Hz, 1H, OH); ¹³C NMR (100 MHz, CDCl₃): δ 166.4 (C=O), 138.7 138.5, 138.2, 133.7, 132.7, 132.6, 130.27, 130.25, 130.17, 130.0, 128.9, 128.8, 128.7, 128.4, 128.3, 128.1, 127.94, 127.87, 86.80 (C-1), 77.8, 77.2, 76.2, 75.9, 74.9, 73.8, 72.7, 71.5, 69.4, 21.5 (CH₃). HRMS (ESI) *m*/*z* calcd for C₃₄H₃₄NaO₆S [M + Na]⁺: 593.1968, found: 593.1969.

Thiomannoside 2b

To a stirred suspension thiomannoside **2a'** (393 mg, 0.69 mmol) in anhydrous solvent system (CH₂Cl₂/Pyridine = 1/1) was added FmocCl (536 mg, 2.07 mmol) and 4-Dimethylaminopyridine (DMAP) (17 mg, 0.14 mmol). After vigorously stirred for 5 h, the reaction was quenched with addition of H₂O. The crude was washed with H₂O, satd. NaHCO₃, and brine. The organic layer was dried over MgSO₄, concentrated, followed by purification with flash chromatography (EtOAc/CH₂Cl₂/Hexanes 1:1:7) to afford thiomannoside **2b** (388 mg, 76%). For thiomannoside **2b**, *R*_f 0.2 (EtOAc/DCM/Hexanes 1:1:7 v/v) $[\alpha]_D^{23}$ +48.6 (*c* 2.46, CHCl₃), ¹H NMR (400 MHz, CDCl₃): δ 8.10 (dd, *J* = 8.0, 1.2 Hz, 2H, ArH), 7.80 (d, *J* = 7.2 Hz, 1H, ArH), 7.73 (d, *J* = 5.6 Hz, 2H, ArH), 7.51-7.65 (m, 4H, ArH), 7.41-7.21 (m, 15H, ArH), 7.15 (dt, *J* = 7.2, 0.8 Hz, 1H, ArH), 7.07 (d, *J* = 8.0 Hz, 2H, ArH), 5.91 (dd, *J* = 1.3, 3.1 Hz, 1H, H-2), 5.59 (d, *J* = 1.7 Hz, 1H, H-1), 5.31 (dd, *J* = 3.1, 9.7 Hz, 1H, H-3), 5.28 (s, 1H), 4.73 (d, *J* = 11.8 Hz, 1H), 4.72 (d, *J* = 12.0 Hz, 1H), 4.62 (d, *J* = 12.0 Hz, 1H), 4.42-4.57 (m, 3H), 4.22-4.35 (m, 2H), 3.98 (dd, *J* = 3.8, 11.0 Hz, 1H), 3.78 (dd, *J* = 1.6, 11.0 Hz,

1H), 2.29 (s, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃): *δ* 165.9 (C=O), 154.7 (carbamate C=O), 144.1, 143.8, 143.6, 141.8, 141.7, 138.7, 138.6, 138.3, 133.9, 133.0, 130.5, 130.4, 120.0, 129.0, 128.8, 128.3, 128.1, 127.7, 125.8, 125.7, 125.6, 120.6, 120.5, 86.7 (C-1), 75.7, 74.0, 73.5, 73.0, 72.1, 70.8, 70.4, 69.2, 47.3, 47.2, 21.6. HRMS (ESI) *m/z* calcd for C₄₉H₄₄NaO₈S [M + Na]⁺: 815.2656 found: 815.2649.

Nap protected Man- α -(1 \rightarrow 2)-Man disaccharide 11a

Preparation of **11a** is referred to the NIS/TMSOTf promoted glycosylation protocol. The amounts of reagents used are given as follows: thiomannoside **2a** (860 mg, 1.21 mmol), reducing end acceptor **3** (511 mg, 1.10 mmol), NIS (300 mg, 1.32 mmol), TMSOTf (43 µL, 0.33 mmol), and 4Å molecular sieves (250 mg). For disaccharide **11a**, $R_{\rm f}$ 0.2 (EtOAc/CH₂Cl₂/Hexanes 1:1:7 v/v); $[\alpha]_{\rm D}^{23}$ –0.48 (*c* 1.67, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 8.11 (t, J = 7.5 Hz, 2H, ArH), 7.90 (t, J = 7.0 Hz, 3H, ArH), 7.60 (dd, J = 6.5, 2.5 Hz, 1H, ArH), 7.53 (t, J = 7.5 Hz, 1H, ArH), 7.12-7.42 (m, 30H, ArH), 5.86 (d, J = 1.9 Hz, 1H, H-2'), 5.23 (s, 1H, H-1'), 4.82 (m, 2H including H-1), 4.59-4.74 (m, 5H), 4.45-4.57 (m, 4H), 4.18 (d, J = 5.8 Hz, 1H, H-3'), 4.01-4.11 (m, 3H), 3.86-3.94 (m, 2H), 3.77-3.83 (m, 2H), 3.66-3.75 (m, 3H), 3.26 (s, 3H, CH₃); ¹³C NMR (125 MHz, CDCl₃): δ 165.9 (C=O), 138.94, 138.86, 138.81, 138.7, 138.6, 136.0, 133.6, 133.5, 133.3, 130.5, 130.4, 128.8, 128.70, 128.68, 128.4, 128.31, 128.27, 128.20, 128.0, 127.92, 127.88, 127.80, 127.2, 126.5, 126.2, 126.1, 100.1 (C-1'), 100.0 (C-1), 80.2, 78.6, 75.7, 75.5, 75.4, 75.0, 74.9, 73.8, 73.7, 72.6, 72.5, 72.1, 69.7, 69.6, 55.1. HRMS (ESI) m/z calcd for C₆₆H₆₆NaO₁₂ [M + Na]⁺: 1073.4446, found: 1073.4481.

Fmoc protected Man- α -(1 \rightarrow 2)-Man disaccharide 11b

Preparation of **11b** is referred to the NIS and TMSOTf promoted glycosylation. The exact amounts of reagents used are given as follows: thiomannosyl donor 2b (511 mg, 0.65 mmol), reducing end acceptor 3 (251 mg, 0.54 mmol), NIS (159 mg, 0.70 mmol), TMSOTf (39 µL, 0.22 mmol), and activated 4Å MS (200 mg). For disaccharide **11b**, R_f 0.2 (EtOAc/CH₂Cl₂/Hexanes 1:1:6 v/v) $[\alpha]_D^{23}$ +4.50 (c 1.33, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 8.04-8.13 (m, 2H, ArH), 7.66-7.76 (m, 2H, ArH), 7.50-7.62 (m, 3H, ArH), 7.12-7.44 (m, 30H, ArH), 7.04-7.10 (m, 1H, ArH), 5.91 (d, J = 9.4 Hz, 1H, H-2'), 5.45 (t, J = 8.5 Hz, 1H, H-3'), 5.20 (d, J = 5.6, 1H, H-1'), 4.78-4.90 (m, 3H), 4.66-4.76 (m, 2H), 4.46-4.64 (m, 7H), 4.12-4.33 (m, 4H), 4.02(d, J = 8.2 Hz, 1H), 3.91 (d, J = 5.9Hz, 3H), 3.68-3.84 (m, 4H), 3.30 (d, J = 7.0Hz, 3H); ¹³C NMR (125) MHz, CDCl₃): δ 165.7 (C=O of Bz), 154.5 (C=O of Fmoc), 144.2, 143.6, 141.7, 141.6, 138.94, 138.85, 138.74, 138.70, 138.4, 133.7, 130.5, 130.1, 128.9, 128.8, 128.74, 128.69, 128.5, 128.21, 128.16, 128.1, 128.00, 127.98, 127.92, 127.86, 127.7, 127.6, 127.5, 125.9, 125.6, 120.4, 120.3, 100.1 (C-1'), 99.9 (C-1), 80.3, 77.0, 76.2 (C-3'), 75.6, 75.4, 75.3, 73.9, 73.7, 73.4, 72.8, 72.3, 70.6, 70.5 (C-2'), 69.8, 69.3, 55.1, 47.1. HRMS (ESI) m/z calcd for C₇₀H₆₈NaO₁₄ [M + Na]⁺: 1155.4510, found: 1155.4501.

Man- α -(1 \rightarrow 2)-Man disaccharide 11c from 11a

Deprotecetion of **11a** employed the same procedure as for DDQ deprotection of **2a** described before. The crude reaction mixture was purified by flash chromatography (EtOAc/CH₂Cl₂/Hexanes 1:1:5) to afford **11c**. For disaccharide **11c**, R_f 0.2 (EtOAc/CH₂Cl₂/Hexanes 1:1:5); $[\alpha]_D^{23}$ +18.0 (*c* 2.00, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 8.05 (d, *J* = 7.0 Hz, 2H, ArH), 7.51 (t, *J* = 7.5 Hz, 1H, ArH), 7.15-7.40 (m, 26H, ArH), 7.09-7.15 (m, 1H, ArH), 5.56 (s, 1H, H-2'), 5.18 (s, 1H, H-1'), 4.86 (d, *J* = 10.0 Hz, 2H), 4.79 (d, *J* = 11.0 Hz, 1H), 4.47-4.75 (m, 8H), 4.33 (bs, 1H, H-3'), 3.83-4.10 (m, 6H), 3.66-3.82 (m. 4H), 3.25 (s, 3H, CH₃), 2.28 (bs, 1H, OH); ¹³C NMR (125 MHz, CDCl₃): δ 166.3 (C=O), 138.8, 138.6, 133.5, 130.2, 130.1, 128.7, 128.63, 128.60, 128.5, 128.3, 128.1, 127.9, 127.76, 127.72, 100.0 (C-1), 99.8 (C-1'), 80.0, 76.0, 75.7, 75.4, 75.1, 75.0, 73.7, 73.6 (C-2'), 73.2, 72.5, 72.1, 72.0, 70.8 (C-3'), 69.5, 69.5, 55.0. HRMS (ESI) *m*/*z* calcd for C₅₅H₅₈NaO₁₂ [M + Na]⁺: 933.3820 found: 933.3822.

To a stirred suspension of oligomannan dimer **11b** (124 mg, 0.11 mmol) in CH₂Cl₂, an organic base was added including piperidine (22 μ L, 0.22 mmol), DBU (28 μ L, 0.22 mmol) or 50% morpholine (760 μ L morpholine and 760 μ L CH₂Cl₂ mixture, 0.22 mmol). After vigorously stirring for 3h, the reaction was quenched with addition of H₂O. The crude was washed with H₂O, diluted HCl (0.05 N), and brine. The organic layer was dried over MgSO₄, concentrated, followed by chromatography purification (EtOAc/CH₂Cl₂/Hexanes 1:1:5) to afford disaccharides **11c** along with a migratory byproduct. The yields derived from the use of different bases were given in Table S1. For migration byproduct, *R*_f 0.1 (EtOAc/CH₂Cl₂/Hexanes 1:1:5 v/v); $[\alpha]_D^{23}$

+18.75 (*c* 2.67, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 8.04-8.10 (m, 2H, ArH), 7.53-7.59 (m, 1H, ArH), 7.40-7.48 (m, 2H, ArH), 7.12-7.38 (m, 24H, ArH), 7.04-7.10 (m, 2H, ArH), 5.58 (m, 1H, H-3'), 5.08 (s, 1H, H-1'), 4.82 (d, *J* = 9.9 Hz, 2H), 4.56-4.71 (m, 6H), 4.45-4.55(m, 3H), 4.34 (s, 1H, H-2'), 4.05-4.13 (m, 2H), 4.02 (s, 1H), 3.81-3.92 (m, 2H), 3.66- 3.79 (m, 5H), 3.26 (s, 3H, CH₃), 2.30 (bs, 1H, OH); ¹³C NMR (125 MHz, CDCl₃): δ 165.9 (C=O), 139.0, 138.9, 138.8, 138.5, 138.2, 133.6, 130.5, 130.4, 130.2, 128.9, 128.9, 128.80, 128.75, 128.71, 128.5, 128.4, 128.3, 128.1, 128.04, 127.99, 127.8, 102.3 (C-1'), 100.2 (C-1), 80.4, 76.2, 75.6, 75.4, 75.0, 74.9 (C-3'), 73.9, 73.8, 73.7, 72.9, 72.3, 72.0, 70.0 (C-2'), 69.9, 69.3, 55.1.

Entry	Base	Time (h)	<i>T</i> (°C)	Product ^{<i>a</i>}	
				11c (%)	Migration product (%)
1	piperidine	3	25	35	36
2	piperidine	3	0	33	37
3	DBU	1	25	35	32
4	morpholine	3	25	70	10

 Table S1. Fmoc deprotection for disaccharide11b

^{*a*} 1.0 Equiv of **11b** and 1.5 equiv of base were used in al entries.

Man- α -(1 \rightarrow 3)-Man disaccharide 12

Preparation of **12** is referred to the DMF-modulated glycosylation procedure. The amounts of reagents used are given as follows: thiomannoside donor **1** (370 mg, 0.56 mmol), thiomannoside acceptor **2a** (245 mg, 0.43 mmol), NIS (136 mg, 0.6 mmol), TfOH (58 μ L, 0.65 mmol), DMF (43 μ L, 0.56 mmol), and 4Å MS (450 mg). For disaccharide **12**, *R*_f 0.2 (EtOAc/CH₂Cl₂/Hexanes 1:1:9); ¹H NMR (400 MHz, CDCl₃): δ 8.04 (d, *J* = 10.8 Hz, 4H, ArH), 7.54 (m, 2H), 7.36-7.03 (m, 33H), 5.74 (d, *J* = 2.4 Hz, 1H), 5.65 (d, *J* = 2.4 Hz, 1H), 5.60 (s, 1H), 5.37 (s, 1H), 4.86-4.67 (m, 4H), 4.64-4.58 (m, 2H), 4.54-4.46 (m, 3H), 4.41-4.33 (m, 3H), 4.29-4.22 (m, 1 H), 4.17-4.09 (m, 1H),

4.01-3.92 (m, 3H), 3.77-3.67 (m, 3H), 2.27 (s, 3H, OCH₃); ¹³C NMR (100 MHz, CDCl₃): δ 166.1 (C=O), 165.9 (C=O), 139.0, 138.7, 138.3, 138.2, 133.7, 133.6, 130.4, 130.24, 130.18, 129.0, 128.9, 128.8, 128.7, 128.62, 128.58, 128.48, 128.3, 128.2, 128.0, 127.9, 127.8, 100.2 (C-1'), 86.7 (C-1), 78.4, 78.2, 75.9, 75.3, 75.1, 74.4, 74.3, 73.8, 73.1, 73.0, 72.1, 69.6, 69.3, 69.0, 21.5 (CH₃). HRMS (ESI) *m*/*z* calcd for C₆₈H₆₆NaO₁₂S [M + Na]⁺: 1130.4201, found: 1129.4214.

Man- α -(1 \rightarrow 3)-Man disaccharide 13

Preparation of disaccharide 13 is referred to the DMF-modulated glycosylation procedure. The exact amounts of reagents are given as follows: thiomannosyl donor 2 (376 mg, 0.53 mmol), thiomannosyl acceptor 2' (251 mg, 0.44 mmol), NIS (129 mg, 0.57 mmol), TfOH (58 µL, 0.66 mmol), DMF (44 µL, 0.57 mmol), and 4Å MS (400 mg). The isolation yield of 13 was 75%. For disaccharide 13, $R_{\rm f}$ 0.2 (EtOAc/CH₂Cl₂/Hexanes 1:1:7); $[\alpha]_D^{23}$ +8.9 (c 1.80, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 7.97-8.11 (m, 4H, ArH), 7.69 (d, J = 7.5 Hz, 1H, ArH), 7.61-7.58 (m, 2H, ArH), 7.56-7.48 (m, 3H, ArH), 7.44-7.25 (m, 23H, ArH), 7.23-7.16 (m, 4H, ArH), 7.12-7.01 (m, 4H, ArH), 5.74 (s,1H, H-2), 5.70 (s, 1H, H-2'), 5.59 (d, *J* = 2.4 Hz, 1H, H-1), 5.36 (d, *J* = 1.8 Hz, 1H, H-1'), 4.83 (dd, *J* = 3.6, 11.2 Hz, 1H), 4.80-4.73 (m, 3H), 4.68 (dd, *J* = 3.0, 11.8 Hz, 1H), 4.56-4.44 (m, 5H), 4.31-4.39 (m, 2H), 4.22 (dt, *J* = 5.8, 9.5, Hz, 1H), 4.16 (dt, J = 5.8, 9.5, Hz, 1H), 4.05 (dt, J = 2.1, 9.5 Hz, 1H, H-3'), 3.96-3.87 (m, 2H), 3.77-3.66 (m, 3H), 2.28 (s, 3H, CH₃); ¹³C NMR (125 MHz, CDCl₃): δ 166.1 (C=O), 166.0 (C=O), 139.0, 138.8, 138.3, 138.2, 135.9, 133.7, 133.6, 133.3, 132.8, 130.4, 130.3, 130.2, 129.0, 128.8, 128.7, 128.6, 128.5, 128.4, 128.03, 127.98, 127.8, 126.9, 126.34, 126.29, 126.1, 100.3 (C-1'), 86.7 (C-1), 78.6 (C-3'), 78.4 (C-3), 75.9, 75.3, 75.2, 74.40, 74.35, 73.9 (C-2'), 73.2, 73.1, 72.1, 69.7 (C-2), 69.3, 69.0, 21.5 (CH₃). HRMS (ESI) m/z calcd for C₇₂H₆₈NaO₁₂S [M + Na]⁺: 1179.4324, found: 1179.4327.

Procedure for preparation of oligomannan trimer 14 is referred to the NIS and TfOH promoted glycosylation method. The exact amounts of reagents used are given as follows: thiomannosyl donor 1 (335 mg, 0.51 mmol), disaccharide acceptor 11c (395 mg, 0.42 mmol), NIS (69 mg, 0.55 mmol), TfOH (11 µL, 0.13 mmol), and 4Å MS (350 mg). For oligomannan trimer 14 (68%), $R_f 0.2$ (EtOAc/CH₂Cl₂/Hexanes 1:1:5); $[\alpha]_D^{23}$ $-12.0 (c 1.33, CHCl_3)$; ¹H NMR (500 MHz, CDCl_3): δ 8.07 (m, 4H, ArH), 7.70 (d, J =3.0 Hz, 1H, ArH), 7.60-7.50 (m, 4H, ArH), 7.29-7.04 (m, 41H, ArH), 5.73 (s, 1H, H-2"), 5.67 (s, 1H, H-2'), 5.32 (s, 1H, H-1"), 5.23 (s, 1H, H-1'), 4.75-4.86 (m, 4H including H-1), 4.45-4.71 (m, 11H), 4.41 (dd, *J* = 2.9, 9.2 Hz, 1H), 4.36 (d, *J* = 11.3 Hz, 1H), 4.30 (d, J = 11.9 Hz, 1H), 4.11-4.19 (m, 2H), 3.82-4.07 (m, 6H), 3.67-3.78 (m, 5H), 3.61 (dd, J = 11.1, 30.1 Hz, 2H, 3.25 (s, 3H, OCH₃); ¹³C NMR (125 MHz, CDCl₃): δ 166.0 (C=O), 165.9 (C=O), 139.2, 139.1, 138.92, 138.89, 138.87, 138.80, 138.5, 138.4, 133.6, 133.5, 130.43, 130.39, 130.3, 129.0, 128.89, 128.85, 128.82, 128.80, 128.72, 128.66, 128.63, 128.57, 128.50, 128.42, 128.39, 128.2, 128.10, 128.04, 128.00, 127.90, 127.83, 127.79, 127.75, 127.71, 100.1 (C-1"), 100.0 (C-1), 99.8 (C-1'), 79.8, 78.5 (C-3"), 78.2 (C-3'), 76.6, 75.7, 75.6, 75.24, 75.19, 75.10, 74.3, 73.9, 73.73, 73.67, 73.0, 72.7, 72.5 (C-2'), 72.3, 72.07, 71.97, 69.8, 69.7, 69.5 (C-2"), 68.9, 55.2 (OCH₃). HRMS (ESI) *m/z* calcd for C₈₉H₉₀NaO₁₈ [M + Na]⁺: 1469.6019, found: 1469.6038. Partial assignment of NMR signals is based on 2D COSY, HSQC, and HMBC experiments.

Oligomannan tetramer 15

Procedure for preparation of oligomannan tetramer 15 is referred to the Me₂S₂-Tf₂O promoted glycosylation. The exact amounts of reagents are given as follows: Man- α -(1 \rightarrow 3)-Man disaccharide donor **13** (128 mg, 0.11 mmol), disaccharide acceptor 11c (77 mg, 0.09 mmol), Me₂S₂-Tf₂O (128 µL 1.0 M stock solution, 0.13 mmol), and DTBMP (25 mg, 0.09 mmol). The tetramer 15 was obtained as a white glassy solid (141 mg, 85%) after column chromatography purification. For 15, $R_{\rm f}$ 0.2 (EtOAc/CH₂Cl₂/Hexanes 1:1:6); $[\alpha]_D^{23} - 33.6$ (*c* 2.80, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 7.94-8.09 (m, 6H, ArH), 7.65-7.72 (m, 1H, ArH), 7.43-7.62 (m, 6H, ArH), 7.00-7.42 (m, 54H, ArH), 5.61 (s, 3H, unresolved H-2', H-2", and H-2"), 5.34 (s, 1H, H-1'''), 5.21 (s, 1H, H-2''), 5.14 (s, 1H, H-1'), 4.96 (d, *J* = 13.0 Hz, 1H), 4.84-4.81 (m, 2H included H-1), 4.75 (d, J = 15.5 Hz, 1H), 4.69-4.37 (m, 14H), 4.29-4.09 (m, 6H), 4.06-3.93 (m, 4H), 3.88-3.67 (m, 9H), 3.62-3.50 (m, 3H), 3.37 (d, J = 10.9 Hz, 1H), 3.26-3.24 (m, 4H, OCH₃); ¹³C NMR (125 MHz, CDCl₃): δ 166.1 (C=O), 165.9 (C=O), 165.7 (C=O), 139.1, 139.0, 138.9, 138.8, 138.6, 138.4, 136.0, 133.6, 133.4, 133.3, 130.4, 130.3, 130.2, 129.0, 128.9, 128.8, 128.7, 128.5, 128.4, 128.3, 128.2, 128.00, 127.97, 127.91, 127.81, 127.77, 127.70, 126.9, 126.3, 126.2, 126.1, 100.2 (C-1'), 100.0 (C-1), 99.7 (unresolved C-1" and C-1"), 80.1, 79.8, 78.5, 78.3, 78.0, 76.6, 76.1, 75.6, 75.2, 75.2, 75.1, 74.6, 74.2, 73.8, 73.74, 73.65, 73.0, 72.9, 72.7, 72.4, 72.3, 72.1, 72.0, 69.8, 69.5, 68.8, 55.2 (OCH₃). **HRMS** (ESI) *m*/*z* calcd for C₁₂₀H₁₁₈NaO₂₄ [M + Na]⁺: 1965.8057, found: 1965.7913. Partial assignment of NMR signals is based on 2D COSY, HSQC, and reference to the signal assignment of trimer 14.

Oligomannan trimers 16a and 16b

Procedure for preparation of oligomannan trimer **16a** is referred the NIS and TfOH glycosylation protocol. The exact amounts of reagents used are given as follows: thiomannosyl donor 2a (835 mg, 1.2 mmol), disaccharide acceptor 11c (730 mg, 0.8 mmol), NIS (290 mg, 1.3 mmol), TfOH (21.0 µL, 0.24 mmol), and 4Å MS (1.5 g). For oligomannan trimer **16a**, R_f 0.2 (EtOAc/CH₂Cl₂/Hexanes 1:1:8 v/v); $[\alpha]_D^{23}$ -20.0 (c 0.80, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 8.06 (bs, 4H, ArH), 7.70 (d, J = 2.0 Hz, 1H, ArH), 7.62-7.60 (m, 2H, ArH), 7.54-7.50 (m, 3H, ArH), 7.38-7.04 (m, 42H, ArH), 5.72 (s, 1H, H-2"), 5.67 (s, 1H, H-2'), 5.31 (s, 1H, H-1"), 5.23 (s, 1H, H-1'), 4.86-4.77 (m,5H), 4.70-4.49 (m, 11H), 4.41 (broad m, 1H, H-3'), 4.33-4.31 (m, 1H), 4.22-4.20 (m, 1H), 4.12-4.07 (m, 3H), 3.96-3.59 (m, 11H), 3.23 (s, 3H, OCH₃); ¹³C NMR (125 MHz, CDCl₃): δ 165.5 (C=O), 165.4 (C=O), 138.7, 138.5, 138.4, 138.2, 137.8, 135.5, 133.11, 133.09, 133.00, 132.8, 129.9, 129.82, 129.76, 128.43, 128.31, 128.29, 128.2, 128.14, 128.13, 128.1, 128.0, 127.9, 127.83, 127.81, 127.79, 127.72, 127.51, 127.49, 127.42, 127.29, 127.27, 127.25, 127.20, 126.4, 125.9, 125.7, 125.6, 99.6 (C-1"), 99.5 (C-1), 99.2 (C-1'), 79.2, 78.0 (C-3"), 77.7 (C-3'), 76.0, 75.2, 75.1, 74.74, 74.67, 74.58, 73.8, 73.4, 73.22, 73.16, 73.0, 72.5, 72.2 (C-2'), 71.9, 71.8 (C-2"), 71.6, 71.5, 69.3, 69.1 69.0, 54.7 (OCH₃). HRMS (ESI) *m*/*z* calcd for C₉₃H₉₂NaO₁₈S [M + Na]⁺: 1519.6165, found: 1519.6176. Partial assignment of NMR signals is based on 2D COSY, HSQC, and HMBC spectroscopy.

Procedure for preparation of 16b is the same as the DDQ deprotection procedure

for 11a. For oligomannan trimer 16b, Rf 0.25 (EtOAc/CH₂Cl₂/Hexanes 1:1:5 v/v); ¹H NMR (500 MHz, CDCl₃): δ 8.08 (d, J = 3.5 Hz, 2H, ArH), 7.98 (d, J = 3.5 Hz, 2H, ArH), 7.59 (t, *J* = 6.0 Hz, 1H, ArH), 7.54 (t, *J* = 6.0 Hz, 1H, ArH), 7.41-7.08 (m, 39H, ArH), 5.61 (s, 1H, H-2'), 5.42 (s, 1H, H-2"), 5.27 (s, 1H, H-1"), 5.20 (s, 1H, H-1'), 4.87-4.83 (m, 3H including H-1 at 4.83), 4.78-4.68 (m, 3H), 4.66-4.62 (m, 3H), 4.60-4.49 (m, 6H), 4.40 (dd, J = 7.5, 2.0 Hz, 1H, H-3'), 4.32 (d, J = 10.0 Hz, 1H), 4.17-4.12 (m, 2H, included H-4' and H-3"), 4.06 (t, J = 8.0 Hz, 2H), 3.96 (bs, 1H, H-2), 3.90 (dd, J = 7.5, 2.5 Hz, 2H), 3.85 (dd, J = 9.0, 3.0 Hz, 1H), 3.79 (t, J = 8.0 Hz, 1H), 3.74-3.64 (m, 6H), 3.26 (s, 3H, OCH₃), 2.06 (s, 1H, OH). ¹³C NMR (125 MHz, CDCl₃): δ 165.8 (C=O), 165.6 (C=O), 138.44, 138.42, 138.41, 138.38, 138.37, 138.30, 137.9, 129.89, 129.85, 129.81, 129.7, 128.5, 128.4, 128.3, 128.25, 128.23, 128.20, 128.18, 128.0, 127.79, 127.73, 127.66, 127.60, 127.52, 127.49, 127.40, 127.2, 99.6 (C-1), 99.44 (C-1"), 99.40 (C-1'), 79.3, 77.2 (C-3' overlapped with solvent CDCl₃, indicated by HSQC and HMBC), 76.3 (C-2), 75.2, 75.1, 75.0, 74.84, 74.82 (C-4'), 74.0, 73.38, 73.36, 73.2, 72.6 (C-2"), 72.34 (C-2'), 72.25, 72.00, 71.98, 71.0, 70.0 (C-3"), 69.4, 69.1, 68.5, 54.7 (OCH₃). HRMS (ESI) m/z calcd. for C₈₂ H₈₅ O₁₈ [M + H]⁺: 1357.5730, found: 1357.5753. Partial assignment of NMR signals is based on 2D COSY, HSQC, and HMBC spectroscopy.

Oligomannan pentamer 17

Procedure for preparation of oligomannan pentamer 17 is referred to the Me₂S₂-Tf₂O promoted glycosylation. The exact amounts of reagents are given as

follows: thiodisaccharide donor **12** (277 mg, 0.25 mmol), trisaccharide acceptor **16b** (250 mg, 0.18 mmol), Me₂S₂–Tf₂O (400 μ L 1.0 M stock solution, 0.40 mmol), DTBMP (55 mg, 0.27 mmol), and 4Å MS (300 mg). The crude glycosylation yield of **17** was 243 mg, 57%. HRMS (MALDI) *m*/*z* calcd for C₁₄₃H₁₄₂NaO₃₀ [M + Na]⁺: 2361.9478, found: 2361.9534. Noted due to the presence of some inseparable contaminants, NMR spectroscopic data were obtained after deprotection of the Bz functions (refer to partial deprotected pentamer **21a**).

Oligomannan dimer 18a, trimer 19a, tetramer 20a, and pentamer 21a

To a stirred suspension of oligomannans **11**, **14**, **15** or **17** (1.0 equiv) in 3:1 THF/MeOH was added potassium hydroxide (3-5 equiv). The mixture was vigorously stirred at RT for couple of hours, and was diluted with CH₂Cl₂ followed by washing with H₂O, satd. NaHCO₃, and brine. The organic layer was dried over MgSO₄, filtered, concentrated for chromatography purification (EtOAc/CH₂Cl₂/Hexanes 1:1:4 for **18a** and **19a**, EtOAc/Hexanes 1:4 for **20a**, and EtOAc/CH₂Cl₂/Hexanes 1:1:3 for **21a**) to target oligomannans **18–21a** (77% for **18a**, 75% for **19b**, 80% for **20a** and 82% for **21a**).

For oligomannan dimer **18a**, $R_f 0.1$ (EtOAc/CH₂Cl₂/Hexanes 1:1:4); $[\alpha]_D^{23}$ +26.4 (*c* 3.33, CHCl₃): ¹H NMR (500 MHz, CDCl₃): δ 7.69-7.80 (m, 4H, ArH), 7.12-7.40 (m, 28H, ArH), 5.15 (s, 1H, H-1'), 4.72-4.90 (m, 4H, including H-1), 4.60-4.71 (m, 5H), 4.42-4.57 (m, 4H), 4.18 (s, 1H, H-2'), 3.83-4.07 (m, 5H), 3.65-3.81 (m, 6H), 3.23 (s, 3H, (OCH₃), 2.54 (bs, 1H, OH); ¹³C NMR (125 MHz, CDCl₃): δ 139.0, 138.9, 138.8, 138.7, 138.6, 135.9, 133.6, 133.4, 128.91, 128.85, 128.72, 128.71, 128.6, 128.5, 128.32, 128.29, 128.25, 128.21, 128.1, 128.00, 127.98, 127.96, 127.83, 127.78, 127.0, 126.6,

126.4, 126.2, 101.6 (C-1'), 100.2 (C-1), 80.6, 80.4, 80.1, 75.4, 75.2, 74.9, 73.8, 73.7, 72.62, 72.60, 72.3, 72.1, 72.0, 69.7, 69.6, 69.0, 55.1 (OCH₃). HRMS (ESI) *m/z* calcd for C₅₉H₆₂NaO₁₁ [M + Na]⁺: 969.4184, found: 969.4176.

For oligomannan trimer **19a**, $R_f 0.1$ (EtOAc/CH₂Cl₂/Hexanes 1:1:6); $[\alpha]_D^{23}$ +43.8 (*c* 0.86, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 7.21-7.35 (m, 32H), 7.12-7.20 (m, 8H), 5.03 (d, J = 1.2 Hz, 1H, H-1''), 4.97 (d, J = 1.4 Hz, 1H, H-1'), 4.86 (d, J = 10.8 Hz, 1H),4.80 (m, 2H, included H-1), 4.59-4.70 (m, 5H), 4.49-4.58 (m, 5H), 4.44-4.48 (m, 3H), 4.38-4.42 (m, 2H), 4.34 (s, 1H, H-2'), 4.27 (t, J = 8.7 Hz, 1H, H-3' based on COSY), 4.02 (dd, J = 3.0, 9.5 Hz, 1H), 3.99 (t, J = 2.5 Hz, 1H, H-2 based on HSQC and HMBC),3.96 (t, J = 2.5 Hz, 1H, H-2"), 3.95-3.92 (m, 1H), 3.88 (dd, J = 3.0, 9.5 Hz, 1H), 3.77-3.84 (m, 4H), 3.66-3.76 (m, 6H), 3.59 (t, J = 9.1 Hz, 1H), 3.46 (t, J = 9.4 Hz, 1H), 3.21 (s, 3H, OCH₃), 2.40 (bs, 1H, OH), 1.82 (bs, 1H, OH); 13 C NMR (125 MHz, CDCl₃); δ 139.1, 139.0, 138.94, 138.85, 138.8, 138.3, 138.1, 137.6, 130.0, 128.9, 128.80, 128.76, 128.73, 128.70, 128.5, 128.43, 128.36, 128.35, 128.33, 128.27, 128.25, 128.21, 128.1, 128.02, 127.97, 127.92, 127.90, 127.8, 102.6 (C-1' based on HSQC and HMBC), 100.3 (C-1), 100.2 (C-1"), 83.0, 80.5, 80.1, 75.52, 75.47, 75.4, 75.3, 75.13, 75.10, 74.3, 73.9, 73.8, 73.7, 72.5, 72.4, 72.1, 71.9 (C-3'), 69.84, 69.79, 69.6, 69.4 (C-2'), 69.3 (C-2"), 55.1 (OCH₃). HRMS (ESI) *m*/*z* calcd for C₇₅H₈₂NaO₁₆ [M + Na]⁺: 1261.5495, found: 1261.5501.

For oligomannan tetramer **20a**, R_f 0.18 (EtOAc/Hexanes 1:3); ¹H NMR (500 MHz, CDCl₃): δ 7.71 (t, J = 10 Hz, 2H, ArH), 7.67 (s, 1H, ArH), 7.61 (d, J = 7.5 Hz, 1H, ArH), 7.43-7.34 (m, 5H, ArH), 7.31-7.15 (m, 39H, ArH), 7.11-7.09 (m, 2H, ArH), 4.94 (d, J = 1.5 Hz, 1H), 4.93 (s, 1H), 4.87-4.83 (m, 3H), 4.74-4.71 (m, 3H), 4.67 (s, 1H, H-1 based on HSQC), 4.66-4.59 (m, 4H), 4.55 (s, 1H), 4.53-4.51 (m, 2H), 4.50-4.46 (m, 3H), 4.44-4.40 (m, 5H), 4.29-4.22 (m, 4H), 4.18 (bs, 1H, H-2 based on HSQC and COSY), 3.99-3.94 (m, 4H), 3.90-3.88 (m, 2H), 3.84-3.76 (m, 5H), 3.77-3.69 (m, 5H), 3.66 (d, J = 10 Hz, 1H), 3.62 (d, J = 10 Hz, 1H), 3.54 (t, J = 9.0 Hz, 1H), 3.47 (t, J = 9.0 Hz, 1H), 3.41 (t, J = 9.0 Hz, 1H), 3.21 (s, 3H, OCH₃), 2.47 (bs, 1H, OH), 1.79 (m, 2H. OH × 2); ¹³C NMR (125 MHz, CDCl₃): δ 139.41, 139.39, 139.38, 138.35,

138.30, 137.9, 137.8, 137.2, 137.0, 134.9, 133.1, 133.0, 128.6, 128.39, 128.38, 128.35, 128.31, 128.22, 128.20, 128.1, 127.90, 127.86, 127.83, 127.78, 127.75, 127.70, 127.61, 127.58, 127.56, 127.49, 127.46, 127.43, 126.3, 126.0, 125.6, 100.6 (C-1 based on HSQC), 100.2, 99.7, 82.8, 82.1, 80.0, 79.6, 75.2, 75.02, 75.00, 74.91, 74.8, 74.6, 73.88, 73.81, 73.7, 73.4, 73.3, 73.2, 72.1, 72.0, 71.6, 71.5, 71.4, 69.5, 69.4, 69.37, 69.29, 69.04, 68.9, 54.6 (OCH₃). The tetramer **20a** obtained was converted to **20b** and HRMS analysis was not performed for this intermediate.

For oligomannan pentamer **21a**, R_f 0.1 (EtOAc/CH₂Cl₂/Hexanes 1:1:3); $[\alpha]_D^{23}$ +18.9 (*c* 1.33, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 7.35-7.14 (m, 60H, ArH), 4.95 (d, J = 1.2 Hz, 1H, anomeric H based on HSQC), 4.94 (d, J = 1.2 Hz, 1H, anomeric H based on HSQC), 4.86 (d, J = 11.0 Hz, 1H), 4.84 (d, J = 1.2 Hz, 1H, anomeric H based on HSQC), 4.79 (d, J = 11.0 Hz, 1H), 4.73 (d, J = 1.8 Hz, 1H), 4.715-4.713 (m, 2H, including an anomeric H), 4.68 (bs, 1H, H-1 based on HSQC and COSY), 4.66 (d, J =2.4 Hz, 1H), 4.64-4.58 (m, 5H), 4.563-4.553 (m, 3H), 4.52 (dd, J = 11.0, 1.8 Hz, 2H), 4.49 (d, J = 1.8 Hz, 1H), 4.46-4.37 (m, 11H), 4.30 (bs, 1H), 4.26-4.20 5H), 4.15 (bs, 1H, H-2 based on COSY), 3.99-3.96 (m 6H), 3.92 (dd, J = 9.0, 3.0 Hz, 2H), 3.88 (dd, J = 9.0, 3.0 Hz, 2H), 3.82-3.78 (m, 4H), 3.74-3.68 (m, 9H), 3.62-3.56 (m, 4H), 3.45 (dd, J = 8.4, 1.8 Hz, 2H), 3.41 (dd, J = 9.6, 1.2 Hz, 2H), 3.21 (s, 3H, OCH₃). ¹³C NMR (150) MHz, CDCl₃): *δ* 138.5, 138.44, 138.40, 138.35, 138.0, 137.9, 137.8, 137.5, 137.3, 137.2, 137.0, 128.56, 128.55, 128.50, 128.44, 128.42, 128.39, 128.37, 128.36, 128.27, 128.24, 128.20, 128.10, 128.06, 128.00, 127.97, 127.96, 127.87, 127.80, 127.79, 127.75, 127.69, 127.62, 127.60, 127.52, 127.50, 127.45, 127.37, 102.4 (anomeric C based on HSQC), 101.4 (anomeric C based on HSQC), 100.9 (C-1 based on HSQC and COSY), 100.3 (anomeric C based on HSQC), 99.8 (anomeric C based on HSQC), 82.9, 82.6, 82.1, 80.0, 79.7, 75.3, 75.2, 75.07, 75.03, 74.99, 74.90, 74.5, 74.07, 74.06, 73.9, 79.7, 73.54, 73.46, 73.3, 73.2, 72.03, 72.00, 71.64, 71.58, 71.55, 69.7, 69.61, 69.58, 69.50 (C-2 based on HSQC and COSY), 69.43, 69.40, 69.3, 69.0, 68.9, 54.6 (OCH₃). HRMS (ESI) m/z calcd for C₁₁₅ H₁₂₇ O₂₆ [M + H]⁺: 1924.8644, found: 1924.8679.

Oligomannans 18b-20b

To a stirred suspension of oligomannan **18a**, **19a**, **20a**, or **21a** (1.0 equiv.) in anhydrous DMF was added SO₃-trimethylamine (TMA) complex (*ca*. 1.5–2.0 equiv. per OH), and the mixture was stirred vigorously at 60 °C (for **18a** and **19a**) or 85–90 °C (for **20a** and **21a**) for 5–10 h, the reaction was diluted CH₂Cl₂ and washed with brine (× 4) to remove DMF. The organic phase was treated with IR-120 (Na+ form) for 4 h and filtered, then concentrated for flash column chromatography (CH₂Cl₂/MeOH 1:9 for **18b** and **19b**; EtOAc/CH₂Cl₂/MeOH 2.5:1.5:0.3 for **20b** and **21b**) to produce the oligomannans **18–21b** (74% for **18b**, 87% for **19b**, 80% for **20b**, and 78% for **21b**). The identities of the **18b** and **21b** intermediates were confirmed by HRMS. For oligomannan dimer **18b**, HRMS (ESI) *m*/*z* calcd for C₅₉H₆₁Na₂O₁₄S [M + Na]⁺: 1071.3578, found: 1071.3572. For oligomannan trimer **19b**, HRMS (ESI) *m*/*z* calcd for C₇₅H₈₀Na₃O₂₂S₂ [M + Na]⁺: 1465.4270, found: 1465.4280. The oligomannan tetramer **20b** and pentamer **21b** obtained were subjected to hydrogenolysis without characterization.

Fully deprotected oligomannans 18c, 19c, 20c, and 21c

To a solution of oligomannan **18b**, **19b**, **20b** or **21b** in MeOH with *ca*. 5-10% acetic acid was added Pd(OH)₂/C (50-100 mol% with respect to oligomannan). The reaction mixture was degased with N₂ for 10 min and the reaction mixture was then stirred at RT under H₂ (1 atm) for 10 h. The crude mixture was filtered over celite to obtain the filtrate, which was treated with IR-120 (Na⁺) for 4 h and concentrated for purification with FPLC on Superdex 30 prep grade gel from TOSOH (size range:100-7000 Da) (Elution: 1:1 MeOH/H₂O) to afford the deprotected oligomannans **18c–21c** (83% for **18c**, 78% for **19c**, 70% for **20c**, and 80% for **21c**).

For oligomannan dimer **18c**, R_f 0.3 (EtOAc/MeOH/H₂O 4:2:1 v/v); $[\alpha]_D^{23}$ +33.8 (*c* 0.53, CH₃OH): ¹H NMR (500 MHz, D₂O): δ 5.35 (d, J = 1.4 Hz, 1H, H-1'), 5.02 (d, J = 1.2 Hz, 1H, H-1), 4.70 (m, 1H, H-2'), 4.01 (d, J = 3.1 Hz, 1H, H-2), 3.99 (d, J = 3.1 Hz, 1H, H-3'), 3.86-3.95 (m, 3H), 3.75-3.84 (m, 3H), 3.71 (t, J = 11.3 Hz, 1H), 3.61-3.67 (m, 2H), 3.43 (s, 3H, CH₃); ¹³C NMR (125 MHz, D₂O): δ 99.7 (C-1'), 99.2 (C-1), 78.8 (C-2), 76.7 (C-2'), 73.2, 72.5, 70.0, 68.8 (C-3'), 66.9, 66.7, 60.90, 60.86, 54.8. **HRMS** (ESI) *m*/*z* calcd for C₁₃H₂₃Na₂O₁₄S [M + Na]⁺: 481.0598, found: 481.0599. Partial assignment of NMR signals is based on 2D COSY, HSQC, and HMBC spectroscopy.

For oligomannan trimer **19c**, $R_f 0.3$ (EtOAc/MeOH/H₂O 4:2:1 v/v); $[\alpha]_D^{23} + 39.5$ (*c* 2.93, CH₃OH); ¹H NMR (500 MHz, D₂O): δ 5.53 (s, 1H, H-1"), 5.39 (s, 1H, H-1'), 5.01 (s, 1H, H-1), 4.79 (m, 1H, H-2', overlapped with residual signal from *d*-solvent), 4.70 (s, 1H, H-2"), 4.18 (d, J = 9.3 Hz, 1H, H-3'), 4.06 (d, J = 9.3 Hz, 1H, H-3"), 4.04 (s, 1H, H-2), 3.87-4.01 (m, 5H), 3.75-3.86 (m, 5H), 3.58-3.74 (m, 3H), 3.44 (s, 3H, CH₃); ¹³C NMR (125 MHz, D₂O): δ 99.6 (C-1"), 99.5 (C-1'), 99.2 (C-1), 78.5 (C-2), 76.9 (C-2"), 76.4 (C-2'), 74.8 (C-3'), 73.3, 73.1, 72.6, 70.1, 68.8 (C-3"), 66.9, 66.7, 66.4, 60.9, 60.74, 60.67, 54.8 (CH₃). HRMS (ESI) *m*/*z* calcd for C₁₉H₃₂Na₃O₂₂S₂ [M + Na]⁺: 745.0517, found: 745.0514. Partial assignment of NMR signals is based on 2D COSY, HSQC, and HMBC spectroscopy.

For oligomannan tetramer **20c**, R_f 0.15 (EtOAc/CH₂Cl₂/MeOH/H₂O 1:1:1:0.2); $[\alpha]_D^{23}$ +45.0 (*c* 0.82, H₂O); ¹H NMR (500 MHz, D₂O): δ 5.412 (d, J = 1.5 Hz, 1H, H-1″'), 5.408 (d, J = 2.5 Hz, 1H, H-1″), 5.29 (s, 1H, H-1′), 4.91 (s, 1H, H-1), 4.68 (1H, H-2′ overlapped with residual signal from D₂O), 4.65 (dd, J = 3.5, 1.5 Hz, 1H, H-2″), 4.58 (dd, J = 3.5, 1.5 Hz, 1H, H-2″'), 4.14 (dd, J = 10.0, 3.5 Hz, 1H, H-3″), 4.04 (dd, J = 10.0, 3.5 Hz, 1H, H-3′), 3.95 (dd, J = 10.0, 3.5 Hz, 1H, H-3″), 3.91 (dd, J = 2.0, 4.0 Hz, 1H, H-2), 3.89-3.86 (m, 1H), 3.84-3.66 (m, 13H), 3.62 (d, J = 10.0 Hz, 1H), 3.57 (d, J = 10.0 Hz, 1H), 3.54 (dd, J = 2.0, 7.0 Hz, 1H), 3.33 (s, 3H, OCH₃); ¹³C NMR (125 MHz, D₂O): δ 99.51 (C-1″'), 99.49 (C-1″), 99.4 (C-1′), 99.1 (C-1), 78.54 (H-2), 76.8 (C-2″'), 76.5 (C-2″), 76.2 (C-2′), 75.7 (C-3′), 74.9 (C-3″), 73.3, 73.0, 72.5, 70.0, 68.7, 66.8, 66.6, 66.3, 66.1, 54.7 (OCH₃). HRMS (ESI) *m*/*z* calcd for C₂₅H₄₁Na₄O₃₀S₃ [M + Na]⁺: 1009.0430; found 1009.0367. Partial assignment of NMR signals is based on 2D COSY, HSQC, and reference to the peak assignment of **18c** and **19c**.

For oligomannan pentamer **21c**, *R*^f 0.10 (EtOAc/CH₂Cl₂/MeOH/H₂O 1:1:1:0.2); $[\alpha]_D^{23}$ +64.0 (*c* 0.25, H₂O); ¹H NMR (500 MHz, D₂O): δ 5.42-5.41 (bs, 3H including H-1", H-1", and H-1""), 5.29 (d, *J* = 1.5 Hz, 1H, H-1'), 4.91 (s, 1H, H-1), 4.66 (m, 1H, H-2', overlapped with residual signal from D₂O but indicated in HSQC and COSY spectroscopies), 4.66-4.65 (m, 2H, H-2", H-2"' partial overlapped with residual signal from D₂O), 4.58 (dd, *J* = 1.5, 3.5 Hz, H-2'), 4.13 (dd, *J* = 3.5, 10.0 Hz, 2H, H-3" and H-3""), 4.04 (dd, *J* = 3.5, 10.0 Hz, 1H, H-3'), 3.95 (dd, *J* = 3.5, 10.0 Hz, 1H, H-3""), 3.93-3.87 (m, 4H including H-2), 3.85-3.81 (m, 5H), 3.77 (dd, *J* = 3.5, 10.0 Hz, 1H), 3.74-3.66 (m, 10H), 3.64-3.56 (m, 2H), 3.55-3.53 (m, 1H), 3.32 (s, 3H, OCH₃); ¹³C NMR (125 MHz, D₂O): δ 99.52 (C-1""), 99.47 (C × 2 including C-1", and C-1""), 99.4 (C-1'), 99.1 (C-1), 78.6 (C-2), 76.9 (C-2'), 76.5 and 76.4 (C-2" and C-2'"), 76.2 (C-2'), 75.8 (C-3'), 75.4 and 74.8 (C-3" and C-3""), 73.3, 73.03, 73.01, 72.99, 72.5, 70.0, 68.7 (C-3""), 66.8, 66.6, 66.4, 66.3, 66.2, 66.1, 60.9, 60.6, 60.5, 54.7 (CH₃). HRMS (ESI TOF) *m*/*z* calcd for C₃₁H₅₀Na₅O₃₈S4 [M + Na]⁺: 1273.0346, found: 1273.0361. Partial assignment of NMR signals is based on 2D COSY, HSQC, and reference to the peak assignment of 18c-20c.

¹H NMR spectrum of building block **6**

¹³C NMR spectrum of building block **6**

¹H NMR spectrum of building block 8'

¹H NMR spectrum of building block **9**

¹³C NMR spectrum of building block **9**

¹H NMR spectrum of **2a**

35

¹³C NMR spectrum of **2a**

¹H NMR spectrum of **2a'**

38

¹H NMR spectrum of **2b**

¹H NMR spectrum of **11b**

¹³C NMR spectrum of **11b**

¹³C NMR spectrum of **11c**

¹H NMR spectrum of migration product

¹³C NMR spectrum of migration product

-233 -233 -235 -235 -235 -235 -235 -235
e.316
2000 200 2000 2

990.8----

¹H NMR of trisaccharide acceptor **16a**

2D COSY of trisaccharide acceptor 16a

2D HSQC of trisaccharide acceptor 16a

¹H NMR of trisaccharide acceptor **16b**

827:89 186:69 10:04		I
L71.603 L71.603 L72.020	927-89 990-69 927-89	- 69
-72.248 -72.336 -72.632	210.01	- 2
935.57 112.57 835.65	809'۱2 م ۲۲ ۲۲-۲2	- 2
858.47- -74.048 840.47-	72.336 72.248 72.220	- 22
408.97 - 241.37 - 210.37 -	995.57-1 112.57 259.27-	- 13
822.77	986.27 840.47	- 74
-269.402 -29.402 -29.402	210.27	75
-127.520 -127.486 -127.373	261.25 262.87 261.25	76
287.721 - 287.721 - 268.721 -	822.77	- 12
۲128.183 1958 م 1958 م		- 18
-128.340 -128.349 -128.340	846.07	62
888.921	915.721J	127.0
598.761 188.385 298.361 298.361 298.361	984.721 	127.5
944.981 238.449 804.881	961.821 881.821 896.721 896.751 896.751	128.0
200,001 2	128.340	128.5
208.201 203 391	017 801	129.0
25 tmongx	ل ا 259.622 ل ا 25.802 ل ا 25.624	129.5
CARB(201407	888.921-7	130.0

¹H NMR spectrum of **18a**

62.48
^{98.09} >
68.89 98.89 ₩
₽2.87 — ₽3.84 —

81/66 82/66

F ₹

- 8

- 22

85 80 f1 (ppm)

32

¹H NMR spectrum of **19a**

¹³C NMR spectrum of **19a**

-24'81 -24'81 -24'81 -26'94 -26'94 -26'94 -25'05

02`66 6⊅`66 29`66

¹H NMR of oligomannan tetramer **20a**

¹³C NMR of oligomannan tetramer 20a

¹H NMR of oligomannan tetramer **20c**

¹³C NMR of oligomannan tetramer **20c**

9 9 da in the label in the second s 15 20 25 8 35 **2** I 40 45 20 55 09 65 22 80 75 f1 (ppm) 85 6 32 105 110 115 125 135 NAME AND A DESCRIPTION OF A DESCRIPTIONO 145

	64
985,389 2882,389 2892,389 2892,389 2892,389 2892,389 2892,3892 2892,3892 2892,3892 2892,3892 2892,3892 2892,3892 2892,3892 2892,3892 2892,3892 2892,3892 2892,3892 2892,3892 2892,3892 2892,3892 2892,3892 2892,3892 2892,3892 2892,3892 2892,3992 2892,3992 2892,3992 2892,3992 2892,3992 2892,3992 2892,3992 2992,3992 2992,3992 2992,3992 2992,3992 2992,3992 2992,3992 2992,3992 2992,3992 2992,3992 2992,3992 2992,3992 2992,3992 2992,3992 2992,3992 2992,3992 2010,3972,3992 2010,3972,3992 2010,3972,3992 2010,3972,3972 2010,3972,3972 2010,3972,3972 2010,3972,3972 2010,3972,3972 2010,3972,3972 2010,3972,3972 2010,3972,3972 2010,3972,3972 2010,3972,3972 2010,3972,3972 2010,3972,3972 2010,3972,3972,3972 2010,3972,3972,3972,3972,3972,3972,3972,3972	ww.Wukhewww.
669.89-	Muture 10
120.07	70
629'24~	vitrendiultere 72
910 82~	T4
£98°#Z	
969192 112192 9217192-7	MNMMM
048.97~	1 m
l#9182	New Property
160°66−− 126°66 68°766 €16°66	www.hywwy.hyw
643 00 ⁻	₩ ¹ ~~

969'#9----

048:85 ← 272.57 282.57 283.589 283.583 283.589 283.589 283.589 283.589 283.589 283.589 283.589 283.589 283.589 283.589 283.589 283.589 283.589 283.589 283.589 283.59

2D HSQC of oligomannan tetramer 20c

 ¹H NMR of oligomannan pentamer **21a**

¹³C NMR of oligomannan pentamer **21a**

¹H NMR of oligomannan pentamer **21c**

¹³C NMR of oligomannan pentamer **21c**

880'66 128'66 897'66 729'66

2D HMBC of oligomannan pentamer 21c

Reference

- S1. Y-H Lin, B. Ghosh, K.K. T. Mong, Chem. Commun., 2012, 48, 10910–10912.
- S2. J. Tatai, P. Fugedi, Org. Lett., 2007, 9, 4647-4650.
- S3. J. B J. Beignet, J. Tiernan, H.W Chang, B. M. Kariuki, L.R. Cox, J. Org. Chem.

2004, *69*, 6341-6356.