# **Electronically Modified Amine Substituted Alkynols**

# for Regio-selective Synthesis of Dihydrofuran

# Derivatives

Vijay V,<sup>a</sup> Manjusha V. Karkhelikar,<sup>b</sup> B. Sridhar,<sup>c</sup> Nedaossadat Mirzadeh,<sup>d</sup> Pravin R. Likhar <sup>a,b,\*</sup>

plikhar@iict.res.in

## **Contents**

| 1) | General Techniques                                                               | S2      |
|----|----------------------------------------------------------------------------------|---------|
| 2) | <sup>1</sup> H NMR, <sup>13</sup> C NMR Spectral Data of <b>4a-4l</b>            | S3-S14  |
| 3) | <sup>1</sup> H NMR, <sup>13</sup> C NMR Spectral Data of <b>5a-5k</b>            | S15-S23 |
| 4) | <sup>1</sup> H NMR, <sup>13</sup> C NMR Spectral Data of <b>6d</b> ,7b,8a and 9d | S24-S27 |
| 5) | X-ray Crystallographic Study of 5e and 8a                                        | S28-S30 |

## **General Techniques:**

NMR spectra were recorded in Fourier transform mode. The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded on a 300 MHz, 400 MHz, and 500 MHz spectrophotometer using CDCl<sub>3</sub> and TMS as the internal standard. Multiplicities in the <sup>1</sup>H NMR spectra are described as: s = singlet, d = doublet, t = triplet, q = quartet, qt = quintet, m = multiplet, bs = broad singlet; coupling constants are reported in Hz. Low (MS) and high (HRMS) resolution mass spectra were recorded by ion trap method and mass/charge (m/z) ratios are reported as values in atomic mass units. All the melting point is uncorrected.







































S12









<sup>1</sup>H NMR and <sup>13</sup>C NMR of 4l









<sup>1</sup>H NMR and <sup>13</sup>C NMR of 5b





<sup>1</sup>H NMR and <sup>13</sup>C NMR of 5d





<sup>1</sup>H NMR and <sup>13</sup>C NMR of 5e











<sup>1</sup>H NMR and <sup>13</sup>C NMR of 5g





<sup>1</sup>H NMR and <sup>13</sup>C NMR of 5h































#### X-ray Crystallographic Study:

### **Compound 5e:**



The molecular structure of **5e**, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashes line indicate a hydrogen bond.

X-ray data of compound **5e** was collected at room temperature using a Bruker Smart Apex CCD diffractometer with graphite monochromated MoK $\alpha$  radiation ( $\lambda$ =0.71073Å) with  $\omega$ -scan method.<sup>1</sup> Preliminary lattice parameters and orientation matrices were obtained from four sets of frames.

Integration and scaling of intensity data were accomplished using SAINT program.<sup>1</sup> The structures were solved by Direct Methods using SHELXS<sup>2</sup> and refinement was carried out by full-matrix least-squares technique using SHELXL.<sup>2</sup> Anisotropic displacement parameters were included for all non-hydrogen atoms. The hydrogen atom attached to nitrogen atom was located in a difference density map and refined isotropically. All other H atoms were

positioned geometrically and treated as riding on their parent C atoms [C-H = 0.93-0.97 Å and  $U_{iso}(H) = 1.5U_{eq}(C)$  for methyl H or  $1.2U_{eq}(c)$  for other H atoms]. The methyl groups were allowed to rotate but not to tip.

**Crystal Data for 5e**:  $C_{17}H_{14}INO_2$  (M=391.19): orthorhombic, space group Pbca (no. 61), a = 13.7811(12) Å, b = 13.3475(11) Å, c = 16.9711(15) Å, V = 3121.7(5) Å<sup>3</sup>, Z = 8, T = 294(2) K,  $\mu(MoK\alpha) = 2.055$  mm<sup>-1</sup>, Dcalc = 1.665 g/mm<sup>3</sup>, 33971 reflections measured ( $4.8 \le 2\Theta \le 56.7$ ), 3837 unique ( $R_{int} = 0.0346$ ) which were used in all calculations. The final  $R_1$  was 0.0462 (> $2\sigma(I)$ ) and  $wR_2$  was 0.1179 (all data). CCDC 1405059 contains supplementary Crystallographic data for the structure. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0) 1223 336 033; email: deposit@ccdc.cam.ac.uk].

#### **Compound 8a:**



The molecular structure of **8a**, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashes line indicate a hydrogen bond.

X-ray data of compound **8a** was collected at room temperature using a Bruker Smart Apex CCD diffractometer with graphite monochromated MoK $\alpha$  radiation ( $\lambda$ =0.71073Å) with  $\omega$ -

scan method.<sup>1</sup> Preliminary lattice parameters and orientation matrices were obtained from four sets of frames.

Integration and scaling of intensity data were accomplished using SAINT program.<sup>1</sup> The structures were solved by Direct Methods using SHELXS<sup>2</sup> and refinement was carried out by full-matrix least-squares technique using SHELXL.<sup>2</sup> Anisotropic displacement parameters were included for all non-hydrogen atoms. The hydrogen atom attached to nitrogen atom was located in a difference density map and refined isotropically. All other H atoms were positioned geometrically and treated as riding on their parent C atoms [C-H = 0.93-0.97 Å and  $U_{iso}(H) = 1.5U_{eq}(C)$  for methyl H or  $1.2U_{eq}(c)$  for other H atoms]. The methyl groups were allowed to rotate but not to tip.

Crystal data for 8a:  $C_{17}H_{19}NO_5$ , M = 317.33, 0.18 x 0.16 x 0.09 mm<sup>3</sup>, monoclinic, space group  $P2_1/n$  (No. 14), a = 13.6571(12), b = 7.7611(7), c = 14.9680(14) Å,  $\Box \beta = 91.630(2)^\circ$ , V = 1585.9(2) Å<sup>3</sup>, Z = 4,  $D_c = 1.329$  g/cm<sup>3</sup>,  $F_{000} = 672$ , MoK $\alpha$  radiation,  $\Box \lambda = 0.71073$  Å, T = 294(2)K,  $2\theta_{max}$  = 50.0°, 14739 reflections collected, 2794 unique (R<sub>int</sub> = 0.0706). Final GooF = 1.242, RI = 0.0975, wR2 = 0.1684, R indices based on 2100 reflections with I > 2 $\sigma$ (I) (refinement on  $F^2$ ), 214 parameters, 0 restraints.  $\mu = 0.098 \text{ mm}^{-1}$ .CCDC 1051824 contains supplementary Crystallographic data for the structure. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0) 1223 336 033; email: deposit@ccdc.cam.ac.uk].

### Reference:

- SMART & SAINT. Software Reference manuals. Versions 6.28a & 5.625, Bruker Analytical X-ray Systems Inc., Madison, Wisconsin, U.S.A., 2001.
- 2. Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.