Cyclopropenation of Internal Alkynylsilanes and Diazoacetates Catalyzed by Copper(I) N-Heterocyclic Carbene Complexes

Thomas J. Thomas, Benjamin A. Merritt, Betsegaw E. Lemma, Adina M. McKoy, Tri Nguyen, Andrew K. Swenson, Jeffrey L. Mills, Michael G. Coleman*

School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY 14623

*To whom correspondence should be addressed

Table of Contents

1.	General Methods: Chemicals and Instrumentation	S1
2.	Diazoacetate Synthesis	S2
3.	Synthetic Procedure and Characterization of Internal Alkynylsilanes	S6
4.	General Procedure for Cu(I)-Catalyzed Cycloaddition	S8
5.	Compound Characterization for Cyclopropenes	S9
6.	Complete Characterization for Furan 38h	S20
7.	¹ H and ¹³ C NMR Spectral Data	S22
7.	X-ray Crystallographic Data for 15a	S68

1. General Methods: Chemicals and Instrumentation

All organic chemicals and transition metal catalysts were ordered from Sigma-Aldrich. They were used as received and stored on benchtop in a desiccator over CaSO₄ when they were not in use. Bulk chemicals were obtained from the College of Science Chemistry Stockroom at the Rochester Institute of Technology. Diethyl ether and hexanes were obtained from Fisher Scientific (20 L) for column chromatography. All reactions were conducted under dry argon gas with anhydrous solvents from Sigma-Aldrich (Sure/SealTM). Ethyl diazoacetate was purchased from Sigma-Aldrich as a 15% solution in toluene and degassed with argon for 15 minutes. Infrared spectroscopic analyses were performed neat on a Shimadzu IR Prestige-21 Fourier Transform Infrared Spectrometer. High resolution mass spectral (HRMS) samples (<1mg) were dissolved in dichloromethane and sent for analysis on the Thermo Finnigan MAT 95XL Mass Spectrometer at State University of New York at Buffalo's Mass Spectrometry Facility. Nuclear Magnetic Resonance Spectroscopic data for ¹H and ¹³C NMR spectra was collected on RIT's Bruker Avance DRX-500 MHz NMR spectrometer. NMR chemical shifts are reported in ppm and referenced to the residual solvent peak CDCl₃ (δ = 7.26 ppm, ¹H; δ = 77.00 ppm ¹³C) as an internal standard or tetramethylsilane (δ = 0.00 ppm, ¹H) as an external standard. Chemical shifts are reported in parts per million (ppm), multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br (broad). Coupling constants, J, are reported in Hertz. All samples were dissolved in CDCl₃ with a TMS internal standard prior to analysis. X-ray crystallography samples were sent for analysis on a Bruker-AXS SMART Platform diffractometer equipped with an APEX II CCD detector at the X-ray Crystallographic Facility, B51 Hutchison Hall, Department of Chemistry, University of Rochester.

2. Diazoacetate Synthesis

Methyl 2-diazo-2-phenylacetate (**2a**) To a solution of *p*-acetamidobenzenesulfonyl azide (19.5 g, 81.2 mmol), methyl phenylacetate (10 mL, 62.5 mmol) and ACN (200 mL) was added DBU (12.1 mL, 80.9 mmol) dropwise over 1 hour, then stirred at room temperature overnight. The crude was diluted with Et₂O (200 mL) and washed with saturated NH₄Cl (3 x 100 mL), dried with MgSO₄, filtered, and reduced *in vacuo* on a rotary evaporator. The crude residue was purified by column chromatography (SiO₂, 1/5: Et₂O/hexanes) to afford **2a** (7.06 g, 40.1 mmol, 64% yield) as a red oil. ¹H NMR (300 MHz, CDCl₃) δ 3.87 (s, 3H), 7.19 (t, 1H), 7.39 (t, 2H), 7.49 (d, *J*= 7.5 Hz, 2H). Compound **2a** is a known compound and the analytical data is consistent with the literature.¹

Dimethyl 2-diazomalonate (26c) To a solution of *p*-acetamidobenzenesulfonyl azide (10.0 g, 41.6 mmol), methyl malonate (5.00 g, 37.8 mmol), and ACN (95.0 mL) was added Et₃N (5.80 mL, 41.6 mmol) dropwise via syringe. The reaction mixture was stirred at 0°C and allowed to stir to room temperature overnight. The crude was then reduced *in vacuo* on a rotary evaporator and dissolved in 100mL of 50% Et₂O/hexanes. The mixture was then filtered through a plug of celite and washed with 50% Et₂O/hexanes (3 x 100 mL). Subsequently, the solvent removed *in vacuo* on a rotary evaporator and purified by column chromatography (SiO₂, 2/3: Et₂O/hexanes) to afford **26c** (2.59 g, 16.4 mmol, 39% yield) as a yellow oil. ¹H NMR (300 Hz,

¹ Zhao, W.J.; Yan, M.; Huang, D.; Ji, S-J. *Tetrahedron*, **2005**, *61*, 5585-5593.

CDCl₃) δ 3.85 (s, 6H). Compound **26c** is a known compound and the analytical data is consistent with the literature.²

methyl 2-(4-bromophenyl)-2-diazoacetate (27d) To a solution of *p*-acetamidobenzenesulfonyl azide (11.75 g, 48.84 mmol) and methyl 4-bromophenylacetate (10.17 g, 44.4 mmol) in ACN (100 mL) at 0°C, was added DBU (7.44 g, 48.84 mmol) dropwise over 1 hour. The reaction mixture was allowed to stir at room temperature for 16 hrs. The crude was diluted with Et₂O (200 mL) and washed with saturated NH₄Cl (3 x 100 mL), dried with MgSO₄, filtered, and reduced *in vacuo* on a rotary evaporator. The crude residue was purified by column chromatography (SiO₂, 1/5: Et₂O/hexanes) to afford **27d** (9.6 g, 37.6 mmol, 85% yield) as an orange solid. ¹H NMR (300 MHz, CDCl₃): δ 3.87 (s, 3H), 7.35 (d, *J* = 8.5 Hz, 2H), 7.49 (d, *J* = 8.7 Hz, 2H). Compound **27d** is a known compound and the analytical data is consistent with the literature.³

methyl 2-diazo-2-(4-(trifluoromethyl)phenyl)acetate (28e) In a flamed dried and argon purged round bottom (100 mL) charged with methanol was added SOCl₂ (1.533 g, 12.89 mmol) dropwise at 0°C. After 15 minutes, 4-(Trifluoromethyl)phenylacetic acid (2.63 g, 12.89 mmol) was added and allowed to stir to room temperature for 16 hrs. The reaction mixture was diluted with an aqueous saturated solution of NaHCO₃ (100 mL) and washed with Et₂O (3 x 50 mL). The organic layers were collected, dried over MgSO₄, and concentrated to dryness with a rotary evaporator. ¹H NMR (300 MHz, CDCl₃) indicated a

² Ramachary, D.; Narayana, V.; Ramakumar, K. Tetrahedron Lett. 2008, 49, 2704-2709.

³ Yu, W.Y.; Tsoi, Y.T.; Zhou, Z.; Chan, A.S.C. Org. Lett. 2009, 11, 469-472.

clean conversion and was used as is. To a solution of *p*-acetamidobenzenesulfonyl azide (4.65 g, 19.3 mmol), methyl phenylacetate (2.8 g, 12.89 mmol) and ACN (25 mL) was added DBU (2.94 g, 19.3 mmol) dropwise over 1 hour, then stirred at room temperature overnight. The crude was diluted with Et₂O (100 mL) and washed with saturated NH₄Cl (3 x 100 mL), dried with MgSO₄, filtered, and reduced *in vacuo* on a rotary evaporator. Purified by column chromatography (SiO₂, 1/5: Et₂O/hexanes) to afford **28e** (1.982 g, 8.12 mmol, 63% yield) as a yellow solid. ¹H NMR (300 MHz, CDCl₃): δ 3.89 (s, 3H), 7.62 (s, 4H). Compound **28e** is a known compound and the analytical data is consistent with the literature.⁴

methyl 2-(4-(tert-butyl)phenyl)-2-diazoacetate (29f) To a solution of *p*-acetamidobenzenesulfonyl azide (34.98 g, 145.4 mmol), methyl 4-(*tert*-butyl)phenylacetate (25 g, 121.2 mmol) and ACN (330 mL) was added DBU (22.14 g, 145.4 mmol) dropwise over 1 hour, then stirred at room temperature overnight. The crude was diluted with Et₂O (500 mL) and washed with saturated NH₄Cl (3 x 200 mL), dried with MgSO₄, filtered, and reduced *in vacuo* on a rotary evaporator. The crude residue was purified by column chromatography (SiO₂, 1/5: Et₂O/hexanes) to afford **29f** (14.35 g, 61.81 mmol, 51% yield) as an orange solid. IR (neat) 1705, 2081 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.41 (s, 4H), 3.86 (s, 3H), 1.32 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz) δ = 31.25, 34.45, 51.95, 122.16, 124.04, 125.96, 149.11, 165.87. HRMS (ESI) *m*/*z* calcd for C₁₇H₂₆Si, 232.12, found 232.12112 [M⁺].

⁴ Rubina, M.; Woodward, E.W.; Rubin, M. Org. Lett. 2007, 9, 5501-5504.

methyl 2-diazo-2-(naphthalen-2-yl)acetate (30g) In a flamed dried and argon purged round bottom (250 mL) charged with acetone (100 mL) was added 2-naphthylacetic acid (5.46 g, 29.35 mmol) and CsCO₃ (6.50 g, 19.95 mmol). A reflux condenser and methyl iodide was added to the reaction vessel and it was allowed to stir at 60°C for 16 hrs. The reaction mixture was concentrated under reduced vacuum with a rotary evaporator, diluted with Et₂O (100 mL), washed with a saturated solution of NaHCO₃ (2 X 100 mL), dried over MgSO₄, filtered, and concentrated to dryness under reduced vacuum with a rotary evaporator. ¹H NMR (300 MHz, CDCl₃) indicated a clean conversion and was used as is. To a solution of *p*-acetamidobenzenesulfonyl azide (9.64 g, 40.0 mmol), methyl 2-napthylacetate (5.35 g, 26.72 mmol) and ACN (50 mL) was added DBU (6.10 g, 40.0 mmol) dropwise over 1 hour, then stirred at room temperature overnight. The crude was diluted with Et₂O (100 mL) and washed with saturated NH₄Cl (2 x 100 mL), dried with MgSO₄, filtered, and reduced *in vacuo* on a rotary evaporator. The crude residue was purified by column chromatography (SiO₂, 1/5: Et₂O/hexanes) to afford **30g** (3.57 g, 15.7 mmol, 59% yield) as an orange solid. ¹H NMR (300 MHz, CDCl₃): δ 3.91 (s, 3H), 7.55 - 7.44 (m, 3H), 7.86 - 7.80 (m, 3H), 8.02 (s, 1H). Compound **30g** is a known compound and the analytical data is consistent with the literature.⁵

methyl 2-diazo-2-(4-methoxyphenyl)acetate (31h) In an argon purged round bottom (25 mL) charged with water (3 mL) was added NaOH (300 mg, 7.5 mmol) and cooled to 0°C. After 15 minutes, 4-hydroxyphenylacetic acid (500 mg, 3.28 mmol) was added while stirring and Me₂SO₄ (946 mg 7.5 mmol) was added via syringe pump at 1 mL/hr. The ice bath was removed and allowed to stir to room temperature

⁵ Chan, W.W.; Yeung, S.H.; Zhou, Z.; Chan, A.S.C.; Yu, W.Y. Org. Lett. 2010, 12, 604-607.

for 16 hrs. The reaction mixture was diluted with an aqueous saturated solution of NaHCO₃ (10 mL) and washed with Et₂O (3 x 5 mL). The organic layers were collected, dried over MgSO₄, and concentrated to dryness with a rotary evaporator. ¹H NMR (300 MHz, CDCl₃) indicated a clean conversion and was used as is. To a solution of *p*-acetamidobenzenesulfonyl azide (788 mg, 3.28 mmol), methyl (4-methoxyphenyl)acetate (591 mg, 3.28 mmol) and ACN (15 mL) was added DBU (500 mg, 3.28 mmol) dropwise over 1 hour, then stirred at room temperature overnight. The crude was diluted with Et₂O (25 mL) and washed with saturated NH₄Cl (3 x 10 mL), dried with MgSO₄, filtered, and reduced *in vacuo* on a rotary evaporator. The crude residue was purified by column chromatography (SiO₂, 1/5: Et₂O/hexanes) to afford **31h** (350 mg, 1.70 mmol, 52% yield) as a red solid. ¹H NMR (300 MHz, CDCl₃): δ H 3.80 (s, 3H), 3.84 (s, 3H), 6.94 (d, *J* = 8.0 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H). Compound **31h** is a known compound and the analytical data is consistent with the literature.⁶

3. Synthetic Procedure and Characterization of Internal Alkynylsilanes

A 1M solution of phenylacetylene (1.00 eq) in THF was cooled to -78°C and a 1.0 M solution of *n*butyllithium (1.1 eq) in hexanes was added dropwise over 1 hr. After stirring for 30 minutes, an appropriate 1.0 M solution of silyl chloride (1.2 eq) in THF was added dropwise via cannula. The reaction mixture was then allowed to warm to room temperature overnight. A cold saturated solution of NH₄Cl in water was carefully added and the resultant solution was washed with diethyl ether (3x), dried over MgSO₄, filtered, and concentrated *in vacuo*. The crude oil was fractionally distilled under reduced pressure to afford the product.

⁶ Chan, W.W.; Yeung, S.H.; Zhou, Z.; Chan, A.S.C.; Yu, W.Y. Org. Lett. 2010, 12, 604-607.

tert-butyldimethyl(phenylethynyl)silane (6) (2.22 g, 10.3 mmol, 89% yield). ¹H NMR (500 MHz, CDCl₃) $\delta = 0.32$ (s, 6H); 1.26 (s, 9H); 7.44 -1.52 (m, 6H); 7.25 – 7.49 (m, 3H). Compound **6** is a known compound and the analytical data is consistent with the literature.⁷

(**phenylethynyl**)-**tripropylsilane** (**7**) (5.22 g, 20.19 mmol, 78% yield). IR (neat) 2149 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.64 - 0.70 (m, 6H); 1.01 (t, 9H); 1.44-1.52 (m, 6H); 7.25 - 7.30 (m, 3H); 7.44 - 7.47 (m, 2H). ¹³C NMR (CDCl₃, 125 MHz) δ = 16.12, 17.55, 18.21, 92.39, 106.32, 123.43, 128.15, 128.31, 131.98. HRMS (ESI) *m/z* calcd for C₁₇H₂₆Si, 258.18, found 258.179.

triisopropylphenylethynylsilane (8) (5.27 g, 20.39 mmol, 79% yield) as an oil. ¹H NMR (500 MHz, CDCl₃) δ 1.13 (s, 21H), 7.26 – 7.30 (m, 3H), 7.46-7.48 (m, 2H). Compound **8** is a known compound and the analytical data is consistent with the literature.⁸

⁷ Fitzmaurice, N.J.; Jackson, W.R.; Perlmutter, P.; J. Organomet. Chem., **1985**, 285, 375-381.

⁸ Komaromi, A.; Novak, Z. Chem. Commun. 2008, 40, 4968-70.

tert-butyldiphenyl(phenylethynyl)silane (9) (2.019 g, 6.18 mmol, 85% yield) as an oil. ¹H NMR (500 MHz, CDCl₃) δ 1.14 (s, 9H), 7.33 – 7.42 (m, 9H), 7.58 – 7.61 (m, 2H), 7.85 – 7.87 (m, 4H). Compound 9 is a known compound and the analytical data is consistent with the literature.⁹

triphenyl(phenylethynyl)silane (10) (3.47 g, 9.62 mmol, 94% yield) as an oil. ¹H NMR (500 MHz, CDCl₃) δ 7.23–7.72 (m, 20H). ¹³C NMR (CDCl₃, 125 MHz) δ = 89.03, 109.57, 122.75, 127.98, 128.27, 129.03, 129.92, 132.25, 133.58, 135.60. Compound **10** is a known compound and the analytical data is consistent with the literature.¹⁰

General Procedure for Cu(I)-Catalyzed Cycloaddition

A flame-dried round bottom (50 mL) equipped with a reflux condenser was charged with a solution of alkynylsilane (1.00 mmol, 1 eq) in anhydrous α , α , α -trifluorotoluene (CF₃Ph, 2 mL). The appropriate transition-metal salt (0.05 mmol, 0.05 eq) was added and allow stir 10 minutes at an oil bath temperature ranging from 100 - 110°C. The appropriate diazoacetate (3.00 mmol, 3 eq) was dissolved in anhydrous CF₃Ph (20 mL) and syringe pumped over a 24 hour period at a rate of 1.00 mL/min. The reaction mixture

⁹ Yamaguchi, K.; Wang, Y.; Oishi, T.; Kuroda, Y.; Mizuno, N. Angew. Chem., Int. Ed., 2013, 52, 5627-30.

¹⁰ Selina, A.A.; Karlov, S.S.; Gauchenova, E.V.; Churakov, A.V.; Kuz'mina, L.G.; Howard, J.A.K.; Lorberth, J.; Zaitseva, G.S. *Heteroat. Chem.* **2004**, *15*, 43-56.

was then cooled to room temperature and the concentrated under reduced pressure to afford a crude oil. It was dissolved in toluene (10 mL) and dry mounted on silica gel prior to chromatography.

methyl 1,2-diphenyl-3-(trimethylsilyl)cycloprop-2-ene-1-carboxylate (5a) Purified by column chromatography (SiO₂, 1/10 - 1/5 : Et₂O/hexanes) to afford 5a as an oil (272 mg, 0.84 mmol, 84% yield). $R_f = 0.45$; 1/5; Et₂O/hexanes. IR (neat) 1715 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.28 (s, 9H), 3.67 (s, 3H), 7.14 - 7.19 (m, 1H), 7.22-7.25 (m, 2H), 7.34 - 7.43 (m, 5H), 7.58 - 7.61 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ -1.04, 34.63, 51.78, 113.71, 125.91, 126.07, 127.11, 127.84, 128.04, 129.70, 129.78, 141.93, 175.35. HRMS (ESI) *m/z* calcd for C₂₀H₂₂O₂Si, 322.14, found 322.1384 [M]⁺.

methyl 2-(tert-butyldimethylsilyl)-1,3-diphenylcycloprop-2-ene-1-carboxylate (11a) Purified by column chromatography (SiO₂, 1/10 : Et₂O/hexanes) to afford 11a as an oil (295 mg, 0.81 mmol, 81% yield). R_f = 0.44; 1/5; Et₂O/hexanes. IR (neat) 1717 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.21 (d, 6H), 0.91 (s, 9H), 3.67 (s, 3H), 7.12 - 7.16 (m, 1H), 7.20 - 7.24 (m, 2H), 7.33 - 7.44 (m, 5H), 7.62 - 7.64 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ -5.30, -5.16, 17.12, 26.20, 34.36, 51.67, 113.52, 125.82, 126.0, 127.23, 127.77, 128.03, 128.93, 129.71, 129.78, 142.04, 175.30. HRMS (ESI) *m/z* calcd for C₂₃H₂₈O₂Si, 364.19, found 364.1860 [M]⁺.

methyl 1,2-diphenyl-3-(triisopropylsilyl)cycloprop-2-ene-1-carboxylate (12a) Purified by column chromatography (SiO₂, 1/50; Et₂O/hexanes) to afford **12a** as an oil (34 mg, 0.084 mmol, 8% yield). $R_f = 0.27$; 1/5; Et₂O/hexanes. IR (neat) 1717 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.71 – 0.78 (m, 6H), .9102 (t, 9H), 1.26 – 1.38 (m, 6H), 3.66 (s, 3H), 7.12 – 7.16 (m, 1H), 7.20 – 7.26 (m, 2H), 7.33 – 7.45 (m, 5H), 7.58 – 7.60 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 15.44, 17.26, 18.31, 34.32, 51.71, 113.0, 125.81, 126.04, 127.33, 127.77, 128.03, 128.95, 129.64, 129.71, 142.09, 175.43. HRMS (ESI) *m/z* calcd for C₂₆H₃₄O₂Si, 406.23, found 406.2329 [M]⁺.

methyl 1-phenyl-2-(o-tolyl)-3-(trimethylsilyl)cycloprop-2-ene-1-carboxylate (**13a**) Purified by column chromatography (SiO₂, 1/20 : Et₂O/hexanes) to afford **13a** as an oil (238 mg, 0.71 mmol, 71% yield). $R_f = 0.46$; 1/5; Et₂O/hexanes. IR (neat) 1715 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.27 (s, 9H), 2.54 (s, 3H), 3.69 (s, 3H), 7.13 – 7.16 (m, 1H), 7.21 – 7.31 (m, 5H), 7.33 – 7.36 (m, 2H), 7.47 – 7.48 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ –0.60, 20.57, 33.22, 51.76, 114.17, 122.58, 125.70, 126.00, 126.21, 127.78, 127.94, 129.68, 130.36, 131.17, 139.10, 142.20, 175.57. HRMS (ESI) *m/z* calcd for C₂₁H₂₄O₂Si, 336.15, found 336.1540 [M]⁺.

methyl 2-(4-fluorophenyl)-1-phenyl-3-(trimethylsilyl)cycloprop-2-ene-1-carboxylate (14a) Purified by column chromatography (SiO₂, 1/100 – 1/20 : Et₂O/hexanes) to afford 14a as a solid m.p. (°C) 64-72 (119 mg, 0.35 mmol, 35% yield). R_f = 0.54; 1/5; Et₂O/hexanes. IR (neat) 1717 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.28 (s, 9H), 3.68 (s, 3H), 7.09 – 7.18 (m, 3H), 7.23 – 7.26 (m, 2H), 7.31 – 7.34 (m, 2H), 7.55 – 7.59 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ -1.02, 34.70, 51.85, 113.07, 116.24 (d, $J_{C-F} = 21.3$ Hz), 123.46 (d, $J_{C-F} = 2.4$ Hz), 125.14, 126.01, 127.91, 127.94, 131.71 (d, $J_{C-F} = 8.8$ Hz), 141.72, 163.50 (d, $J_{C-F} = 250.0$ Hz), 175.23. HRMS (ESI) *m/z* calcd for C₂₀H₂₁FO₂Si, 340.13, found 340.1289 [M]⁺.

methyl 2-(4-chlorophenyl)-1-phenyl-3-(trimethylsilyl)cycloprop-2-ene-1-carboxylate (15a) Purified by column chromatography (SiO₂, 1/100 – 1/10 : Et₂O/hexanes) to afford **15a** as a solid m.p. (°C) 95 - 100 (160 mg, 0.45 mmol, 45% yield). R_f = 0.40; 1/5; Et₂O/hexanes. IR (neat) 1715 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.28 (s, 9H), 3.67 (s, 3H), 7.14 – 7.18 (m, 1H), 7.22 – 7.26 (m, 2H), 7.30 – 7.33 (m, 2H), 7.38 – 7.40 (m, 2H), 7.50 – 7.53 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ -1.07, 34.68, 51.85, 114.67, 125.09, 125.68, 126.05, 127.92, 129.23, 130.89, 135.67, 141.58, 175.09. HRMS (ESI) *m/z* calcd for C₂₀H₂₁ClO₂Si, 356.10, found 356.0991 [M]⁺.

methyl 2-(4-bromophenyl)-1-phenyl-3-(trimethylsilyl)cycloprop-2-ene-1-carboxylate (16a) Purified by column chromatography (SiO₂, 1/100 – 1/10 : Et₂O/hexanes) to afford 16a as an oil (99.1 mg, 0.25 mmol, 25% yield). R_f = 0.48; 1/5; Et₂O/hexanes. IR (neat) 1721 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.28 (s, 9H), 3.67 (s, 3H), 7.14 – 7.18 (m, 1H), 7.22 – 7.27 (m, 2H), 7.30 – 7.33 (m, 2H), 7.43 – 7.46 (m, 2H), 7.54 – 7.57 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ -7.30, 28.45, 45.65, 108.78, 117.78, 118.95, 119.85, 119.91, 121.71, 124.88, 125.98, 135.33, 168.85. HRMS (ESI) *m/z* calcd for C₂₀H₂₁BrO₂Si, 400.05, found 400.0492 [M]⁺.

methyl 2-(4-iodophenyl)-1-phenyl-3-(trimethylsilyl)cycloprop-2-ene-1-carboxylate (17a) Purified by column chromatography (SiO₂,1/100 – 1/10: Et₂O/hexanes) to afford **17a** as a solid m.p. (°C) 113 - 115 (17.2 mg, 0.038 mmol, 3.8% yield). R_f = 0.48; 1/5; Et₂O/hexanes. IR (neat) 1717 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.27 (s, 9H), 3.67 (s, 3H), 7.16 – 7.18 (m, 1H), 7.22 – 7.25 (m, 2H), 7.29 – 7.32 (m, 4H) 7.75 – 7.77 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ -1.09, 34.63, 51.87, 95.88, 115.34, 125.29, 126.07, 126.66, 127.93, 131.16, 138.16, 141.55, 175.06. HRMS (ESI) *m/z* calcd for C₂₀H₂₁IO₂Si, 448.04, found 448.0353 [M]⁺.

methyl 1-phenyl-2-(4-(trifluoromethyl)phenyl)-3-(trimethylsilyl)cycloprop-2-ene-1-carboxylate (18a) Purified by column chromatography (SiO₂, 1/100 – 1/5 : Et₂O/hexanes) to afford 18a as an oil (191 mg, 0.49 mmol, 49% yield). R_f = 0.44; 1/5; Et₂O/hexanes. IR (neat) 1720 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.30 (s, 9H), 3.69 (s, 3H), 7.16 – 7.20 (m, 1H), 7.21 – 7.27 (m, 2H), 7.29 – 7.33 (m, 2H), 7.64 – 7.73 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ -1.12, 34.87, 51.94. 117.62, 125.13, 125.89 (d, J_{C-F} = 32.6 Hz), 126.10 (q, J_{C-F} = 271.3), 126.21, 127.91, 128.01, 128.10, 129.82, 130.64 (d, J_{C-F} = 32.6), 141.30, 174.87. HRMS (ESI) *m*/*z* calcd for C₂₁H₂₁F₃O₂Si, 390.13, found 390.1261 [M]⁺.

methyl 2-(naphthalen-2-yl)-1-phenyl-3-(trimethylsilyl)cycloprop-2-ene-1-carboxylate (19a) Purified by column chromatography (SiO₂, 1/50 – 1/5 : Et₂O/hexanes) to afford **19a** as an oil (216 mg, 0.579 mmol, 58% yield). R_f = 0.24; 1/5; Et₂O/hexanes. IR (neat) 1715 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.35 (s, 9H), 3.69 (s, 3H), 7.14 – 7.16 (m, 1H), 7.21 – 7.25 (m, 1H), 7.40 – 7.42 (m, 2H), 7.48 – 7.51 (m, 2H), 7.55 – 7.64 (m, 2H), 7.68 – 7.70 (m, 1H), 7.88 – 7.92 (m, 2H), 8.48 – 8.50 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ -0.71, 30.93, 32.72, 51.82, 115.30, 121.89, 123.53, 124.77, 125.68, 125.80, 126.39, 126.88, 127.83, 128.02, 128.64, 130.08, 130.43, 131.90, 133.65, 141.88, 175.47. HRMS (ESI) *m/z* calcd for C₂₄H₂₄O₂Si, 372.15, found 372.1618 [M]⁺.

methyl 2-(3-methoxyphenyl)-1-phenyl-3-(trimethylsilyl)cycloprop-2-ene-1-carboxylate (20a) Purified by column chromatography (SiO₂, 1/20 : Et₂O/hexanes) to afford **20a** as an oil (201 mg, 0.57 mmol, 57% yield). R_f = 0.36; 1/5; Et₂O/hexanes. IR (neat) 1713 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.28 (s, 9H), 3.67 (s, 3H), 3.82 (s, 3H), 6.92 – 6.92 (m, 1H), 7.11 – 7.25 (m, 5H), 7.32 – 7.36 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ -1.04, 34.83, 51.82, 55.31, 114.30, 114.69, 115.69, 122.32, 125.94, 126.12, 127.87, 128.07, 128.35, 129.94, 141.91, 159.83, 175.31. HRMS (ESI) *m*/*z* calcd for C₂₁H₂₄O₃Si, 352.15, found 352.1491 [M]⁺.

methyl 1-phenyl-2-(thiophen-2-yl)-3-(trimethylsilyl)cycloprop-2-ene-1-carboxylate (21a) Purified by column chromatography (SiO₂, 1/100 – 1/20 : Et₂O/hexanes) to afford **21a** as an oil (161 mg, 0.49 mmol, 49% yield). $R_f = 0.45$; 1/5; Et₂O/hexanes. IR (neat) 1713 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.27 (s, 9H), 3.67 (s, 3H), 7.15 – 7.18 (m, 1H), 7.23 – 7.26 (m, 2H), 7.30 – 7.38 (m, 4H), 7.55 – 7.56 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ -1.07, 34.64, 51.84, 110.94, 121.01, 126.00, 126.70, 127.66, 127.90, 128.08, 128.20, 128.67, 141.92, 175.30. HRMS (ESI) *m/z* calcd for C₁₈H₂₀O₂SSi, 328.10, found 328.1026 [M]⁺.

methyl 1-phenyl-2-(thiophen-3-yl)-3-(trimethylsilyl)cycloprop-2-ene-1-carboxylate (22a) Purified by column chromatography (SiO₂, 1/50 – 1/20 : Et₂O/hexanes) to afford **22a** as a solid m.p. (°C) 84 - 87 (151 mg, 0.46 mmol, 46% yield). R_f = 0.40; 1/5; Et₂O/hexanes. IR (neat) 1714 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.27 (s, 9H), 3.67 (s, 3H), 7.15 – 7.18 (m, 1H), 7.23 – 7.26 (m, 2H), 7.30 – 7.38 (m, 4H), 7.55 – 7.56 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ -1.07, 34.64, 51.83, 110.94, 121.01, 125.99, 126.70, 127.65, 127.90, 128.08, 128.19, 128.67, 141.92, 175.30. HRMS (ESI) *m/z* calcd for C₁₈H₂₀O₂Si, 328.10, found 328.0855 [M]⁺.

methyl 2-methyl-1-phenyl-3-(trimethylsilyl)cycloprop-2-ene-1-carboxylate (23a) Purified by column chromatography (SiO₂, 1/20 : Et₂O/hexanes) to afford **23a** as an oil (158.6 mg, 0.61 mmol, 61% yield). R_f = 0.44; 1/5; Et₂O/hexanes. IR (neat) 1717 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.20 (s, 9H), 2.26 (s, 3H), 3.65 (s, 3H), 7.15 – 7.18 (m, 1H), 7.26 – 7.27 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ -1.13, 10.81, 34.36, 51.62, 109.12, 125.71, 126.03, 127.86, 128.11, 142.69, 176.11. HRMS (ESI) *m/z* calcd for $C_{12}H_{20}O_2Si$, 260.12, found 260.1125 [M]⁺.

methyl 1-phenyl-2-propyl-3-(trimethylsilyl)cycloprop-2-ene-1-carboxylate (24a) Purified by column chromatography (SiO₂, 1/20 : Et₂O/hexanes) to afford 24a as an oil (185 mg, 0.64 mmol, 64% yield). R_f = 0.40; 1/5; Et₂O/hexanes. IR (neat) 1715 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.20 (s, 9H) 0.98 (t, 3H), 1.63 – 1.67 (m, 2H), 2.55 – 2.59 (m, 2H), 3.65 (s, 3H), 7.13 – 7.17 (m, 1H), 7.23 – 7.27 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ -1.02, 13.82, 20.64, 27.84, 34.44, 51.53, 108.14, 125.58, 127.78, 128.08, 129.98, 142.85, 176.18. HRMS (ESI) *m/z* calcd for C₁₇H₂₄O₂Si, 288.15, found 288.1540 [M]⁺.

ethyl 2-phenyl-3-(trimethylsilyl)cycloprop-2-ene-1-carboxylate (32b) Purified by column chromatography (SiO₂, 1/20 - 1/10 : Et₂O/hexanes) to afford **32b** as an oil (200 mg, 0.77 mmol, 77% yield). R_f = 0.31; 1/5; Et₂O/hexanes. IR (neat) 1721 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.34 (s, 9H), 1.25 (t, 3H), 2.41 (s, 1H), 4.10 – 4.22 (m, 2H), 7.37 – 7.46 (m, 3H), 7.55 – 7.57 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ -1.39, 14.04, 20.67, 60.01, 108.08, 124.08, 127.67, 128.70, 129.56, 129.83, 176.13. HRMS (ESI) *m/z* calcd for C₁₅H₂₀O₂Si, 260.12, found 260.1233 [M]⁺.

methyl 1-(4-bromophenyl)-2-phenyl-3-(trimethylsilyl)cycloprop-2-ene-1-carboxylate (33d) Purified by column chromatography (SiO₂, 1/100 – 1/20 : Et₂O/hexanes) to afford **33d** as an oil (253 mg, 0.63

mmol, 63% yield). $R_f = 0.44$; 1/5; Et₂O/hexanes. IR (neat) 1713 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.27 (s, 9H), 3.66 (s, 3H), 7.23 – 7.26 (m, 2H), 7.34 – 7.45 (m, 5H), 7.55 – 7.57 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ -1.08, 33.99, 51.87, 113.43, 119.69, 125.25, 126.67, 128.98, 129.77, 129.93, 130.90, 141.13, 174.91. HRMS (ESI) *m/z* calcd for C₂₀H₂₁BrO₂Si, 400.05, found 400.0489 [M]⁺.

methyl 2-phenyl-1-(4-(trifluoromethyl)phenyl)-3-(trimethylsilyl)cycloprop-2-ene-1-carboxylate (34e) Purified by column chromatography (SiO₂, 1/20 – 1/10 : Et₂O/hexanes) to afford 34e as an oil (210.9 mg, 0.54 mmol, 54% yield). R_f = 0.56; 1/5; Et₂O/hexanes. IR (neat) 1720 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.28 (s, 9H), 3.68 (s, 3H), 7.38 – 7.45 (m, 3H), 7.49 (s, 4H), 7.53 – 7.58 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ -1.10, 34.28, 51.91, 113.03, 124.40 (q, J_{C-F} , = 270.0 Hz), 124.80 (d, J_{C-F} = 2.5 Hz), 124.99, 126.47, 128.00 (d, J_{C-F} = 32.5 Hz), 128.20, 129.03, 129.82, 130.07, 146.20, 174.66. HRMS (ESI) m/z calcd for C₂₁H₂₁F₃O₂Si, 390.13, found 390.1239 [M]⁺.

methyl 1-(4-(tert-butyl)phenyl)-2-phenyl-3-(trimethylsilyl)cycloprop-2-ene-1-carboxylate (35f) Purified by column chromatography (SiO₂, 1/20 - 1/5 : Et₂O/hexanes) to afford **35f** as an oil (261 mg, 0.69 mmol, 69% yield). R_f = 0.44; 1/5; Et₂O/hexanes. IR (neat) 1721 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.31 (s, 9H), 1.29 (s, 9H), 3.68 (s, 3H), 7.25 - 7.33 (m, 4H), 7.34 - 7.44 (m, 3H), 7.59 - 7.62 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ -0.95, 31.19, 31.34, 34.33, 51.77, 113.37, 124.78, 126.86, 127.25, 127.71,

128.84, 129.62, 129.80, 138.69, 148.60, 175.58. HRMS (ESI) *m*/*z* calcd for C₂₄H₃₀O₂Si, 378.20, found 378.2018 [M]⁺.

methyl 1-(naphthalen-2-yl)-2-phenyl-3-(trimethylsilyl)cycloprop-2-ene-1-carboxylate (36g) Purified by column chromatography (SiO₂, 1/100 – 1/20 : Et₂O/hexanes) to afford **36g** as an oil (227 mg, 0.609 mmol, 61% yield). $R_f = 0.39$; 1/5; Et₂O/hexanes. IR (neat) 1715 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.23 (s, 9H), 3.36 (s, 3H), 7.18 (s, 1H), 7.30 – 7.38 (m, H), 7.43 – 7.45 (m, 1H), 7.56 – 7.58 (m, 2H), 7.64 – 7.73 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ -0.98, 34.79, 51.85, 113.75, 125.25, 125.70, 126.03, 126.29, 126.77, 127.10, 127.25, 127.47, 127.75, 128.94, 129.79, 129.87, 132.02, 133.34, 139.68, 175.38. HRMS (ESI) *m*/*z* calcd for C₂₄H₂₄O₂Si, 372.15, found 372.1438 [M]⁺.

methyl 1-(4-methoxyphenyl)-2-phenyl-3-(trimethylsilyl)cycloprop-2-ene-1-carboxylate (37h) Purified by column chromatography (SiO₂, 1/20 : Et₂O/hexanes) to afford **37h** as an oil (243 mg, 0.69 mmol, 69% yield). R_f = 0.43; 1/5; Et₂O/hexanes. IR (neat) 1713 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.30 (s, 9H), 3.80 (s, 3H), 3.81 (s, 3H), 6.86 – 6.89 (m, 2H), 7.24 – 7.26 (m, 1H), 7.31 – 7.34 (m, 4H), 7.46 – 7.49 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ -0.45, 52.11, 55.75, 98.79, 105.19, 113.85, 124.83, 127.15, 128.12, 128.78, 129.09, 134.77, 158.81, 167.89, 213.03. HRMS (ESI) *m/z* calcd for C₂₁H₂₄O₃Si, 352.15, found 352.1385 [M]⁺.

(5-methoxy-4-(4-methoxyphenyl)-2-phenylfuran-3-yl)trimethylsilane (38h) Purified by column chromatography (SiO₂, 1/20 : Et₂O/hexanes) to afford **38h** as an oil (74 mg, 0.21 mmol, 21% yield). R_f = 0.35; 1/5; Et₂O/hexanes. IR (neat) 1713 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.28 (s, 9H), 3.66 (s, 3H), 3.75 (s, 3H), 6.77 – 6.80 (m, 2H), 7.24 – 7.29 (m, 1H), 7.35 – 7.43 (m, 3H), 7.57 – 7.60 (m, 2H). ¹³C NMR (125 MHz, CDCl₃,) δ -1.03, 33.94, 51.76, 55.16, 113.32, 114.08, 126.33, 127.20, 128.86, 129.15, 129.63, 129.72, 134.14, 157.81, 165.63. HRMS (ESI) *m/z* calcd for C₂₁H₂₄O₃Si, 352.15, found 352.1384 [M]⁺.

ethyl 2-phenyl-3-(trimethylsilyl)cycloprop-2-ene-1-carboxylate (39b) Purified by column chromatography (SiO₂, 1/20 - 1/10 : Et₂O/hexanes) to afford **39b** as an oil (141 mg, 0.71 mmol, 71% yield). ¹H NMR (500 MHz, CDCl₃) $\delta = 0.16$ (s, 9H), 1.21 (t, 3H), 1.95 (s, 1H), 2.17 (s, 3H), 4.04 – 4.10 (m, 2H). Compound **39b** is a known compound and the analytical data is consistent with the literature.¹¹

¹¹ Pallerla, M.K.; Fox, J.M. Org. Lett. 2005, 7, 3593.

¹³C Chemical Shift Assignments for **38h**

Moiety [#]	¹ H shift [ppm]	¹³ C shift [ppm]
1	7.28	127.17
2	7.37*	128.18
3	7.37*	128.80
4	NA	134.80
5	NA	-
6	NA	105.22
7	NA	-
8	NA	167.93
9	NA	-
10	7.51	129.08
11	6.91	113.86
12	NA	158.82
13	3.82	55.29
14	3.83	52.16
15	0.35	-0.43

Table 1. "*" denotes degenerate ¹H chemical shifts between aromatic ¹Hs 2 and 3, which resulted in an ambiguous assignment of the attached ¹³C chemical shifts. "NA" indicates a quaternary ¹³C that has no associated ¹H chemical shift. A "-" indicates that the chemical shift was not observed or could not be unambiguously identified.

	 ·····	 	 	 	
					 -
29f					
		$\langle /$	\bigvee		

	,	l	175 31	4) • 4			-141.91 -129 04	128.35	126.12	114.69				- 76.75	רמ ער ער	51.82		. 34 . 83			-1.04	
	ا —=== 11	Si	\																			
										I						I						
adddallan yr ang dan yn diffydd Merif fal fall yn yn gwyn arwyn	i latalat pili kilada at Permiyograpi (Pilogo	i bildebickeriden NY YE WALLAND	halah II, kadilah II Maranja katilah II Maranja Katilah II	ldanın ada səlah Yildə yaraqına yar	and for the second s	lada ba ka			kasale, asalegaal Qoor qalqaraqar	dhadha hain Tirpiggirinn	44,74,674,674,674,674,794 1994,974,797,798,974,974,974,974,974,974,974,974,974,974	k alemet tiklasikt prove ji Vines per		NALANAN KUTAN Tipu ⁿ Yu	alı balanın balanı 1971 yılın yırın yırın			al dan Maala Al Canada (Daala	ala desirat de la filada Harina apropria praesp	L L LL	h harin dan dan dar Program den dan dar Program den dar	
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	ppm

ur san selfan Du bur Jaan kanananan sa sanakan kina pulakanan ku un saka Manangan yang mananan sang sang kanang sang sakang saga sata yang manang ku sata yang sata yang manang ku sata Manang saga sang sata sata sata sata sata sata sata sat	ability sector and the sector of	i de gene here de julie aparte de fan úter per Miller ante ante a till og oante gene de gene de gene de gene de	antenna an territori, and a secolar para antenna antenna de la secolar de la secolar de la secolar de la secola	nterend and trades to a set of the	ngen og av skal star førsta for stør det som	n de la serie de la seconda de la second	te an an tao antsi di mitala Interna persona antsi di mitala

ur san selfan Du bur Jaan kanananan sa sanakan kina pulakanan ku un saka Manangan yang mananan sang sang kanang sang sakang saga sata yang manang ku sata yang sata yang manang ku sata Manang saga sang sata sata sata sata sata sata sata sat	ability sector and the sector of	i de gene here de julie aparte de fan úter per Miller ante ante a till og oante gene de gene de gene de gene de	antenna an territori, and a secolar para antenna antenna de la secolar de la secolar de la secolar de la secola	nterend and trades to a set of the	ngen og av skal star førsta for stør det som	n de la serie de la seconda de la second	te an an tao antsi di mitala Interna persona antsi di mitala

.0

12a	175.43	142.09 129.71 129.64 128.05 127.77 127.33 127.33 127.81 125.81 113.40	77.27		34.32		00.0-
210 200	190 180 170 160	0 150 140 130 120 110 100	90 80 70	н, мани и и и и и и и и и и и и и и и и и и	40 30	20 10	0 ppm

13a

	175.09	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	77.25 76.74		34.68	-1.07
15a						
210 200 190 1	80 170 160 150) 140 130 120 110 100 90	80 70 60	50 4	0 30 20 10	0 ppm

			141.91 129.94 128.35	122.32 126.12 126.12 125.94 1122.32 115.69 114.69 114.30		■		34.83	1.04	
J J Si										
20a										
adal dan ang Lang, Litu da ka ka panjakan ang pananang saka ang ka Prendra kang panganang kang pang kang kapang pang pang ka	edladorebil, souther blank, starod eringingereleter bedereter er	n Loval y II. I nav Analda Alda y J. Maria (II. Paris Paris) y Aldaren Maria (II. Paris) y Aldaren	Lause and Laught certains ar program provide a spectra of the second	a fillen fillen son son son son son son son son son so	sti carashi kashinat alamini shan provin Avashiriyi umuqorovji kunumenipi Avashiriyi umuqorovji kunumenipi	lahan meningkan katan katan Katan katan kata	dover kiel wie die die die die die die die die die d	d y di na li wai ku ku na ku	ארי אל גער וואניה קאינון איז אינוער איז אינוער איז אינער איז	
210 200 190	0 180 170	160 15	60 140 13	80 120 110	100 90	80 70	60 50 4	10 30 20	10 0	ppm

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

nnm

o Si

23a

Ο

 210		 		 160	 150	 140	 130	120	 110	 100	 90	 80	70	••••• 60	 50	 40	 20	 10	 0	naa
			n al bala. Asaa ad bala Tara para tara panganganganganganganganganganganganganga					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1	Radio da		alitati asin, ang dini asing	1 Lessaulus (Lessaulus de Lessaulus de Lessaulus de Lessaulus de Lessaulus de Lessaulus de Lessaulus de Lessau 19 de la regione de la region	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Si 23a	<u></u> //					142.69	128.11	125.71	109.12			77.25	76.75		51.62			10.81	-0.02	

Si 24a	 142.8	129.9	 77.25 77.00 76.74	 	13.82

32b

		129.83 129.56 128.70 124.08 108.08	77.26	60.01	20.67	-1.39
o o o						
32 b						
						L
210 200 19	90 180 170 160 15	50 140 130 120 110	100 90 80	70 60 50	40 30 20 10	0 ppn

34d

о Si Si	174.91	$ \begin{array}{c} 141.13\\ 141.13\\ 129.93\\ 129.77\\ 128.98\\ 126.67\\ 125.25\\ 119.69\\ 113.43\end{array} $	77.25	51.87	33.99	-1.08
34d						
	I				I	
<u>+====================================</u>	nden sam pana de ante de fonde <mark>de de sente hand pensentige sensentige sense</mark> ap			n, ai yaley Tanana kate da Pagangana yangan	u de agrectado de la constancia	an and the second s
210 200 19	90 180 170 160) 150 140 130 120 110 100	90 80 70	60 50 4	40 30 2	20 10 0 ppr

35e

 $\sim \sim$

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	ppm

Si Si

38h

213.03		134.77 129.09 128.78 128.12 124.83 124.83 124.83 124.83 124.83 124.83 124.83 124.83 124.83 124.83		55.27 52.11 52.11	- 0 . 45
38h					
				1	
и с был Поланда (Поланда) (Каза) (Каза) Такана портодика (Каза) (Каз Такана портодика (Каза) (Каз			אין איז	יווין איז	and block block with the standard of the stand
210 200 190 18	0 170 160 150	140 130 120 110 100 90	80 70 60	50 40 30 20	10 0 ppm

Compound **15a** REFERENCE NUMBER: ritmc11

CRYSTAL STRUCTURE REPORT

C20 H21 Cl O2 Si

Report prepared for: M. G. Coleman, Ph.D.

William W. Brennessel X-ray Crystallographic Facility Department of Chemistry, University of Rochester 120 Trustee Road Rochester, NY 14627

Data collection

A crystal (0.45 x 0.45 x 0.35 mm³) was placed onto the tip of a thin glass optical fiber and mounted on a Bruker SMART APEX II CCD platform diffractometer for a data collection at 100.0(5) K.¹ A preliminary set of cell constants and an orientation matrix were calculated from reflections harvested from three orthogonal wedges of reciprocal space. The full data collection was carried out using MoK α radiation (graphite monochromator) with a frame time of 10 seconds and a detector distance of 4.01 cm. A randomly oriented region of reciprocal space was surveyed: six major sections of frames were collected with 0.50° steps in ω at six different ϕ settings and a detector position of -38° in 2 θ . The intensity data were corrected for absorption.² Final cell constants were calculated from the xyz centroids of 4013 strong reflections from the actual data collection after integration.³ See Table 1 for additional crystal and refinement information.

Structure solution and refinement

The structure was solved using SIR2011⁴ and refined using SHELXL-2014/7.⁵ The space group *P*-1 was determined based on intensity statistics. A direct-methods solution was calculated which provided most non-hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms of methyl group C8 were given a geometric riding model; all others were refined freely. The final full matrix least squares refinement converged to R1 = 0.0334 (F^2 , $I > 2\sigma(I)$) and wR2 = 0.0985 (F^2 , all data).

Structure description

The structure is the one suggested. The asymmetric unit contains one molecule in a general position.

Unless noted otherwise all structural diagrams containing thermal displacement ellipsoids are drawn at the 50 % probability level.

Data collection, structure solution, and structure refinement were conducted at the X-ray Crystallographic Facility, B51 Hutchison Hall, Department of Chemistry, University of Rochester. All publications arising from this report MUST either 1) include William W. Brennessel as a coauthor or 2) acknowledge William W. Brennessel and the Xray Crystallographic Facility of the Department of Chemistry at the University of Rochester. ¹ APEX2, version 2014.7-1; Bruker AXS: Madison, WI, 2014.

² Sheldrick, G. M. SADABS, version 2014/3; University of Göttingen: Göttingen, Germany, 2014.

³ SAINT, version 8.32B; Bruker AXS: Madison, WI, 2013.

⁴ Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; Giacovazzo, C.; Mallamo, M.;

Mazzone, A.; Polidori, G.; Spagna, R. *SIR2011: a new package for crystal structure determination and refinement*, version 1.0; Istituto di Cristallografia: Bari, Italy, 2012.

⁵ Sheldrick, G. M. *SHELXL-2014/7*; University of Göttingen: Göttingen, Germany, 2014.

Some equations of interest:

$$R_{\text{int}} = \sum |F_o^2 - \langle F_o^2 \rangle| / \sum |F_o^2|$$

$$R1 = \sum ||F_o| - |F_c|| / \sum |F_o|$$

$$wR2 = [\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]]^{1/2}$$
where $w = 1 / [\sigma^2 (F_o^2) + (aP)^2 + bP]$ and
$$P = 1/3 \max (0, F_o^2) + 2/3 F_c^2$$

$$\text{GOF} = S = [\sum [w(F_o^2 - F_c^2)^2] / (m - n)]^{1/2}$$

where m = number of reflections and n = number of parameters

Table 1. Crystal data and structure refinement for ritmc11.

Identification code	ritmc11					
Empirical formula	C20 H21 Cl O2 Si					
Formula weight	356.91					
Temperature	100.0(5) K					
Wavelength	0.71073 Å					
Crystal system	triclinic					
Space group	<i>P</i> -1					
Unit cell dimensions	a = 8.9739(13) Å	$\alpha = 108.891(3)^{\circ}$				
	b = 9.8320(14) Å	$\beta = 91.301(3)^{\circ}$				
	c = 11.4770(16) Å	$\gamma = 95.799(3)^\circ$				
Volume	951.5(2) Å ³					
Ζ	2					
Density (calculated)	1.246 Mg/m^3					
Absorption coefficient	0.272 mm ⁻¹					
<i>F</i> (000)	376					
Crystal color, morphology	colorless, plate					
Crystal size	0.45 x 0.45 x 0.35 mm ³					
Theta range for data collection	1.879 to 38.589°					
Index ranges	$-15 \le h \le 15, -16 \le k \le 2$	$16, -19 \le l \le 20$				
Reflections collected	35515					
Independent reflections	10249 [R(int) = 0.0242]					
Observed reflections	8669					
Completeness to theta = 37.785°	98.5%					
Absorption correction	Multi-scan					
Max. and min. transmission	0.7476 and 0.6483					
Refinement method	Full-matrix least-squares	on F^2				
Data / restraints / parameters	10249 / 0 / 293					
Goodness-of-fit on F^2	1.041					
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0334, wR2 = 0.09	R1 = 0.0334, wR2 = 0.0930				
<i>R</i> indices (all data)	R1 = 0.0417, wR2 = 0.09	85				
Largest diff. peak and hole	0.569 and -0.269 e.Å ⁻³					
	Х	У	Z	U _{eq}		
-----	----------	----------	----------	-----------------		
Cl1	5996(1)	9952(1)	13766(1)	25(1)		
Si1	8636(1)	8018(1)	6478(1)	14(1)		
O1	9363(1)	3654(1)	7680(1)	20(1)		
O2	7354(1)	4715(1)	7386(1)	21(1)		
C1	9591(1)	6242(1)	8247(1)	12(1)		
C2	8761(1)	7460(1)	8974(1)	12(1)		
C3	8952(1)	7446(1)	7846(1)	13(1)		
C4	8485(1)	9993(1)	7021(1)	29(1)		
C5	10228(1)	7549(1)	5467(1)	27(1)		
C6	6847(1)	6991(1)	5652(1)	23(1)		
C7	8792(1)	4738(1)	7755(1)	12(1)		
C8	6537(1)	3292(1)	6867(1)	24(1)		
C9	11259(1)	6300(1)	8452(1)	12(1)		
C10	11972(1)	6896(1)	9626(1)	18(1)		
C11	13531(1)	6969(1)	9784(1)	24(1)		
C12	14384(1)	6440(1)	8772(1)	24(1)		
C13	13679(1)	5843(1)	7599(1)	20(1)		
C14	12128(1)	5770(1)	7442(1)	17(1)		
C15	8136(1)	8078(1)	10156(1)	12(1)		
C16	8042(1)	7328(1)	11004(1)	15(1)		
C17	7390(1)	7908(1)	12122(1)	17(1)		
C18	6836(1)	9236(1)	12378(1)	17(1)		
C19	6935(1)	10014(1)	11558(1)	20(1)		
C20	7587(1)	9426(1)	10444(1)	18(1)		

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for ritmc11. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Cl(1)-C(18)	1.7430(7)	C(12)-H(12)	0.907(15)
Si(1)-C(3)	1.8562(7)	C(13)-C(14)	1.3909(10)
Si(1)-C(4)	1.8573(9)	C(13)-H(13)	0.944(13)
Si(1)-C(5)	1.8614(9)	C(14)-H(14)	0.951(13)
Si(1)-C(6)	1.8653(8)	C(15)-C(16)	1.3969(9)
O(1)-C(7)	1.2074(8)	C(15)-C(20)	1.4014(9)
O(2)-C(7)	1.3451(8)	C(16)-C(17)	1.3932(9)
O(2)-C(8)	1.4427(9)	C(16)-H(16)	0.925(13)
C(1)-C(2)	1.4984(8)	C(17)-C(18)	1.3881(10)
C(1)-C(7)	1.4989(9)	C(17)-H(17)	0.980(14)
C(1)-C(9)	1.5024(9)	C(18)-C(19)	1.3910(11)
C(1)-C(3)	1.5558(9)	C(19)-C(20)	1.3906(10)
C(2)-C(3)	1.3051(9)	C(19)-H(19)	0.940(14)
C(2)-C(15)	1.4476(8)	C(20)-H(20)	0.960(13)
C(4)-H(4A)	0.974(17)	C(3)-Si(1)-C(4)	108.42(4)
C(4)-H(4B)	0.940(18)	C(3)-Si(1)-C(5)	108.28(4)
C(4)-H(4C)	1.018(19)	C(4)-Si(1)-C(5)	112.08(5)
C(5)-H(5A)	1.000(17)	C(3)-Si(1)-C(6)	107.35(3)
C(5)-H(5B)	1.008(15)	C(4)-Si(1)-C(6)	110.53(5)
C(5)-H(5C)	0.999(19)	C(5)-Si(1)-C(6)	110.03(4)
C(6)-H(6A)	0.987(17)	C(7)-O(2)-C(8)	115.19(6)
C(6)-H(6B)	0.975(16)	C(2)-C(1)-C(7)	119.60(5)
C(6)-H(6C)	0.968(17)	C(2)-C(1)-C(9)	120.97(5)
C(8)-H(8A)	0.9800	C(7)-C(1)-C(9)	114.00(5)
C(8)-H(8B)	0.9800	C(2)-C(1)-C(3)	50.55(4)
C(8)-H(8C)	0.9800	C(7)-C(1)-C(3)	118.09(5)
C(9)-C(10)	1.3933(9)	C(9)-C(1)-C(3)	119.17(5)
C(9)-C(14)	1.3986(9)	C(3)-C(2)-C(15)	149.81(6)
C(10)-C(11)	1.3985(10)	C(3)-C(2)-C(1)	67.00(4)
C(10)-H(10)	0.928(14)	C(15)-C(2)-C(1)	143.08(6)
C(11)-C(12)	1.3905(12)	C(2)-C(3)-C(1)	62.45(4)
C(11)-H(11)	0.949(15)	C(2)-C(3)-Si(1)	154.81(5)
C(12)-C(13)	1.3898(12)	C(1)-C(3)-Si(1)	142.13(4)

Table 3. Bond lengths [Å] and angles [°] for ritmc11.

Si(1)-C(4)-H(4A)	110.6(10)	C(11)-C(10)-H(10)	119.2(9)
Si(1)-C(4)-H(4B)	113.1(10)	C(12)-C(11)-C(10)	120.35(7)
H(4A)-C(4)-H(4B)	110.5(14)	C(12)-C(11)-H(11)	120.7(9)
Si(1)-C(4)-H(4C)	110.6(10)	C(10)-C(11)-H(11)	119.0(9)
H(4A)-C(4)-H(4C)	104.4(14)	C(13)-C(12)-C(11)	119.63(7)
H(4B)-C(4)-H(4C)	107.3(15)	C(13)-C(12)-H(12)	119.3(9)
Si(1)-C(5)-H(5A)	112.1(10)	C(11)-C(12)-H(12)	121.0(9)
Si(1)-C(5)-H(5B)	111.2(9)	C(12)-C(13)-C(14)	120.06(7)
H(5A)-C(5)-H(5B)	110.1(13)	C(12)-C(13)-H(13)	120.6(8)
Si(1)-C(5)-H(5C)	110.6(11)	C(14)-C(13)-H(13)	119.3(8)
H(5A)-C(5)-H(5C)	105.4(14)	C(13)-C(14)-C(9)	120.81(6)
H(5B)-C(5)-H(5C)	107.1(14)	C(13)-C(14)-H(14)	119.5(8)
Si(1)-C(6)-H(6A)	110.1(10)	C(9)-C(14)-H(14)	119.7(8)
Si(1)-C(6)-H(6B)	112.5(9)	C(16)-C(15)-C(20)	119.54(6)
H(6A)-C(6)-H(6B)	109.2(13)	C(16)-C(15)-C(2)	120.66(6)
Si(1)-C(6)-H(6C)	108.7(10)	C(20)-C(15)-C(2)	119.78(6)
H(6A)-C(6)-H(6C)	109.0(14)	C(17)-C(16)-C(15)	120.27(6)
H(6B)-C(6)-H(6C)	107.3(13)	C(17)-C(16)-H(16)	120.8(9)
O(1)-C(7)-O(2)	122.92(6)	C(15)-C(16)-H(16)	118.9(9)
O(1)-C(7)-C(1)	124.51(6)	C(18)-C(17)-C(16)	119.05(6)
O(2)-C(7)-C(1)	112.57(5)	C(18)-C(17)-H(17)	120.5(8)
O(2)-C(8)-H(8A)	109.5	C(16)-C(17)-H(17)	120.5(8)
O(2)-C(8)-H(8B)	109.5	C(17)-C(18)-C(19)	121.85(6)
H(8A)-C(8)-H(8B)	109.5	C(17)-C(18)-Cl(1)	119.15(5)
O(2)-C(8)-H(8C)	109.5	C(19)-C(18)-Cl(1)	119.00(5)
H(8A)-C(8)-H(8C)	109.5	C(20)-C(19)-C(18)	118.63(6)
H(8B)-C(8)-H(8C)	109.5	C(20)-C(19)-H(19)	120.4(9)
C(10)-C(9)-C(14)	118.89(6)	C(18)-C(19)-H(19)	120.9(9)
C(10)-C(9)-C(1)	121.60(5)	C(19)-C(20)-C(15)	120.64(6)
C(14)-C(9)-C(1)	119.51(5)	C(19)-C(20)-H(20)	120.3(8)
C(9)-C(10)-C(11)	120.27(7)	C(15)-C(20)-H(20)	119.0(8)
C(9)-C(10)-H(10)	120.5(9)		

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C11	28(1)	23(1)	19(1)	0(1)	12(1)	-1(1)
Si1	17(1)	14(1)	13(1)	5(1)	0(1)	0(1)
01	18(1)	12(1)	30(1)	6(1)	-5(1)	3(1)
O2	12(1)	12(1)	35(1)	4(1)	-5(1)	1(1)
C1	12(1)	10(1)	12(1)	2(1)	1(1)	2(1)
C2	14(1)	11(1)	12(1)	2(1)	1(1)	3(1)
C3	14(1)	11(1)	13(1)	3(1)	0(1)	2(1)
C4	42(1)	16(1)	31(1)	10(1)	-4(1)	3(1)
C5	24(1)	36(1)	20(1)	9(1)	6(1)	-1(1)
C6	21(1)	28(1)	19(1)	9(1)	-5(1)	-3(1)
C7	12(1)	12(1)	12(1)	3(1)	1(1)	2(1)
C8	16(1)	15(1)	37(1)	4(1)	-5(1)	-2(1)
C9	12(1)	11(1)	14(1)	3(1)	0(1)	1(1)
C10	16(1)	20(1)	15(1)	3(1)	-2(1)	1(1)
C11	16(1)	28(1)	23(1)	3(1)	-7(1)	1(1)
C12	12(1)	24(1)	33(1)	5(1)	-3(1)	1(1)
C13	13(1)	19(1)	27(1)	3(1)	4(1)	3(1)
C14	13(1)	17(1)	17(1)	2(1)	2(1)	3(1)
C15	13(1)	11(1)	11(1)	2(1)	1(1)	2(1)
C16	17(1)	14(1)	14(1)	5(1)	1(1)	4(1)
C17	20(1)	17(1)	14(1)	5(1)	3(1)	2(1)
C18	17(1)	16(1)	14(1)	1(1)	4(1)	0(1)
C19	27(1)	14(1)	18(1)	3(1)	8(1)	7(1)
C20	26(1)	13(1)	16(1)	5(1)	6(1)	7(1)

Table 4. Anisotropic displacement parameters (Å²x 10³) for ritmc11. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a*²U₁₁ + ... + 2 h k a* b* U₁₂]

	X	У	Z	U(eq)
H4A	7600(19)	10204(17)	7494(15)	45(4)
H4B	9350(20)	10546(18)	7479(16)	51(5)
H4C	8310(20)	10350(20)	6293(17)	59(5)
H5A	10140(19)	7860(18)	4723(16)	48(4)
H5B	10324(17)	6481(17)	5209(14)	40(4)
H5C	11200(20)	8070(20)	5913(17)	61(5)
H6A	5995(18)	7277(18)	6172(16)	47(4)
H6B	6858(17)	5946(17)	5423(14)	41(4)
H6C	6702(19)	7213(18)	4898(16)	48(4)
H8A	6689	2726	7414	58(5)
H8B	6902	2805	6056	70(6)
H8C	5465	3380	6778	72(6)
H10	11418(15)	7239(14)	10312(13)	30(3)
H11	13996(16)	7384(16)	10591(14)	35(4)
H12	15390(16)	6445(16)	8868(14)	35(4)
H13	14243(14)	5482(14)	6903(12)	24(3)
H14	11655(15)	5365(14)	6636(12)	25(3)
H16	8458(15)	6465(14)	10826(12)	28(3)
H17	7337(15)	7393(14)	12724(12)	26(3)
H19	6596(16)	10931(15)	11759(13)	32(3)
H20	7685(14)	9948(14)	9869(12)	25(3)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for ritmc11.

Table 6. Torsion angles [°] for ritmc11.

C7-C1-C2-C3	-103.52(6)	C7-C1-C9-C10	-116.30(7)
C9-C1-C2-C3	104.02(6)	C3-C1-C9-C10	96.68(7)
C7-C1-C2-C15	73.07(11)	C2-C1-C9-C14	-141.16(6)
C9-C1-C2-C15	-79.38(11)	C7-C1-C9-C14	64.96(8)
C3-C1-C2-C15	176.59(11)	C3-C1-C9-C14	-82.06(7)
C15-C2-C3-C1	-175.93(13)	C14-C9-C10-C11	0.47(11)
C15-C2-C3-Si1	-6.6(2)	C1-C9-C10-C11	-178.28(7)
C1-C2-C3-Si1	169.37(13)	C9-C10-C11-C12	-0.42(13)
C7-C1-C3-C2	106.61(6)	C10-C11-C12-C13	0.32(13)
C9-C1-C3-C2	-107.69(6)	C11-C12-C13-C14	-0.29(13)
C2-C1-C3-Si1	-172.65(9)	C12-C13-C14-C9	0.35(11)
C7-C1-C3-Si1	-66.04(9)	C10-C9-C14-C13	-0.44(10)
C9-C1-C3-Si1	79.65(9)	C1-C9-C14-C13	178.33(6)
C4-Si1-C3-C2	37.97(13)	C3-C2-C15-C16	163.99(10)
C5-Si1-C3-C2	159.78(12)	C1-C2-C15-C16	-9.77(12)
C6-Si1-C3-C2	-81.45(13)	C3-C2-C15-C20	-14.50(15)
C4-Si1-C3-C1	-157.49(8)	C1-C2-C15-C20	171.74(8)
C5-Si1-C3-C1	-35.67(8)	C20-C15-C16-C17	0.80(10)
C6-Si1-C3-C1	83.09(8)	C2-C15-C16-C17	-177.70(6)
C8-O2-C7-O1	-1.16(10)	C15-C16-C17-C18	0.09(10)
C8-O2-C7-C1	178.14(6)	C16-C17-C18-C19	-1.03(11)
C2-C1-C7-O1	-144.48(7)	C16-C17-C18-Cl1	179.10(5)
C9-C1-C7-O1	9.79(9)	C17-C18-C19-C20	1.06(12)
C3-C1-C7-O1	157.19(6)	Cl1-C18-C19-C20	-179.07(6)
C2-C1-C7-O2	36.22(8)	C18-C19-C20-C15	-0.14(12)
C9-C1-C7-O2	-169.50(5)	C16-C15-C20-C19	-0.77(11)
C3-C1-C7-O2	-22.10(8)	C2-C15-C20-C19	177.74(7)
C2-C1-C9-C10	37.58(9)		