### **Electronic Supplementary Information**

# Design, synthesis and anticancer activities of novel otobain derivatives

Zhongzhou Li<sup>a, 1</sup>,Hui Su<sup>b, 1</sup>, Weiwei Yu<sup>b</sup>, Xinjun Li<sup>a</sup>, Hao Cheng<sup>a</sup>, Mingyao Liu<sup>b</sup>, Xiufeng Pang<sup>b</sup>, \*, Xinzhuo Zou<sup>a, \*</sup>

<sup>a</sup> Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China

<sup>b</sup> Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China

\* Corresponding author.

E-mail address: xzzou@chem.ecnu.edu.cn (X. Z. Zou), xfpang@bio.ecnu.edu.cn (X. F. Pang).

<sup>1</sup> These authors contributed equally to this work.

### **Table of Contents**

| 1. General information                                                      | S2      |
|-----------------------------------------------------------------------------|---------|
| 2. General procedures and characterizations of intermediate compounds 16-22 | S2-S4   |
| 3. Copies of NMR Data for All Compounds                                     | S4-S23  |
| 4. X-ray Data of Compound 23a and 24                                        | 823-847 |
| 5. Reference                                                                | S47     |

#### 1. General information.

All reagents and chemicals were purchased from commercial suppliers and used without further purification unless otherwise stated. <sup>1</sup>H (500 Mz) and <sup>13</sup>C (125 Mz) NMR spectra were recorded on a Varian INOVA spectrometer with CDCl<sub>3</sub> or DMSO-d<sub>6</sub> and tetramethylsilane (TMS) as the internal standard. All chemical shift values were reported in units of  $\delta$  (ppm). The following abbreviations were used to indicate the peak multiplicity: s = singlet; d = doublet; t = triplet; m = multiplet; br = broad. Analytical thin-layer chromatography (TLC) was carried out on precoated plates (silica gel 60 F254), and spots were visualized with ultraviolet (UV) light. Flash column chromatography was carried out with silica gel (300-350 mesh). Melting points were determined on Yanano MP 500. High-resolution mass data were obtained on a Bruker microOTOFQ II spectrometer.

#### 2. General procedures and characterizations of intermediate compounds 16-22,24 and 25.



Scheme 1 Synthesis of 22. Reagents and conditions: (i) SH (CH<sub>2</sub>)<sub>3</sub>SH, *p*-TsOH, DCM, rt; (ii) n-BuLi, furan-2(5H)-one, THF, -78°C; (iii) LDA, piperonal, THF, -78°C; (iv) TFA, DCM, rt; (v) HgO, BF<sub>3</sub>:Et<sub>2</sub>O, THF/H<sub>2</sub>O (85/15), 0°C-rt; (vi) NaBH<sub>4</sub>, THF, 0°C.

### Synthesis of 5-(1,3-dithian-2-yl)benzo[d][1,3]dioxole (16)

To a solution of piperonal (15.00 g, 100 mmol) in dichloromethane (150 mL), propanedithiol (11.02 mL, 110 mmol) and monohydrated p-toluensulfonic acid (1.90 g, 10 mmol) were added. The mixture was stirred for 24 h at room temperature. Upon completion, saturated sodium carbonate (100 mL) was added and stirred for 2 h. The organic layer was washed with saturated brine ( $3 \times 50$  mL), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated in vacuo, and recrystallized from ethanol to give white solid of 5-(1,3-dithian-2-yl)benzo[d][1,3]dioxole (16) (21.50 g, 90%): m.p. 97 °C (lit.<sup>1</sup> 93-94 °C); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  1.87-1.94(m, 1H), 2.12-2.17(m, 1H), 2.89(d, *J* = 14.2 Hz, 2H), 3.01-3.07(m, 2H), 5.09(s, 1H), 5.95(s, 2H), 6.75(d, *J* = 8.0 Hz, 1H), 6.93(d, *J* = 8.0 Hz, 1H), 6.98(s, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  25.05, 32.19, 51.19, 101.23, 108.39, 121.31, 132.95, 147.64, 147.76.

### Synthesis of 4-(2-(benzo[d][1,3]dioxol-5-yl)-1,3-dithian-2-yl)dihydrofuran-2(3H)-one (17)

To a solution of **16** (4.00 g, 16.64 mmol) in dry THF (60 mL) at -78°C was added n-BuLi (6.96 mL, 2.4 M, in hexane, 16.64 mmol) dropwise within a period of 30 min. Stirring was continued for 30 min, and then a solution of furan-2(5H)-one (1.44 g, 16.64 mmol) in dry THF (10 mL) was added dropwise over a period of 20 min at -78°C. The reaction was kept in the same conditions for two more hours. After the addition of concentrated acetic acid (3 mL), the mixture was allowed to reach the room temperature. The crude of the reaction was extracted with ethyl acetate and the organic phase was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. Removal of the solvent under reduced pressure yielded yellowish colored oil, which was recrystallized from ethyl acetate to provide white solid of 4-(2-(benzo[d][1,3]dioxol-5-yl)-1,3-dithian-2-yl)dihydrofuran-2(3H)-one (**17**) (4.36 g, 80%): m.p. 162-163 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  1.85-1.99(m, 2H), 2.40-2.46(m, 1H), 2.66-2.76(m, 4H), 2.82-2.87(m, 1H), 2.98-3.04(m, 1H), 4.18-4.22(m, 1H), 4.39-4.43(m, 1H), 6.01(s, 2H), 6.84(d, *J* = 8.5 Hz, 1H), 7.46(d, *J* = 5.6 Hz, 2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  24.75, 27.20, 30.19, 48.20, 60.67, 68.54, 101.57, 108.33, 109.37, 123.16, 132.95, 147.22, 148.67, 175.76; HRMS (ESI): calc.for C<sub>15</sub>H<sub>16</sub>O<sub>4</sub>S<sub>2</sub>Na (M+Na)+ 347.0382, found: 347.0379.

# Synthesis of 3-(benzo[d][1,3]dioxol-5-yl(hydroxy)methyl)-4-(2-(benzo[d][1,3]dioxol-5-yl)-1,3-dithian-2-yl)dihydrofuran-2(3H)-one (18)

To a solution of diisopropylamine (1.2 mL, 7.40 mmol) in dry THF (5 mL) at at -78°C was added n-BuLi (3.20 mL, 2.4 M, in hexane, 7.40 mmol) dropwise within a period of 30 min. Stirring was continued for 30 min, and then a solution of (17) (2.00 g, 6.17 mmol) in dry THF (15 mL) was added dropwise over a period of 30 min at -78°C. The reaction was stirred at -78°C for one more hour. At this point, a solution of piperonal (1.11 g, 7.40 mmol) in dry THF (5 mL) was added and allowed the mixture to rise to the room

temperature. The mixture of the reaction was extracted with ethyl acetate and the product was purified by silica column chromatography (ethyl acetate/petroleum ether, 3:7) to give **18a** (1.23 g, 42%) and 1**8b** (0.82 g, 28%).

3-(benzo[d][1,3]dioxol-5-yl(hydroxy)methyl)-4-(2-(benzo[d][1,3] dioxol-5-yl)-1,3-dithian-2-yl)dihydrofuran-2(3H)-one (**18a**): white solid, m.p. 181-184 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  1.76-1.90(m, 2H), 2.50-2.54(m, 3H), 2.56-2.67(m, 2H), 2.76 (dt,  $J_1 = 7.9$ ,  $J_2 = 2.3$  Hz, 1H), 2.90(s, 1H), 4.33(dd,  $J_1 = 9.2$ ,  $J_2 = 8.2$  Hz, 1H), 4.88(dd,  $J_1 = 9.3$ ,  $J_2 = 1.9$  Hz, 1H), 5.08(t, J = 3.6 Hz, 1H), 5.94(t, J = 1.8 Hz, 2H), 5.99(d, J = 1.6 Hz, 1H), 6.52(d, J = 8.0 Hz, 2H), 6.60(d, J = 8.2 Hz, 1H), 6.63(d, J = 8.2 Hz, 1H), 7.08(s, 1H), 7.19(dd,  $J_1 = 8.2$ ,  $J_2 = 1.9$  Hz, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  24.45, 26.70, 27.21, 47.83, 49.49, 62.96, 70.31, 73.62, 101.19, 101.55, 105.89, 107.54, 107.94, 109.27, 118.60, 123.31, 132.55, 134.28, 146.78, 146.97, 147.63, 148.10, 178.31; HRMS (ESI): calc.for C<sub>23</sub>H<sub>22</sub>O<sub>7</sub>S<sub>2</sub>Na (M+Na)<sup>+</sup> 497.0699, found: 497.0702.

3-(-benzo[d][1,3]dioxol-5-yl(hydroxy)methyl)-4-(2-(benzo[d][1,3] dioxol-5-yl)-1,3-dithian-2-yl)dihydrofuran-2(3H)-one (**18b**): white solid, m.p. 169-170 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  1.81-1.95(m, 2H), 2.59-2.75(m, 6H), 3.15(d, J = 5.9 Hz, 1H), 3.92(t, J = 9.0 Hz, 1H), 4.67(d, J = 9.9 Hz, 1H), 4.72(d, J = 5.9 Hz, 1H), 5.94(s, 1H), 5.97(s, 1H), 5.99(s, 1H), 6.03(s, 1H), 6.65(d, J = 7.9 Hz, 1H), 6.70(d, J = 9.5 Hz, 2H), 6.75(d, J = 8.1 Hz, 1H), 7.32(s, 1H), 7.35(d, J = 8.2 Hz, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  24.43, 26.86, 27.12, 49.48, 50.34, 62.35, 68.35, 73.56, 101.17, 101.60, 106.62, 107.95, 108.05, 109.49, 119.85, 123.40, 132.60, 133.46, 147.15, 147.48, 147.78, 148.50, 176.58; HRMS (ESI): calc.for C<sub>23</sub>H<sub>22</sub>O<sub>7</sub>S<sub>2</sub>Na (M+Na)<sup>+</sup> 497.0708, found: 497.0699.

#### Synthesis of lactones (19) and (20)

TFA (4.27 mL) was added dropwise to a solution of **18** (1.78 g, 3.59 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (25 mL). The reaction mixture was stirred for 24 h at room temperature, and then the reaction was quenched with NaHCO<sub>3</sub> (concentrated solution). The organic layer was washed with saturated brine ( $3 \times 20$  mL), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated in vacuo to give the crude product, which was purified by silica column chromatography (ethyl acetate/petroleum ether, 3:7) to give **19** (86 mg, 5%)and **20** (1.29 g, 75%).

9'-(benzo[d][1,3]dioxol-5-yl)-8a',9'-dihydro-5a'H-spiro[[1,3] dithiane-2,5'-furo[3',4':6,7]naphtho[2,3-d][1,3]dioxol]-8'(6'H)-one (**19**): white solid, m.p. 234-236 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  2.05-2.13(m, 1H), 2.20-2.28(m, 1H), 2.80-2.96(m, 4H), 3.29(dd,  $J_1$  = 13.8 Hz,  $J_2$  = 5.1 Hz, 1H), 3.53-3.59(m, 1H), 4.49 (d, J = 5.1 Hz, 1H), 4.55(dd,  $J_1$  = 10.8 Hz,  $J_2$  = 7.7 Hz, 1H), 4.65-4.68(m, 1H), 5.89-5.95(m, 4H), 6.36(s, 1H), 6.58(dd,  $J_1$  = 8.1 Hz,  $J_2$  = 1.6 Hz, 1H), 6.65(d, J = 1.6 Hz, 1H), 6.69(d, J = 8.1 Hz, 1H), 7.70(s, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  23.68, 29.46, 31.21, 43.52, 43.74, 50.84, 53.49, 70.11, 101.01, 101.63, 107.78, 109.08, 110.79, 111.20, 124.27, 132.25, 133.15, 133.26, 146.71, 147.18, 147.36, 148.46, 173.80; HRMS (ESI): calc.for C<sub>23</sub>H<sub>20</sub>O<sub>6</sub>S<sub>2</sub>Na (M+Na)<sup>+</sup> 479.0594, found: 479.0595.

9'-(benzo[d][1,3]dioxol-5-yl)-8a',9'-dihydro-5a'H-spiro[[1,3] dithiane-2,5'-furo[3',4':6,7]naphtho[2,3-d][1,3]dioxol]-8'(6'H)-one (**20**): white solid, m.p. 281-284 °C, <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  2.05-2.14(m, 1H), 2.23-2.27(m, 1H), 2.82-2.92(m, 2H), 2.96-3.04(m, 2H), 3.21-3.27(m, 1H), 3.33(dd,  $J_1 = 13.7$  Hz,  $J_2 = 11.1$  Hz, 1H), 3.99(d, J = 11.0 Hz, 1H), 4.53(dd,  $J_1 = 10.6$  Hz,  $J_2 = 8.0$  Hz, 1H), 4.71(t, J = 7.2 Hz, 1H), 5.90(d, J = 3.6 Hz, 2H), 5.93(s, 2H), 6.23(s, 1H), 6.60(s, 1H), 6.77(s, 2H), 7.64(s, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  23.61, 29.31, 30.54, 44.27, 46.39, 52.62, 56.53, 68.80, 101.03, 101.52, 108.20, 108.95, 109.14, 109.27, 123.09, 132.81, 134.08, 136.86, 146.60, 146.64, 147.91, 148.01, 174.95; HRMS (ESI): calc.for C<sub>23</sub>H<sub>20</sub>O<sub>6</sub>S<sub>2</sub>Na (M+Na)<sup>+</sup> 479.0595, found: 479.0594.

#### Synthesis of 9'-(benzo[d][1,3]dioxol-5-yl)-8a',9'-dihydro-5a'H-spiro[[1,3]dithiane-2,5'furo[3',4':6,7]naphtho[2,3-d][1,3]dioxol]-8'(6'H)-one (21)

A solution of **20** (1.50 g, 3.29 mmol) in 60 mL of 85:15 THF/H<sub>2</sub>O was added to a suspension of HgO (1.55 g, 7.51 mmol) in 85:15 THF/H<sub>2</sub>O at 0 °C under argon followed by BF<sub>3</sub>.Et<sub>2</sub>O (0.52 mL, 7.51 mmol). The reaction mixture was stirred for 1 h at room temperature, and then CH<sub>2</sub>Cl<sub>2</sub> (30 mL) was added and the precipitate filtered. concentrated in vacuo to give the crude product, which was isolated by silica column chromatography (ethyl acetate/petroleum ether, 3:7) to give **21** (0.96 g, 80%): white solid, m.p. 216-218 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  3.01(dd,  $J_1$  = 15.5 Hz,  $J_2$  = 11.4 Hz, 1H), 3.39(ddd,  $J_1$  = 15.5 Hz,  $J_2$  = 10.6 Hz,  $J_3$  = 7.0 Hz, 1H), 4.23(d, J = 11.4 Hz, 1H), 4.42(dd,  $J_1$  = 10.5 Hz,  $J_2$  = 9.5 Hz, 1H), 4.63(dd,  $J_1$  = 9.3 Hz,  $J_2$  = 7.0 Hz, 1H), 5.96-6.01(m, 4H), 6.39(s, 1H), 6.57(s, 1H), 6.75(d, J = 7.2 Hz, 1H), 6.82(d, J = 7.9 Hz, 1H), 7.44(s, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  47.43, 47.52, 49.67, 66.22, 101.26, 102.25, 105.52, 108.49, 109.63, 127.95, 134.00, 143.72, 147.20, 147.61, 148.18, 152.99, 172.79, 192.15; HRMS (ESI): calc.for C<sub>20</sub>H<sub>14</sub>O<sub>7</sub>Na (M+Na)<sup>+</sup> 389.0632, found: 389.0632.

# Synthesis of 5-(benzo[d][1,3]dioxol-5-yl)-9-hydroxy-5,5a,8a,9-tetrahydrofuro[3',4':6,7]naphtho[2,3-d][1,3]dioxol-6(8H)-one (22)

To a mixture of **21** (500 mg, 1.37 mmol) in THF (20 mL) NaBH<sub>4</sub> (150 mg, 4.01 mmol) was added and allowed to react at room temperature, for 1h. The reaction was quenched with a saturated NH<sub>4</sub>Cl solution. The aqueous phase was extracted with Et<sub>2</sub>O ( $3\times20$  mL). The collected organic phases were dried, concentrated in vacuum, and purified by flash chromatography (dichloromethane/acetone, 20:1) to give **22** (353 mg, 70%): white solid, m.p.

261-263°C ; <sup>1</sup>H NMR (500 MHz, *d*-DMSO):  $\delta$  2.53-2.56(m, 1H), 3.07(dd,  $J_1$  = 13.8 Hz,  $J_2$  = 11.5 Hz, 1H), 4.06(d, J = 11.4 Hz, 1H), 4.13(dd,  $J_1$ = 10.6 Hz,  $J_2$ = 8.6 Hz, 1H), 4.51(dd,  $J_1$ = 8.2 Hz,  $J_2$ = 7.1 Hz, 1H), 4.82(d, J = 10.0 Hz, 1H), 5.91(s, 1H), 5.94(s, 1H), 5.99(d, J = 3.6 Hz, 1H), 6.09(s, 1H), 6.70-6.72(m, 2H), 6.86(d, J = 7.8 Hz, 1H). 7.05(s, 1H); <sup>13</sup>C NMR (125 MHz, CDCl3):  $\delta$  45.18, 45.81, 46.78, 70.22, 70.67, 101.29. 101.41, 106.23, 108.32, 108.70, 109.57, 123.22, 133.45, 135.37, 137.94, 146.25, 146.39, 146.65, 147.65,175.85; HRMS (ESI): calc.for C<sub>20</sub>H<sub>16</sub>O<sub>7</sub>S<sub>2</sub>Na (M+Na)<sup>+</sup> 391.0788, found: 391.0783.

# Synthesisof9-azido-5-(benzo[d][1,3]dioxol-5-yl)-5,5a,8a,9-tetrahydrofuro[3',4':6,7]naphtho[2,3-d][1,3]dioxol-6(8H)-one (24)

To a solution of **22** (294.4 mg, 0.80 mmol) and sodium azide (264.0 mg, 4.00 mmol) in CHCl<sub>3</sub> (20 mL), was added trifluoroacetic acid (1.6 mL, 2.07 mmol) dropwise in an ice bath. The reaction mixture was brought up to room temperature stirred for 5 h. Saturated aqueous sodium bicarbonate solution was added (2×20 mL). The organic layer was washed with water (1×20 mL), brine (1×20 mL) and dried over Na<sub>2</sub>SO<sub>4</sub>. After the solvent was removed, the crude product was purified by column chromatography (ethyl acetate/petroleum ether, 1:3) to afford compound **24** (267 mg, 85%): white solid, m.p. 174-176 °C <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  2.71-2.78(m, 1H), 2.99(dd,  $J_1$  = 13.9,  $J_2$  = 11.4 Hz, 1H), 3.99(d, J = 11.4 Hz, 1H), 4.25(dd,  $J_1$  = 10.6 Hz,  $J_2$  = 8.7 Hz, 1H), 4.36-4.40(m, 1H), 4.71 (d, J = 3.1 Hz, 1H), 5.95(d, J = 6.3 Hz, 4H), 6.42(s, 1H), 6.61(s, 1H), 6.71(s, 1H), 6.76(d, J = 8.2 Hz, 1H), 6.79(d, J = 8.2 Hz, 1H); <sup>13</sup>C NMR(125 MHz, CDCl<sub>3</sub>): 42.20, 43.35, 45.84, 59.37, 67.09, 101.10, 101.70, 108.31, 108.83, 109.08, 110.62, 123.01, 126.00, 134.07, 136.11, 146.76, 147.77, 147.95, 148.96, 174.83; HRMS (ESI): calc.for C<sub>20</sub>H<sub>15</sub>N<sub>3</sub>O<sub>6</sub>Na (M+Na)<sup>+</sup> 416.0853, found: 416.0863.

# Synthesisof9-amino-5-(benzo[d][1,3]dioxol-5-yl)-5,5a,8a,9-tetrahydrofuro[3',4':6,7]naphtho[2,3-d][1,3]dioxol-6(8H)-one (25)

To a solution of **24** (100 mg, 0.25 mmol) in ethyl acetate (10 mL) was added 5% palladium on activated carbon (45 mg). The mixture was stirred overnight under hydrogen. The reaction mixture was filtered, and the filtrate was evaporated. The crude product was purified by column chromatography (dichloromethane/methanol, 120:1) to afford compound **25** (74 mg, 80%): white solid, m.p. 246-248 °C; <sup>1</sup>H NMR (500 MHz, *d*-DMSO)  $\delta$  2.07(s, 2H), 2.51-2.68(m, 1H), 3.19(dd,  $J_1 = 13.8$  Hz,  $J_2 = 11.6$  Hz, 1H), 3.91(d, J = 11.4 Hz, 1H), 3.99(d, J = 3.8 Hz, 1H), 4.25(dd,  $J_1 = 10.8$  Hz,  $J_2 = 8.5$  Hz, 1H), 4.34(t, J = 7.8 Hz, 1H), 5.90(s, 1H), 5.92(s, 1H), 5.99(d, J = 2.6 Hz, 2H), 6.08(s, 1H), 6.76-6.78(m, 2H), 6.86(d, J = 7.8 Hz, 1H), 6.88(s, 1H); <sup>13</sup>C NMR(125 MHz, *d*-DMSO): 40.39, 44.36, 45.97, 49.20, 68.39, 101.26, 101.38, 108.24, 108.81, 109.66, 109.78, 123.40, 133.09, 135.48, 137.93, 146.15, 146.21, 146.81, 147.67, 176.57; HRMS (ESI): calc.for C<sub>20</sub>H<sub>17</sub>NO<sub>6</sub>Na (M+Na)<sup>+</sup> 390.0948, found: 390.0963.

### 3. Copies of NMR Data for All Compounds.

<sup>1</sup>H NMR (500 MHz) and <sup>13</sup>C NMR (125 MHz) spectra of compound **16**.



 $^1\text{H}$  NMR (500 MHz) and  $^{13}\text{C}$  NMR (125 MHz) spectra of compound 17.





<sup>1</sup>H NMR (500 MHz) and <sup>13</sup>C NMR (125 MHz) spectra of compound **18a** and **18b**.





<sup>1</sup>H NMR (500 MHz) and <sup>13</sup>C NMR (125 MHz) spectra of compound 19.





 $^{1}\mathrm{H}$  NMR (500 MHz) and  $^{13}\mathrm{C}$  NMR (125 MHz) spectra of compound **20**.





### <sup>1</sup>H NMR (500 MHz) and <sup>13</sup>C NMR (125 MHz) spectra of compound **21**.

<sup>1</sup>H NMR (500 MHz) and <sup>13</sup>C NMR (125 MHz) spectra of compound 22.





<sup>1</sup>H NMR (500 MHz) and <sup>13</sup>C NMR (125 MHz) spectra of compound **23a**.





<sup>1</sup>H NMR (500 MHz) and <sup>13</sup>C NMR (125 MHz) spectra of compound **23b**.

<sup>1</sup>H NMR (500 MHz) and <sup>13</sup>C NMR (125 MHz) spectra of compound 23c.





<sup>&</sup>lt;sup>1</sup>H NMR (500 MHz) and <sup>13</sup>C NMR (125 MHz) spectra of compound 23g.





<sup>1</sup>H NMR (500 MHz) and <sup>13</sup>C NMR (125 MHz) spectra of compound **23h**.

<sup>1</sup>H NMR (500 MHz) and <sup>13</sup>C NMR (125 MHz) spectra of compound 24.





 $^1\text{H}$  NMR (500 MHz) and  $^{13}\text{C}$  NMR (125 MHz) spectra of compound 25.





<sup>1</sup>H NMR (500 MHz) and <sup>13</sup>C NMR (125 MHz) spectra of compound **26b**.

<sup>1</sup>H NMR (500 MHz) and <sup>13</sup>C NMR (125 MHz) spectra of compound **26c**.





 $^1\text{H}$  NMR (500 MHz) and  $^{13}\text{C}$  NMR (125 MHz) spectra of compound **26d**.



<sup>1</sup>H NMR (500 MHz) and <sup>13</sup>C NMR (125 MHz) spectra of compound 26e.



<sup>1</sup>H NMR (500 MHz) and <sup>13</sup>C NMR (125 MHz) spectra of compound 26f.





<sup>1</sup>H NMR (500 MHz) and <sup>13</sup>C NMR (125 MHz) spectra of compound 26g.



<sup>1</sup>H NMR (500 MHz) and <sup>13</sup>C NMR (125 MHz) spectra of compound **26h**.



<sup>1</sup>H NMR (500 MHz) and <sup>13</sup>C NMR (125 MHz) spectra of compound 27g.





 $^1\text{H}$  NMR (500 MHz) and  $^{13}\text{C}$  NMR (125 MHz) spectra of compound 27h.



<sup>1</sup>H NMR (500 MHz) and <sup>13</sup>C NMR (125 MHz) spectra of compound 27i.



<sup>1</sup>H NMR (500 MHz) and <sup>13</sup>C NMR (125 MHz) spectra of compound 27j.





<sup>1</sup>H NMR (500 MHz) and <sup>13</sup>C NMR (125 MHz) spectra of compound 27k.





<sup>1</sup>H NMR (500 MHz) and <sup>13</sup>C NMR (125 MHz) spectra of compound 27I.

<sup>1</sup>H NMR (500 MHz) and <sup>13</sup>C NMR (125 MHz) spectra of compound 27m.





### 4. X-ray Data of Compound 23a and 24

### 4.1. Single Crystal X-ray Crystallography of compound 23a (CCDC 1430247)

Data intensity of **23a** was collected using a Bruker SMART APEX II (Mo radiation). The X-ray condition of was 50 kV × 30 mA. Data collection and reduction were done by using the Bruker ApexII software package. The structure was solved by direct methods and refined by full-matrix least-squares on  $F^2$  with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. Crystal data for **23a**: C<sub>22</sub>H<sub>18</sub>O<sub>8</sub>, M = 410.36, T = 173(2) K,  $\lambda = 0.71073$  Å, triclinic, space group P-1, a = 9.4301(6) Å, b = 9.8683(6) Å, c = 11.5227(8) Å, V = 923.30(10) Å<sup>3</sup>, z = 2, d<sub>calc</sub> = 1.476 mg/m<sup>3</sup>, 10831 reflections measured, 3228 unique [R<sub>int</sub> = 0.0296]. R<sub>1</sub> = 0.0403, wR<sub>2</sub> = 0.1065 ( $I > 2\sigma(I)$ , final). R<sub>1</sub> = 0.0527, wR<sub>2</sub> = 0.1185 (all data). GOF = 1.080, and 271 parameters.





| Identification code | Z          |
|---------------------|------------|
| Empirical formula   | C22 H18 O8 |
| Formula weight      | 410.36     |
| Temperature         | 173(2) K   |
|                     |            |

Wavelength 0.71073 A

| Crystal system, space group Triclinic, P-1                                                   |
|----------------------------------------------------------------------------------------------|
| Unit cell dimensions $a = 9.4301(6) \text{ A}$ alpha = $81.308(2) \text{ deg.}$              |
| b = 9.8683(6) A beta = 68.130(2) deg.                                                        |
| c = 11.5227(8) A gamma = 68.113(2) deg.                                                      |
| Volume 923.30(10) A^3                                                                        |
| Z, Calculated density 2, 1.476 Mg/m <sup>3</sup>                                             |
| Absorption coefficient 0.114 mm^-1                                                           |
| F(000) 428                                                                                   |
| Crystal size 0.48 x 0.29 x 0.13 mm                                                           |
| Theta range for data collection 1.90 to 25.01 deg.                                           |
| Limiting indices -11<=h<=11, -11<=k<=11, -13<=l<=13                                          |
| Reflections collected / unique $10831 / 3228 [R(int) = 0.0296]$                              |
| Completeness to theta = $25.01  99.1 \%$                                                     |
| Absorption correction Semi-empirical from equivalents                                        |
| Max. and min. transmission 0.9854 and 0.9475                                                 |
| Refinement method Full-matrix least-squares on F^2                                           |
| Data / restraints / parameters 3228 / 0 / 271                                                |
| Goodness-of-fit on F <sup>2</sup> 1.080                                                      |
| Final R indices $[I>2sigma(I)]$ R1 = 0.0403, wR2 = 0.1065                                    |
| R indices (all data) $R1 = 0.0527, wR2 = 0.1185$                                             |
| Largest diff. peak and hole 0.226 and -0.223 e.A^-3                                          |
| Table 2. Atomic coordinates ( $x \ 10^{4}$ ) and equivalent isotropic                        |
| displacement parameters (A <sup><math>2</math></sup> x 10 <sup><math>3</math></sup> ) for z. |
| U(eq) is defined as one third of the trace of the orthogonalized                             |
| Uij tensor.                                                                                  |
|                                                                                              |
|                                                                                              |

x y z U(eq)

O(1) 8533(2) 5524(2) 1594(2) 42(1)

| O(2)  | 8438(2)  | 7821(2)  | 1005(1)  | 31(1) |
|-------|----------|----------|----------|-------|
| O(3)  | 15354(2) | 6848(2)  | 35(2)    | 45(1) |
| O(4)  | 13304(2) | 6285(2)  | 1501(1)  | 42(1) |
| O(5)  | 9704(2)  | 11104(2) | -4049(1) | 34(1) |
| O(6)  | 7476(2)  | 10409(2) | -2907(2) | 38(1) |
| O(7)  | 18654(2) | 5857(2)  | -5663(1) | 39(1) |
| O(8)  | 16764(2) | 4701(2)  | -5012(1) | 34(1) |
| C(1)  | 8005(3)  | 11425(2) | -3828(2) | 34(1) |
| C(2)  | 10028(2) | 10142(2) | -3100(2) | 27(1) |
| C(3)  | 11431(2) | 9605(2)  | -2828(2) | 26(1) |
| C(4)  | 11469(2) | 8650(2)  | -1782(2) | 25(1) |
| C(5)  | 13038(2) | 8123(2)  | -1471(2) | 26(1) |
| C(6)  | 12951(2) | 6989(2)  | -428(2)  | 28(1) |
| C(7)  | 14045(3) | 6727(2)  | 331(2)   | 36(1) |
| C(8)  | 11719(3) | 6260(3)  | 1607(2)  | 38(1) |
| C(9)  | 11294(2) | 7346(2)  | 596(2)   | 29(1) |
| C(10) | 10071(2) | 7287(2)  | 79(2)    | 28(1) |
| C(11) | 10100(2) | 8274(2)  | -1074(2) | 26(1) |
| C(12) | 8694(2)  | 8808(2)  | -1412(2) | 29(1) |
| C(13) | 8696(2)  | 9735(2)  | -2414(2) | 28(1) |
| C(14) | 7817(3)  | 6818(2)  | 1703(2)  | 29(1) |
| C(15) | 6158(3)  | 7514(3)  | 2597(2)  | 39(1) |
| C(16) | 14558(2) | 7564(2)  | -2611(2) | 26(1) |
| C(17) | 15724(3) | 8235(2)  | -3003(2) | 33(1) |
| C(18) | 17157(3) | 7745(2)  | -4028(2) | 37(1) |
| C(19) | 17375(2) | 6545(2)  | -4618(2) | 32(1) |
| C(20) | 16234(2) | 5862(2)  | -4232(2) | 27(1) |
| C(21) | 14800(2) | 6356(2)  | -3255(2) | 27(1) |
| C(22) | 18460(3) | 4491(2)  | -5662(2) | 36(1) |
|       |          |          |          |       |

Table 3. Bond lengths [A] and angles [deg] for z.

| O(1)-C(14) | 1.203(2) |
|------------|----------|
| O(2)-C(14) | 1.346(2) |
| O(2)-C(10) | 1.459(2) |
| O(3)-C(7)  | 1.200(3) |
| O(4)-C(7)  | 1.358(3) |
| O(4)-C(8)  | 1.463(3) |
| O(5)-C(2)  | 1.381(2) |
| O(5)-C(1)  | 1.440(2) |
| O(6)-C(13) | 1.374(2) |
| O(6)-C(1)  | 1.427(3) |
| O(7)-C(19) | 1.386(3) |
| O(7)-C(22) | 1.425(3) |
| O(8)-C(20) | 1.385(2) |
| O(8)-C(22) | 1.439(2) |
| C(1)-H(1A) | 0.9900   |
| C(1)-H(1B) | 0.9900   |
| C(2)-C(3)  | 1.367(3) |
| C(2)-C(13) | 1.380(3) |
| C(3)-C(4)  | 1.416(3) |
| C(3)-H(3A) | 0.9500   |
| C(4)-C(11) | 1.397(3) |
| C(4)-C(5)  | 1.534(3) |
| C(5)-C(6)  | 1.514(3) |
| C(5)-C(16) | 1.520(3) |
| C(5)-H(5A) | 1.0000   |
| C(6)-C(9)  | 1.516(3) |
| C(6)-C(7)  | 1.517(3) |
| C(6)-H(6A) | 1.0000   |
| C(8)-C(9)  | 1.523(3) |
| C(8)-H(8A) | 0.9900   |
| C(8)-H(8B) | 0.9900   |
| C(9)-C(10) | 1.503(3) |

| C(9)-H(9A)       | 1.0000     |
|------------------|------------|
| C(10)-C(11)      | 1.522(3)   |
| С(10)-Н(10А)     | 1.0000     |
| C(11)-C(12)      | 1.410(3)   |
| C(12)-C(13)      | 1.360(3)   |
| C(12)-H(12A)     | 0.9500     |
| C(14)-C(15)      | 1.480(3)   |
| С(15)-Н(15А)     | 0.9800     |
| C(15)-H(15B)     | 0.9800     |
| С(15)-Н(15С)     | 0.9800     |
| C(16)-C(17)      | 1.390(3)   |
| C(16)-C(21)      | 1.401(3)   |
| C(17)-C(18)      | 1.397(3)   |
| C(17)-H(17A)     | 0.9500     |
| C(18)-C(19)      | 1.366(3)   |
| C(18)-H(18A)     | 0.9500     |
| C(19)-C(20)      | 1.380(3)   |
| C(20)-C(21)      | 1.369(3)   |
| C(21)-H(21A)     | 0.9500     |
| C(22)-H(22A)     | 0.9900     |
| C(22)-H(22B)     | 0.9900     |
|                  |            |
| C(14)-O(2)-C(10) | 117.34(15) |
| C(7)-O(4)-C(8)   | 109.86(16) |
| C(2)-O(5)-C(1)   | 105.06(15) |
| C(13)-O(6)-C(1)  | 106.22(15) |

| C(13)-O(6)-C(1)  | 106.22(15) |
|------------------|------------|
| C(19)-O(7)-C(22) | 103.50(16) |
| C(20)-O(8)-C(22) | 103.65(15) |
| O(6)-C(1)-O(5)   | 107.63(16) |
| O(6)-C(1)-H(1A)  | 110.2      |
| O(5)-C(1)-H(1A)  | 110.2      |
| O(6)-C(1)-H(1B)  | 110.2      |

| O(5)-C(1)-H(1B)  | 110.2      |
|------------------|------------|
| H(1A)-C(1)-H(1B) | 108.5      |
| C(3)-C(2)-C(13)  | 121.67(19) |
| C(3)-C(2)-O(5)   | 128.11(19) |
| C(13)-C(2)-O(5)  | 110.22(17) |
| C(2)-C(3)-C(4)   | 118.08(19) |
| C(2)-C(3)-H(3A)  | 121.0      |
| C(4)-C(3)-H(3A)  | 121.0      |
| C(11)-C(4)-C(3)  | 119.77(18) |
| C(11)-C(4)-C(5)  | 123.63(18) |
| C(3)-C(4)-C(5)   | 116.57(17) |
| C(6)-C(5)-C(16)  | 111.84(16) |
| C(6)-C(5)-C(4)   | 109.81(16) |
| C(16)-C(5)-C(4)  | 112.60(16) |
| C(6)-C(5)-H(5A)  | 107.4      |
| C(16)-C(5)-H(5A) | 107.4      |
| C(4)-C(5)-H(5A)  | 107.4      |
| C(5)-C(6)-C(9)   | 113.65(16) |
| C(5)-C(6)-C(7)   | 117.85(18) |
| C(9)-C(6)-C(7)   | 101.09(16) |
| C(5)-C(6)-H(6A)  | 107.9      |
| C(9)-C(6)-H(6A)  | 107.9      |
| C(7)-C(6)-H(6A)  | 107.9      |
| O(3)-C(7)-O(4)   | 121.5(2)   |
| O(3)-C(7)-C(6)   | 130.1(2)   |
| O(4)-C(7)-C(6)   | 108.39(18) |
| O(4)-C(8)-C(9)   | 102.77(17) |
| O(4)-C(8)-H(8A)  | 111.2      |
| C(9)-C(8)-H(8A)  | 111.2      |
| O(4)-C(8)-H(8B)  | 111.2      |
| C(9)-C(8)-H(8B)  | 111.2      |
| H(8A)-C(8)-H(8B) | 109.1      |

| C(10)-C(9)-C(6)     | 109.46(16) |
|---------------------|------------|
| C(10)-C(9)-C(8)     | 120.08(18) |
| C(6)-C(9)-C(8)      | 100.37(16) |
| C(10)-C(9)-H(9A)    | 108.8      |
| C(6)-C(9)-H(9A)     | 108.8      |
| C(8)-C(9)-H(9A)     | 108.8      |
| O(2)-C(10)-C(9)     | 109.76(16) |
| O(2)-C(10)-C(11)    | 107.72(15) |
| C(9)-C(10)-C(11)    | 109.76(17) |
| O(2)-C(10)-H(10A)   | 109.9      |
| C(9)-C(10)-H(10A)   | 109.9      |
| С(11)-С(10)-Н(10А)  | 109.9      |
| C(4)-C(11)-C(12)    | 120.53(18) |
| C(4)-C(11)-C(10)    | 121.48(17) |
| C(12)-C(11)-C(10)   | 117.99(17) |
| C(13)-C(12)-C(11)   | 118.00(18) |
| С(13)-С(12)-Н(12А)  | 121.0      |
| С(11)-С(12)-Н(12А)  | 121.0      |
| C(12)-C(13)-O(6)    | 128.74(19) |
| C(12)-C(13)-C(2)    | 121.88(18) |
| O(6)-C(13)-C(2)     | 109.38(17) |
| O(1)-C(14)-O(2)     | 123.40(19) |
| O(1)-C(14)-C(15)    | 125.1(2)   |
| O(2)-C(14)-C(15)    | 111.45(18) |
| С(14)-С(15)-Н(15А)  | 109.5      |
| С(14)-С(15)-Н(15В)  | 109.5      |
| H(15A)-C(15)-H(15B) | 109.5      |
| С(14)-С(15)-Н(15С)  | 109.5      |
| H(15A)-C(15)-H(15C) | 109.5      |
| H(15B)-C(15)-H(15C) | 109.5      |
| C(17)-C(16)-C(21)   | 119.87(19) |
| C(17)-C(16)-C(5)    | 120.10(18) |

| C(21)-C(16)-C(5)    | 120.03(18) |
|---------------------|------------|
| C(16)-C(17)-C(18)   | 122.3(2)   |
| С(16)-С(17)-Н(17А)  | 118.8      |
| С(18)-С(17)-Н(17А)  | 118.8      |
| C(19)-C(18)-C(17)   | 116.4(2)   |
| C(19)-C(18)-H(18A)  | 121.8      |
| C(17)-C(18)-H(18A)  | 121.8      |
| C(18)-C(19)-C(20)   | 121.9(2)   |
| C(18)-C(19)-O(7)    | 128.3(2)   |
| C(20)-C(19)-O(7)    | 109.74(19) |
| C(21)-C(20)-C(19)   | 122.43(19) |
| C(21)-C(20)-O(8)    | 128.36(19) |
| C(19)-C(20)-O(8)    | 109.16(18) |
| C(20)-C(21)-C(16)   | 117.05(19) |
| C(20)-C(21)-H(21A)  | 121.5      |
| C(16)-C(21)-H(21A)  | 121.5      |
| O(7)-C(22)-O(8)     | 107.02(16) |
| O(7)-C(22)-H(22A)   | 110.3      |
| O(8)-C(22)-H(22A)   | 110.3      |
| O(7)-C(22)-H(22B)   | 110.3      |
| O(8)-C(22)-H(22B)   | 110.3      |
| H(22A)-C(22)-H(22B) | 108.6      |

Symmetry transformations used to generate equivalent atoms:

```
Table 4. Anisotropic displacement parameters (A^2 x 10^3) for z.
```

The anisotropic displacement factor exponent takes the form:

-2 pi^2 [ h^2 a\*^2 U11 + ... + 2 h k a\* b\* U12 ]

U11 U22 U33 U23 U13 U12

| O(1)  | 50(1) | 28(1) | 35(1) | -2(1) | -3(1)  | -12(1) |
|-------|-------|-------|-------|-------|--------|--------|
| O(2)  | 26(1) | 27(1) | 32(1) | -2(1) | 0(1)   | -8(1)  |
| O(3)  | 30(1) | 63(1) | 42(1) | -3(1) | -16(1) | -11(1) |
| O(4)  | 37(1) | 54(1) | 30(1) | 2(1)  | -13(1) | -10(1) |
| O(5)  | 30(1) | 39(1) | 32(1) | 7(1)  | -12(1) | -13(1) |
| O(6)  | 31(1) | 40(1) | 51(1) | 10(1) | -21(1) | -17(1) |
| O(7)  | 28(1) | 40(1) | 34(1) | -5(1) | 2(1)   | -8(1)  |
| O(8)  | 29(1) | 35(1) | 30(1) | -9(1) | -4(1)  | -6(1)  |
| C(1)  | 29(1) | 38(1) | 32(1) | 4(1)  | -10(1) | -12(1) |
| C(2)  | 28(1) | 26(1) | 24(1) | -4(1) | -7(1)  | -7(1)  |
| C(3)  | 21(1) | 27(1) | 29(1) | -6(1) | -4(1)  | -8(1)  |
| C(4)  | 22(1) | 24(1) | 25(1) | -6(1) | -5(1)  | -5(1)  |
| C(5)  | 22(1) | 28(1) | 26(1) | -5(1) | -5(1)  | -7(1)  |
| C(6)  | 25(1) | 28(1) | 25(1) | -6(1) | -6(1)  | -5(1)  |
| C(7)  | 31(1) | 38(1) | 31(1) | -7(1) | -9(1)  | -2(1)  |
| C(8)  | 34(1) | 43(1) | 30(1) | 1(1)  | -9(1)  | -9(1)  |
| C(9)  | 28(1) | 28(1) | 25(1) | -5(1) | -4(1)  | -6(1)  |
| C(10) | 23(1) | 26(1) | 26(1) | -4(1) | -2(1)  | -5(1)  |
| C(11) | 24(1) | 23(1) | 25(1) | -4(1) | -3(1)  | -7(1)  |
| C(12) | 24(1) | 29(1) | 33(1) | -2(1) | -4(1)  | -13(1) |
| C(13) | 23(1) | 28(1) | 32(1) | -3(1) | -10(1) | -8(1)  |
| C(14) | 32(1) | 30(1) | 24(1) | 2(1)  | -9(1)  | -12(1) |
| C(15) | 30(1) | 41(1) | 38(1) | 5(1)  | -3(1)  | -13(1) |
| C(16) | 21(1) | 28(1) | 27(1) | -1(1) | -8(1)  | -6(1)  |
| C(17) | 27(1) | 32(1) | 38(1) | -5(1) | -8(1)  | -10(1) |
| C(18) | 26(1) | 38(1) | 43(1) | -1(1) | -4(1)  | -14(1) |
| C(19) | 22(1) | 36(1) | 31(1) | -2(1) | -4(1)  | -6(1)  |
| C(20) | 26(1) | 28(1) | 25(1) | -3(1) | -8(1)  | -5(1)  |
| C(21) | 23(1) | 32(1) | 28(1) | -2(1) | -8(1)  | -11(1) |
| C(22) | 28(1) | 35(1) | 34(1) | -3(1) | -4(1)  | -5(1)  |
|       |       |       |       |       |        |        |

|        | X     | y z   | U(eq) |    |
|--------|-------|-------|-------|----|
|        |       |       |       |    |
| H(1A)  | 7366  | 12436 | -3527 | 40 |
| H(1B)  | 7850  | 11329 | -4611 | 40 |
| H(3A)  | 12355 | 9865  | -3325 | 32 |
| H(5A)  | 13099 | 8980  | -1152 | 32 |
| H(6A)  | 13203 | 6038  | -800  | 33 |
| H(8A)  | 10903 | 6577  | 2445  | 45 |
| H(8B)  | 11796 | 5273  | 1448  | 45 |
| H(9A)  | 10954 | 8358  | 892   | 35 |
| H(10A) | 10331 | 6260  | -145  | 34 |
| H(12A) | 7773  | 8528  | -954  | 35 |
| H(15A) | 5741  | 6757  | 3090  | 59 |
| H(15B) | 5439  | 8100  | 2135  | 59 |
| H(15C) | 6196  | 8146  | 3156  | 59 |
| H(17A) | 15539 | 9056  | -2558 | 40 |
| H(18A) | 17937 | 8222  | -4300 | 44 |
| H(21A) | 14005 | 5900  | -3024 | 33 |
| H(22A) | 19136 | 3732  | -5232 | 43 |
| H(22B) | 18797 | 4178  | -6530 | 43 |

Table 5. Hydrogen coordinates ( x 10^4) and isotropic displacement parameters (A^2 x 10^3) for z.

Table 6. Torsion angles [deg] for z.

| C(13)-O(6)-C(1)-O(5) | 12.1(2)   |
|----------------------|-----------|
| C(2)-O(5)-C(1)-O(6)  | -11.6(2)  |
| C(1)-O(5)-C(2)-C(3)  | -173.9(2) |
| C(1)-O(5)-C(2)-C(13) | 6.9(2)    |

| C(13)-C(2)-C(3)-C(4)   | -2.4(3)     |
|------------------------|-------------|
| O(5)-C(2)-C(3)-C(4)    | 178.49(18)  |
| C(2)-C(3)-C(4)-C(11)   | 0.7(3)      |
| C(2)-C(3)-C(4)-C(5)    | -177.41(17) |
| C(11)-C(4)-C(5)-C(6)   | 8.3(3)      |
| C(3)-C(4)-C(5)-C(6)    | -173.73(16) |
| C(11)-C(4)-C(5)-C(16)  | 133.60(19)  |
| C(3)-C(4)-C(5)-C(16)   | -48.4(2)    |
| C(16)-C(5)-C(6)-C(9)   | -166.27(16) |
| C(4)-C(5)-C(6)-C(9)    | -40.5(2)    |
| C(16)-C(5)-C(6)-C(7)   | 75.8(2)     |
| C(4)-C(5)-C(6)-C(7)    | -158.47(17) |
| C(8)-O(4)-C(7)-O(3)    | 179.0(2)    |
| C(8)-O(4)-C(7)-C(6)    | -1.4(2)     |
| C(5)-C(6)-C(7)-O(3)    | -29.6(3)    |
| C(9)-C(6)-C(7)-O(3)    | -154.0(2)   |
| C(5)-C(6)-C(7)-O(4)    | 150.85(18)  |
| C(9)-C(6)-C(7)-O(4)    | 26.4(2)     |
| C(7)-O(4)-C(8)-C(9)    | -24.1(2)    |
| C(5)-C(6)-C(9)-C(10)   | 66.4(2)     |
| C(7)-C(6)-C(9)-C(10)   | -166.30(17) |
| C(5)-C(6)-C(9)-C(8)    | -166.34(17) |
| C(7)-C(6)-C(9)-C(8)    | -39.1(2)    |
| O(4)-C(8)-C(9)-C(10)   | 158.86(17)  |
| O(4)-C(8)-C(9)-C(6)    | 39.0(2)     |
| C(14)-O(2)-C(10)-C(9)  | -98.3(2)    |
| C(14)-O(2)-C(10)-C(11) | 142.21(17)  |
| C(6)-C(9)-C(10)-O(2)   | -172.29(15) |
| C(8)-C(9)-C(10)-O(2)   | 72.5(2)     |
| C(6)-C(9)-C(10)-C(11)  | -54.1(2)    |
| C(8)-C(9)-C(10)-C(11)  | -169.26(17) |
| C(3)-C(4)-C(11)-C(12)  | 1.7(3)      |

S34

| C(5)-C(4)-C(11)-C(12)   | 179.61(18)  |
|-------------------------|-------------|
| C(3)-C(4)-C(11)-C(10)   | -178.19(17) |
| C(5)-C(4)-C(11)-C(10)   | -0.2(3)     |
| O(2)-C(10)-C(11)-C(4)   | 142.99(18)  |
| C(9)-C(10)-C(11)-C(4)   | 23.5(2)     |
| O(2)-C(10)-C(11)-C(12)  | -36.9(2)    |
| C(9)-C(10)-C(11)-C(12)  | -156.33(17) |
| C(4)-C(11)-C(12)-C(13)  | -2.3(3)     |
| C(10)-C(11)-C(12)-C(13) | 177.53(18)  |
| C(11)-C(12)-C(13)-O(6)  | -178.86(19) |
| C(11)-C(12)-C(13)-C(2)  | 0.7(3)      |
| C(1)-O(6)-C(13)-C(12)   | 171.6(2)    |
| C(1)-O(6)-C(13)-C(2)    | -8.0(2)     |
| C(3)-C(2)-C(13)-C(12)   | 1.7(3)      |
| O(5)-C(2)-C(13)-C(12)   | -179.00(18) |
| C(3)-C(2)-C(13)-O(6)    | -178.67(18) |
| O(5)-C(2)-C(13)-O(6)    | 0.6(2)      |
| C(10)-O(2)-C(14)-O(1)   | -0.4(3)     |
| C(10)-O(2)-C(14)-C(15)  | -179.82(17) |
| C(6)-C(5)-C(16)-C(17)   | -116.6(2)   |
| C(4)-C(5)-C(16)-C(17)   | 119.1(2)    |
| C(6)-C(5)-C(16)-C(21)   | 62.3(2)     |
| C(4)-C(5)-C(16)-C(21)   | -61.9(2)    |
| C(21)-C(16)-C(17)-C(18) | -0.3(3)     |
| C(5)-C(16)-C(17)-C(18)  | 178.65(19)  |
| C(16)-C(17)-C(18)-C(19) | -1.3(3)     |
| C(17)-C(18)-C(19)-C(20) | 0.8(3)      |
| C(17)-C(18)-C(19)-O(7)  | 178.4(2)    |
| C(22)-O(7)-C(19)-C(18)  | 165.6(2)    |
| C(22)-O(7)-C(19)-C(20)  | -16.5(2)    |
| C(18)-C(19)-C(20)-C(21) | 1.4(3)      |
| O(7)-C(19)-C(20)-C(21)  | -176.71(18) |

| C(18)-C(19)-C(20)-O(8)  | 178.94(19)  |
|-------------------------|-------------|
| O(7)-C(19)-C(20)-O(8)   | 0.9(2)      |
| C(22)-O(8)-C(20)-C(21)  | -167.6(2)   |
| C(22)-O(8)-C(20)-C(19)  | 15.0(2)     |
| C(19)-C(20)-C(21)-C(16) | -2.9(3)     |
| O(8)-C(20)-C(21)-C(16)  | -179.95(18) |
| C(17)-C(16)-C(21)-C(20) | 2.3(3)      |
| C(5)-C(16)-C(21)-C(20)  | -176.63(17) |
| C(19)-O(7)-C(22)-O(8)   | 25.7(2)     |
| C(20)-O(8)-C(22)-O(7)   | -25.3(2)    |
|                         |             |

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for z [A and deg.].

D-H...A  $d(D-H) \quad d(H...A) \quad d(D...A) < (DHA)$ 

### 4.2. Single Crystal X-ray Crystallography of compound 24 (CCDC 1430248)

Data intensity of **24** was collected using a Bruker SMART APEX II (Mo radiation). The Xray condition of was 50 kV × 30 mA. Data collection and reduction were done by using the Bruker ApexII software package. The structure was solved by direct methods and refined by full-matrix least-squares on  $F^2$  with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. Crystal data for compound **24**: C<sub>20</sub>H<sub>15</sub>N<sub>3</sub>O<sub>6</sub>, M = 393.35, T = 173(2) K,  $\lambda = 0.71073$  Å, monoclinic, space group P2(1)/c, a = 8.8536(5) Å, b = 11.6840(7) Å, c = 16.8730(10) Å, V = 1724.97(17) Å<sup>3</sup>, z = 4, d<sub>calc</sub> = 1.515 mg/m<sup>3</sup>, 19705 reflections measured, 3046 unique [R<sub>int</sub> = 0.0523]. R<sub>1</sub> = 0.0354, wR<sub>2</sub> = 0.0758 ( $I > 2\sigma(I)$ , final). R<sub>1</sub> = 0.0528, wR<sub>2</sub> = 0.0854 (all data). GOF = 1.037, and 262 parameters.



Table 1. Crystal data and structure refinement for z.

| Identification code | Z             |
|---------------------|---------------|
| Empirical formula   | C20 H15 N3 O6 |

| Formula weigh           | t 39             | 3.35               |                         |
|-------------------------|------------------|--------------------|-------------------------|
| Temperature             | 173(             | 2) K               |                         |
| Wavelength              | 0.71             | 073 A              |                         |
| Crystal system,         | space group      | Monoclinic, P2     | 2(1)/c                  |
| Unit cell dimens        | sions a =        | 8.8536(5) A alp    | bha = 90 deg.           |
|                         | b =              | = 11.6840(7) A     | beta = $98.782(2)$ deg. |
|                         | c =              | = 16.8730(10) A    | gamma = 90 deg.         |
| Volume                  | 1724             | .97(17) A^3        |                         |
| Z, Calculated d         | ensity 4         | , 1.515 Mg/m^3     |                         |
| Absorption coef         | ficient 0        | .114 mm^-1         |                         |
| F(000)                  | 816              |                    |                         |
| Crystal size            | 0.27 x           | x 0.26 x 0.15 mm   | L                       |
| Theta range for         | data collection  | 2.13 to 25.00 d    | eg.                     |
| Limiting indices        | -10              | <=h<=10, -13<=     | k<=13, -20<=l<=20       |
| Reflections colle       | ected / unique   | 19705 / 3046 [F    | R(int) = 0.0523]        |
| Completeness to         | theta = 25.00    | 100.0 %            |                         |
| Absorption corr         | ection S         | emi-empirical fr   | om equivalents          |
| Max. and min. t         | ransmission      | 0.9831 and 0.9     | 698                     |
| Refinement met          | hod I            | Full-matrix least- | squares on F^2          |
| Data / restraints       | / parameters     | 3046 / 1 / 262     |                         |
| Goodness-of-fit         | on F^2           | 1.037              |                         |
| Final R indices         | [I>2sigma(I)]    | R1 = 0.0354, w     | R2 = 0.0758             |
| R indices (all da       | ta) R1           | = 0.0528, wR2 =    | 0.0854                  |
| Largest diff. pea       | k and hole       | 0.190 and -0.177   | / e.A^-3                |
| Table 2. Atomic coordin | ates ( x 10^4) a | and equivalent is  | otropic                 |

displacement parameters (A $^2$  x 10 $^3$ ) for z.

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

| 3    | x y     | Z       | U(eq)   |       |
|------|---------|---------|---------|-------|
| O(1) | 9825(1) | 4690(1) | 1354(1) | 34(1) |

| O(2)  | 11114(1) | 6285(1)  | 1007(1)  | 40(1) |
|-------|----------|----------|----------|-------|
| O(3)  | 7886(2)  | 12444(1) | 689(1)   | 43(1) |
| O(4)  | 7531(2)  | 10987(1) | 1573(1)  | 38(1) |
| O(5)  | 5302(2)  | 6030(1)  | -1696(1) | 37(1) |
| O(6)  | 5479(2)  | 7236(1)  | -2695(1) | 41(1) |
| N(1)  | 8682(2)  | 9696(1)  | -1893(1) | 35(1) |
| N(2)  | 9460(2)  | 10572(1) | -1914(1) | 31(1) |
| N(3)  | 10268(2) | 11316(1) | -1950(1) | 41(1) |
| C(1)  | 6054(2)  | 8397(2)  | -2790(1) | 40(1) |
| C(2)  | 6121(2)  | 8903(2)  | -1957(1) | 30(1) |
| C(3)  | 7106(2)  | 9930(2)  | -1702(1) | 30(1) |
| C(4)  | 7148(2)  | 10126(1) | -810(1)  | 26(1) |
| C(5)  | 7478(2)  | 11244(1) | -529(1)  | 32(1) |
| C(6)  | 7604(2)  | 11426(1) | 276(1)   | 30(1) |
| C(7)  | 8165(2)  | 12119(2) | 1513(1)  | 43(1) |
| C(8)  | 7371(2)  | 10563(2) | 799(1)   | 29(1) |
| C(9)  | 6979(2)  | 9477(1)  | 539(1)   | 27(1) |
| C(10) | 6881(2)  | 9244(1)  | -284(1)  | 24(1) |
| C(11) | 6435(2)  | 8024(1)  | -562(1)  | 24(1) |
| C(12) | 6637(2)  | 7870(1)  | -1437(1) | 25(1) |
| C(13) | 5757(2)  | 6925(2)  | -1913(1) | 30(1) |
| C(14) | 7288(2)  | 7110(1)  | -30(1)   | 22(1) |
| C(15) | 8873(2)  | 7210(1)  | 206(1)   | 27(1) |
| C(16) | 9598(2)  | 6347(1)  | 664(1)   | 26(1) |
| C(17) | 8827(2)  | 5400(1)  | 878(1)   | 25(1) |
| C(18) | 7291(2)  | 5281(2)  | 662(1)   | 30(1) |
| C(19) | 6527(2)  | 6165(1)  | 205(1)   | 26(1) |
| C(20) | 11307(2) | 5166(2)  | 1338(1)  | 33(1) |
|       |          |          |          |       |

Table 3. Bond lengths [A] and angles [deg] for z.

O(1)-C(17) 1.377(2)

| O(1)-C(20)  | 1.429(2) |
|-------------|----------|
| O(2)-C(16)  | 1.379(2) |
| O(2)-C(20)  | 1.423(2) |
| O(3)-C(6)   | 1.381(2) |
| O(3)-C(7)   | 1.426(2) |
| O(4)-C(8)   | 1.384(2) |
| O(4)-C(7)   | 1.446(2) |
| O(5)-C(13)  | 1.198(2) |
| O(6)-C(13)  | 1.355(2) |
| O(6)-C(1)   | 1.466(2) |
| N(1)-N(2)   | 1.237(2) |
| N(1)-C(3)   | 1.504(2) |
| N(2)-N(3)   | 1.134(2) |
| C(1)-C(2)   | 1.516(3) |
| C(1)-H(1A)  | 0.9900   |
| C(1)-H(1B)  | 0.9900   |
| C(2)-C(3)   | 1.507(2) |
| C(2)-C(12)  | 1.521(2) |
| C(2)-H(2A)  | 1.0000   |
| C(3)-C(4)   | 1.516(2) |
| C(3)-H(3A)  | 1.0000   |
| C(4)-C(10)  | 1.404(2) |
| C(4)-C(5)   | 1.405(2) |
| C(5)-C(6)   | 1.364(3) |
| C(5)-H(5A)  | 0.9500   |
| C(6)-C(8)   | 1.376(2) |
| C(7)-H(7A)  | 0.9900   |
| C(7)-H(7B)  | 0.9900   |
| C(8)-C(9)   | 1.369(2) |
| C(9)-C(10)  | 1.405(2) |
| C(9)-H(9A)  | 0.9500   |
| C(10)-C(11) | 1.533(2) |

| C(11)-C(14)      | 1.520(2)   |
|------------------|------------|
| C(11)-C(12)      | 1.525(2)   |
| С(11)-Н(11А)     | 1.0000     |
| C(12)-C(13)      | 1.509(2)   |
| C(12)-H(12A)     | 1.0000     |
| C(14)-C(19)      | 1.383(2)   |
| C(14)-C(15)      | 1.404(2)   |
| C(15)-C(16)      | 1.369(2)   |
| С(15)-Н(15А)     | 0.9500     |
| C(16)-C(17)      | 1.377(2)   |
| C(17)-C(18)      | 1.360(2)   |
| C(18)-C(19)      | 1.400(2)   |
| C(18)-H(18A)     | 0.9500     |
| С(19)-Н(19А)     | 0.9500     |
| C(20)-H(20A)     | 0.9900     |
| C(20)-H(20B)     | 0.9900     |
| C(17)-O(1)-C(20) | 105.29(13) |
| C(16)-O(2)-C(20) | 105.32(13) |
| C(6)-O(3)-C(7)   | 104.70(14) |
| C(8)-O(4)-C(7)   | 104.32(14) |
| C(13)-O(6)-C(1)  | 109.85(13) |
| N(2)-N(1)-C(3)   | 113.22(14) |
| N(3)-N(2)-N(1)   | 174.14(19) |
| O(6)-C(1)-C(2)   | 103.00(14) |
| O(6)-C(1)-H(1A)  | 111.2      |
| C(2)-C(1)-H(1A)  | 111.2      |
| O(6)-C(1)-H(1B)  | 111.2      |
| C(2)-C(1)-H(1B)  | 111.2      |
| H(1A)-C(1)-H(1B) | 109.1      |
| C(3)-C(2)-C(1)   | 120.99(15) |
| C(3)-C(2)-C(12)  | 110.90(14) |
| C(1)-C(2)-C(12)  | 100.99(14) |

| C(3)-C(2)-H(2A)  | 107.7      |
|------------------|------------|
| C(1)-C(2)-H(2A)  | 107.7      |
| C(12)-C(2)-H(2A) | 107.7      |
| N(1)-C(3)-C(2)   | 108.00(14) |
| N(1)-C(3)-C(4)   | 110.92(14) |
| C(2)-C(3)-C(4)   | 109.28(14) |
| N(1)-C(3)-H(3A)  | 109.5      |
| C(2)-C(3)-H(3A)  | 109.5      |
| C(4)-C(3)-H(3A)  | 109.5      |
| C(10)-C(4)-C(5)  | 121.07(16) |
| C(10)-C(4)-C(3)  | 122.32(15) |
| C(5)-C(4)-C(3)   | 116.61(15) |
| C(6)-C(5)-C(4)   | 117.55(16) |
| C(6)-C(5)-H(5A)  | 121.2      |
| C(4)-C(5)-H(5A)  | 121.2      |
| C(5)-C(6)-C(8)   | 121.78(16) |
| C(5)-C(6)-O(3)   | 128.18(16) |
| C(8)-C(6)-O(3)   | 109.96(16) |
| O(3)-C(7)-O(4)   | 107.44(15) |
| O(3)-C(7)-H(7A)  | 110.2      |
| O(4)-C(7)-H(7A)  | 110.2      |
| O(3)-C(7)-H(7B)  | 110.2      |
| O(4)-C(7)-H(7B)  | 110.2      |
| H(7A)-C(7)-H(7B) | 108.5      |
| C(9)-C(8)-C(6)   | 122.00(17) |
| C(9)-C(8)-O(4)   | 128.20(16) |
| C(6)-C(8)-O(4)   | 109.74(15) |
| C(8)-C(9)-C(10)  | 118.07(16) |
| C(8)-C(9)-H(9A)  | 121.0      |
| С(10)-С(9)-Н(9А) | 121.0      |
| C(4)-C(10)-C(9)  | 119.43(15) |
| C(4)-C(10)-C(11) | 123.39(15) |

| C(9)-C(10)-C(11)   | 117.16(14) |
|--------------------|------------|
| C(14)-C(11)-C(12)  | 111.59(13) |
| C(14)-C(11)-C(10)  | 113.04(13) |
| C(12)-C(11)-C(10)  | 110.04(13) |
| C(14)-C(11)-H(11A) | 107.3      |
| С(12)-С(11)-Н(11А) | 107.3      |
| С(10)-С(11)-Н(11А) | 107.3      |
| C(13)-C(12)-C(2)   | 100.88(13) |
| C(13)-C(12)-C(11)  | 118.28(14) |
| C(2)-C(12)-C(11)   | 113.32(14) |
| С(13)-С(12)-Н(12А) | 107.9      |
| C(2)-C(12)-H(12A)  | 107.9      |
| С(11)-С(12)-Н(12А) | 107.9      |
| O(5)-C(13)-O(6)    | 120.76(16) |
| O(5)-C(13)-C(12)   | 130.32(16) |
| O(6)-C(13)-C(12)   | 108.91(14) |
| C(19)-C(14)-C(15)  | 119.68(15) |
| C(19)-C(14)-C(11)  | 120.71(15) |
| C(15)-C(14)-C(11)  | 119.59(14) |
| C(16)-C(15)-C(14)  | 117.47(15) |
| С(16)-С(15)-Н(15А) | 121.3      |
| С(14)-С(15)-Н(15А) | 121.3      |
| C(15)-C(16)-C(17)  | 122.09(16) |
| C(15)-C(16)-O(2)   | 128.16(15) |
| C(17)-C(16)-O(2)   | 109.69(14) |
| C(18)-C(17)-O(1)   | 128.37(15) |
| C(18)-C(17)-C(16)  | 121.80(16) |
| O(1)-C(17)-C(16)   | 109.74(15) |
| C(17)-C(18)-C(19)  | 116.86(16) |
| С(17)-С(18)-Н(18А) | 121.6      |
| С(19)-С(18)-Н(18А) | 121.6      |
| C(14)-C(19)-C(18)  | 122.08(16) |

| С(14)-С(19)-Н(19А)  | 119.0      |
|---------------------|------------|
| С(18)-С(19)-Н(19А)  | 119.0      |
| O(2)-C(20)-O(1)     | 107.99(14) |
| O(2)-C(20)-H(20A)   | 110.1      |
| O(1)-C(20)-H(20A)   | 110.1      |
| O(2)-C(20)-H(20B)   | 110.1      |
| O(1)-C(20)-H(20B)   | 110.1      |
| H(20A)-C(20)-H(20B) | 108.4      |
|                     |            |

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A $^2$  x 10 $^3$ ) for z.

The anisotropic displacement factor exponent takes the form:

-2 pi^2 [ h^2 a\*^2 U11 + ... + 2 h k a\* b\* U12 ]

| U11  | U22   | U33   | U23   | U13    | U1    | 2      |
|------|-------|-------|-------|--------|-------|--------|
| <br> |       |       |       |        |       |        |
| O(1) | 39(1) | 27(1) | 35(1) | 10(1)  | 0(1)  | 3(1)   |
| O(2) | 27(1) | 30(1) | 58(1) | 10(1)  | -6(1) | 1(1)   |
| O(3) | 50(1) | 26(1) | 54(1) | -11(1) | 10(1) | -6(1)  |
| O(4) | 41(1) | 35(1) | 39(1) | -12(1) | 8(1)  | -4(1)  |
| O(5) | 44(1) | 29(1) | 35(1) | 0(1)   | 0(1)  | -13(1) |
| O(6) | 56(1) | 37(1) | 27(1) | 1(1)   | -5(1) | -14(1) |
| N(1) | 38(1) | 29(1) | 40(1) | 3(1)   | 10(1) | -4(1)  |
| N(2) | 36(1) | 32(1) | 26(1) | 0(1)   | 3(1)  | -4(1)  |
| N(3) | 44(1) | 39(1) | 39(1) | -1(1)  | 3(1)  | -11(1) |
| C(1) | 50(1) | 34(1) | 33(1) | 6(1)   | -2(1) | -10(1) |
| C(2) | 30(1) | 29(1) | 29(1) | 7(1)   | -1(1) | -1(1)  |
| C(3) | 30(1) | 24(1) | 35(1) | 8(1)   | 2(1)  | 2(1)   |
| C(4) | 21(1) | 21(1) | 36(1) | 2(1)   | 3(1)  | 2(1)   |
| C(5) | 28(1) | 21(1) | 46(1) | 4(1)   | 6(1)  | 0(1)   |
| C(6) | 26(1) | 19(1) | 47(1) | -6(1)  | 7(1)  | 0(1)   |

| C(7)  | 41(1) | 31(1) | 56(1) | -14(1) | 6(1)  | -3(1) |
|-------|-------|-------|-------|--------|-------|-------|
| C(8)  | 22(1) | 29(1) | 35(1) | -6(1)  | 3(1)  | 3(1)  |
| C(9)  | 22(1) | 24(1) | 34(1) | 1(1)   | 3(1)  | 0(1)  |
| C(10) | 19(1) | 20(1) | 33(1) | 1(1)   | 2(1)  | 1(1)  |
| C(11) | 21(1) | 22(1) | 28(1) | 2(1)   | 1(1)  | -2(1) |
| C(12) | 22(1) | 23(1) | 29(1) | 2(1)   | -1(1) | -3(1) |
| C(13) | 29(1) | 32(1) | 28(1) | 1(1)   | -1(1) | -2(1) |
| C(14) | 26(1) | 19(1) | 21(1) | -3(1)  | 2(1)  | 0(1)  |
| C(15) | 26(1) | 20(1) | 34(1) | 3(1)   | 3(1)  | -4(1) |
| C(16) | 24(1) | 24(1) | 28(1) | -1(1)  | 1(1)  | 1(1)  |
| C(17) | 36(1) | 19(1) | 20(1) | 2(1)   | 4(1)  | 3(1)  |
| C(18) | 36(1) | 22(1) | 31(1) | 3(1)   | 6(1)  | -6(1) |
| C(19) | 26(1) | 25(1) | 26(1) | -1(1)  | 3(1)  | -4(1) |
| C(20) | 38(1) | 28(1) | 33(1) | 5(1)   | 0(1)  | 7(1)  |

Table 5. Hydrogen coordinates ( x 10^4) and isotropic displacement  $\,$  parameters (A^2 x 10^3) for z.

|        | X    | y z   | U(eq) |    |
|--------|------|-------|-------|----|
| H(1A)  | 5350 | 8837  | -3190 | 48 |
| H(1B)  | 7080 | 8380  | -2955 | 48 |
| H(2A)  | 5053 | 9092  | -1879 | 36 |
| H(3A)  | 6671 | 10620 | -2005 | 36 |
| H(5A)  | 7609 | 11851 | -887  | 38 |
| H(7A)  | 7672 | 12668 | 1840  | 51 |
| H(7B)  | 9277 | 12112 | 1711  | 51 |
| H(9A)  | 6779 | 8899  | 905   | 32 |
| H(11A) | 5323 | 7930  | -532  | 29 |
| H(12A) | 7749 | 7746  | -1455 | 30 |
| H(15A) | 9421 | 7852  | 53    | 32 |
| H(18A) | 6762 | 4629  | 814   | 35 |

| H(19A) | 5451  | 6113 | 51   | 31 |
|--------|-------|------|------|----|
| H(20A) | 11886 | 5201 | 1888 | 40 |
| H(20B) | 11884 | 4682 | 1007 | 40 |

Table 6. Torsion angles [deg] for z.

| C(3)-N(1)-N(2)-N(3)  | -179(100)   |
|----------------------|-------------|
| C(13)-O(6)-C(1)-C(2) | -22.0(2)    |
| O(6)-C(1)-C(2)-C(3)  | 159.99(15)  |
| O(6)-C(1)-C(2)-C(12) | 37.27(18)   |
| N(2)-N(1)-C(3)-C(2)  | 161.48(15)  |
| N(2)-N(1)-C(3)-C(4)  | -78.79(18)  |
| C(1)-C(2)-C(3)-N(1)  | -50.2(2)    |
| C(12)-C(2)-C(3)-N(1) | 67.67(18)   |
| C(1)-C(2)-C(3)-C(4)  | -170.96(16) |
| C(12)-C(2)-C(3)-C(4) | -53.09(19)  |
| N(1)-C(3)-C(4)-C(10) | -94.51(18)  |
| C(2)-C(3)-C(4)-C(10) | 24.5(2)     |
| N(1)-C(3)-C(4)-C(5)  | 85.16(18)   |
| C(2)-C(3)-C(4)-C(5)  | -155.88(15) |
| C(10)-C(4)-C(5)-C(6) | 3.2(3)      |
| C(3)-C(4)-C(5)-C(6)  | -176.49(15) |
| C(4)-C(5)-C(6)-C(8)  | -2.1(3)     |
| C(4)-C(5)-C(6)-O(3)  | -178.45(16) |
| C(7)-O(3)-C(6)-C(5)  | -170.22(18) |
| C(7)-O(3)-C(6)-C(8)  | 13.04(19)   |
| C(6)-O(3)-C(7)-O(4)  | -19.42(18)  |
| C(8)-O(4)-C(7)-O(3)  | 18.54(18)   |
| C(5)-C(6)-C(8)-C(9)  | -0.9(3)     |
| O(3)-C(6)-C(8)-C(9)  | 176.07(16)  |
| C(5)-C(6)-C(8)-O(4)  | -178.46(16) |
| O(3)-C(6)-C(8)-O(4)  | -1.5(2)     |

| C(7)-O(4)-C(8)-C(9)     | 172.07(18)  |
|-------------------------|-------------|
| C(7)-O(4)-C(8)-C(6)     | -10.58(19)  |
| C(6)-C(8)-C(9)-C(10)    | 2.7(3)      |
| O(4)-C(8)-C(9)-C(10)    | 179.78(16)  |
| C(5)-C(4)-C(10)-C(9)    | -1.4(2)     |
| C(3)-C(4)-C(10)-C(9)    | 178.24(15)  |
| C(5)-C(4)-C(10)-C(11)   | 176.73(15)  |
| C(3)-C(4)-C(10)-C(11)   | -3.6(3)     |
| C(8)-C(9)-C(10)-C(4)    | -1.5(2)     |
| C(8)-C(9)-C(10)-C(11)   | -179.78(15) |
| C(4)-C(10)-C(11)-C(14)  | 136.57(16)  |
| C(9)-C(10)-C(11)-C(14)  | -45.3(2)    |
| C(4)-C(10)-C(11)-C(12)  | 11.1(2)     |
| C(9)-C(10)-C(11)-C(12)  | -170.77(14) |
| C(3)-C(2)-C(12)-C(13)   | -167.67(14) |
| C(1)-C(2)-C(12)-C(13)   | -38.21(17)  |
| C(3)-C(2)-C(12)-C(11)   | 64.87(19)   |
| C(1)-C(2)-C(12)-C(11)   | -165.67(14) |
| C(14)-C(11)-C(12)-C(13) | 75.50(19)   |
| C(10)-C(11)-C(12)-C(13) | -158.17(14) |
| C(14)-C(11)-C(12)-C(2)  | -166.77(14) |
| C(10)-C(11)-C(12)-C(2)  | -40.44(19)  |
| C(1)-O(6)-C(13)-O(5)    | 175.80(17)  |
| C(1)-O(6)-C(13)-C(12)   | -3.1(2)     |
| C(2)-C(12)-C(13)-O(5)   | -152.1(2)   |
| C(11)-C(12)-C(13)-O(5)  | -27.9(3)    |
| C(2)-C(12)-C(13)-O(6)   | 26.68(18)   |
| C(11)-C(12)-C(13)-O(6)  | 150.81(15)  |
| C(12)-C(11)-C(14)-C(19) | -99.29(17)  |
| C(10)-C(11)-C(14)-C(19) | 136.04(15)  |
| C(12)-C(11)-C(14)-C(15) | 78.76(18)   |
| C(10)-C(11)-C(14)-C(15) | -45.9(2)    |

| C(19)-C(14)-C(15)-C(16) | 0.1(2)      |
|-------------------------|-------------|
| C(11)-C(14)-C(15)-C(16) | -177.96(15) |
| C(14)-C(15)-C(16)-C(17) | 1.3(3)      |
| C(14)-C(15)-C(16)-O(2)  | -175.57(16) |
| C(20)-O(2)-C(16)-C(15)  | -173.59(18) |
| C(20)-O(2)-C(16)-C(17)  | 9.26(18)    |
| C(20)-O(1)-C(17)-C(18)  | 175.84(17)  |
| C(20)-O(1)-C(17)-C(16)  | -7.72(18)   |
| C(15)-C(16)-C(17)-C(18) | -1.6(3)     |
| O(2)-C(16)-C(17)-C(18)  | 175.75(15)  |
| C(15)-C(16)-C(17)-O(1)  | -178.32(15) |
| O(2)-C(16)-C(17)-O(1)   | -0.96(19)   |
| O(1)-C(17)-C(18)-C(19)  | 176.53(16)  |
| C(16)-C(17)-C(18)-C(19) | 0.5(2)      |
| C(15)-C(14)-C(19)-C(18) | -1.2(2)     |
| C(11)-C(14)-C(19)-C(18) | 176.83(15)  |
| C(17)-C(18)-C(19)-C(14) | 0.9(2)      |
| C(16)-O(2)-C(20)-O(1)   | -13.95(18)  |
| C(17)-O(1)-C(20)-O(2)   | 13.39(18)   |

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for z [A and deg.].

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)

### 5. References.

1、 R. B. Kothapalli, R. Niddana, R. Balamurugan, Org. Lett., 2014, 16, 1278-1281.