Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting Information for

Highly Efficient Synthesis of Flavonol 5-O-glycosides with Glycosyl

ortho-Akynylbenzoates as Donors

Jin-Xi Liao, Nai-Li Fan, Hui Liu, Yuan-Hong Tu, and Jian-Song Sun*

The National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China E-mail: jssun@jxnu.edu.cn

Contents

S1-S3 List of the Contents

S5-S16 Experimental Section and Characterization Data for New Compounds

S4	3,7,3',4'-Tetra-O-tert-butyldimethylsilyl-quercetin (3)
S4	3,7,4'-Tri-O-hexanoyl-kaempferol (5)
S 5	3,7,4'-Tri-O-tert-butyldimethylsilyl-5-O-(2",3",4",6"-tetra-O-benzoyl-
	β-D-glucopyranosyl)-kaempferol (10)
S 5	3,7,4'-Tri-O-tert-butyldimethylsilyl-5-O-(2",3",4"-tri-O-benzoyl-6-O-te
	rt-butyldiphenylsilyl-β-D-glucopyranosyl)-kaempferol (11)
S6	3,7,4'-Tri-O-tert-butyldimethylsilyl-5-O-(2",3",4",6"-tetra-O-benzoyl-β
	-D-galactopyranosyl)-kaempferol (12)
S6	3,7,4'-Tri-O-tert-butyldimethylsilyl-5-O-(2",3",4"-tri-O-benzoyl-α-L-r
	hamnopyranosyl)-kaempferol (13)
S7	3,7,3',4'-Tetra-O-tert-butyldimethylsilyl-5-O-(2",3",4",6"-tetra-O-benz
	oyl-β-D-glucopyranosyl)-quercetin (14)
S7	3,7,3',4'-Tetra-O-tert-butyldimethylsilyl-5-O-(2",3",4"-tri-O-benzoyl-6-
	O-tert-butyldiphenylsilyl-β-D-glucopyranosyl)-quercetin (15)
S8	3,7,3'4'-Tetra-O-tert-butyldimethylsilyl-5-O-(2",3",4",6"-tetra-O-benz
	oyl-β-D-galactopyranosyl)-quercetin (16)
S8	3,7,3',4'-Tetra-O-tert-butyldimethylsilyl-5-O-(2",3",4"-tri-O-benzoyl-α

	-L-rhamnopyranosyl)-quercetin (17)
S9	3,7,4'-Tri-O-benzyl-5-O-(2",3",4",6"-tetra-O-benzoyl-β-D-glucopyrano
	syl)-kaempferol (18)
S9	3,7,4'-Tri-O-benzyl-5-O-(2",3",4"-tri-O-benzoyl-6-O-tert-butyldiphenyl
	silyl-β-D-glucopyranosyl)-kaempferol (19)
S10	3,7,4'-Tri-O-benzyl-5-O-(2",3",4",6"-tetra-O-benzoyl-β-D-galactopyra
	nosyl)-kaempferol (20)
S10	3,7,4'-Tri-O-benzyl-2",3",4"-tri-O-benzoyl-α-L-rhamnopyranosyl)-kae
	mpferol (21)
S11	3,7,4'-Tri- <i>O</i> -hexanoyl-5- <i>O</i> -(2",3",4",6"-tetra- <i>O</i> -benzoyl-β-D-glucopyra
	nosyl)-kaempferol (22)
S11	3,7,4'-Tri-O-hexanoyl-5-O-(2",3",4"-tri-O-benzoyl-6-O-tert-butyldiphe
	nylsilyl-β-D-glucopyranosyl)-kaempferol (23)
S12	3,7,4'-Tri-O-hexanoyl-5-O-(2",3",4",6"-tetra-O-benzoyl-β-D-galactopy
	ranosyl)-kaempferol (24)
S12	3,7,4'-Tri-O-hexanoyl-2",3",4"-tri-O-benzoyl-α-L-rhamnopyranosyl)-k
	aempferol (25)
S13	3,7,4'-Tri- <i>O</i> -hexanoyl-5- <i>O</i> -(2",3",4"-tri- <i>O</i> -benzoyl-β-D-glucopyranosyl
)-kaempferol (26)
S14	3,7,4'-Tri-O-hexanoyl-5-O-[2",3",4"-tri-O-benzoyl-6"-O-(2"",3"",4"'-tr
	$i-O-benzoyl-\alpha-L-rhamnopyranonyl)-\beta-D-glucopyranosyl]-kaempferol$
	(27)
S14	3,7,4'-Tri-O-benzyl-5-O-(2",3",4"-tri-O-benzoyl-β-D-glucopyranosyl)-k
	aempferol (29)
S14	3,7,4'-Tri-O-benzyl-5-O-[2",3",4"-tri-O-benzoyl-6"-O-(2"",3"",4""-tri-
	$\textit{O-benzoyl-} \alpha-L-rhamnopyranonyl)-\beta-D-glucopyranosyl]-kaempferol$
	(30)
S15	3,7,4'-Tri-O-acetyl-5-O-[2",3",4"-tri-O-acetyl-6"-O-(2"',3"',4"'-tri-O-a
	cetyl-α-L-rhamnopyranonyl)-β-D-glucopyranosyl]-kaempferol (28)

S16	Key 2D	ey 2D correlations in compound (28)							
S17-S81	¹ H, ¹³ C	NMR, and 2D spectra							
S17-20		1D and 2 D spectra for compound 2							
S21-22		¹ H and ¹³ C NMR spectra for compound 3							
S23-27		1D and 2D spectra for compound 4							
S28-32		1D and 2D spectra for compound 5							
S33-36		1D and 2D spectra for compound 10							
S37-38		¹ H and ¹³ C NMR spectra for compound 11							
S39-40		¹ H and ¹³ C NMR spectra for compound 12							
S41-42		¹ H and ¹³ C NMR spectra for compound 13							
S43-44		¹ H and ¹³ C NMR spectra for compound 14							
S45-46		¹ H and ¹³ C NMR spectra for compound 15							
S47-48		¹ H and ¹³ C NMR spectra for compound 16							
S49-50		¹ H and ¹³ C NMR spectra for compound 17							
S51-52		¹ H and ¹³ C NMR spectra for compound 18							
S53-54		¹ H and ¹³ C NMR spectra for compound 19							
S55-56		¹ H and ¹³ C NMR spectra for compound 20							
S57-58		¹ H and ¹³ C NMR spectra for compound 21							
S59-60		¹ H and ¹³ C NMR spectra for compound 22							
S61-62		¹ H and ¹³ C NMR spectra for compound 23							
S63-64		¹ H and ¹³ C NMR spectra for compound 24							
S65-66		¹ H and ¹³ C NMR spectra for compound 25							
S67-68		¹ H and ¹³ C NMR spectra for compound 26							
S69-70		¹ H and ¹³ C NMR spectra for compound 27							
S71-72		¹ H and ¹³ C NMR spectra for compound 29							
S73-74		¹ H and ¹³ C NMR spectra for compound 30							
S75-81		1D and 2D spectra for compound 28							

3,7,3',4'-Tetra-O-tert-butyldimethylsilyl-quercetin (3)

To a suspension of quercetin (1 g, 3.3 mmol) in dry CH₂Cl₂ (10 mL) was added TBSCI (2.80g, 19 mmol) and DBU (3 mL, 20 mmol) at room temperature. Then the reaction mixture was stirred for another 5 h, at which time TLC showed that all starting material was consumed. Ethyl acetate (100 mL) was added to dilute the reaction mixture, and the mixture was washed successively with water, saturated NaCl solution and dried over Na₂SO₄. Filtration and concentration under reduced pressure to afford the crude product, which was further purified by silica gel chromatography (eluent system: PE : EA = 15 : 1) to afford the fully TBS protected quercetin. The above obtained intermediate was dissolved in CH_2Cl_2/H_2O (v/v = 10 : 1, 10 mL), to which catalytic amount I₂ was added. Then the reaction mixture was heated to reflux for 3 hours, at which time TLC showed that all starting material was consumed. General procedure was adopted to get **3** (1.8 g, 70 %) as light-yellow solid: ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 12.68 \text{ (s, 1 H)}, 7.46 \text{ (m, 1 H)}, 7.35 \text{ (m, 1 H)}, 6.91 \text{ (d, } J = 8.4 \text{ Hz},$ 1 H), 1.01 (s, 9 H), 1.00 (s, 9 H), 0.99 (s, 9 H), 0.84 (s, 9 H), 0.26 (s, 6 H), 0.23 (s, 6 H), 0.21 (s, 6 H), 0.12 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ 178.2, 161.8 (2 C), 156.4, 153.2, 149.2, 146.8, 135.6, 124.4, 123.2, 121.8, 120.8, 106.1, 102.9, 98.2, 25.9 (2 C), 25.7, 25.6, 18.6, 18.4, 18.3, -4.0, -4.1, -4.2, -4.4; HRMS (ESI) calcd for $C_{39}H_{67}O_7Si_4 [M+H]^+$ 759.3958, found 759.3959.

3,7,4'-Tri-O-hexanoyl-kaempferol (5)

To a suspension of kaempferol (2.3 g, 8 mmol) and Et₃N (3.7 mL) in dry acetone (100 mL) was added hexanoly chloride (3.66 mL, 26.4 mmol) dropwise at 0 °C. After hexanoly chloride addition completed, the temperature was raised to rt, and the stirring was continued for another 3 h. Ice water (10 mL) was added to quench the reaction and the acetone was removed under reduced pressure, the resultant reaction mixture was diluted with ethyl acetate and washed with 1 N HCl, saturated Na₂CO₃ and NaCl successively, then dried over Na₂SO₄. Filtration and concentration under reduced pressure afforded the crude product which was further purified by silica gel chromatography (eluent system: PE : EA = 13 : 1) to give **5** (3.1 g, 68%) as light-yellow solid: ¹H NMR (400 MHz, CDCl₃) δ 12.17 (s, 1 H), 7.88 (dd, *J* = 2.0, 6.8

Hz, 2 H), 7.26 (dd, J = 2.0, 6.8 Hz, 2 H), 6.84 (d, J = 2.0 Hz, 1 H), 6.58 (d, J = 2.0 Hz, 1 H), 2.63-2.56 (m, 6 H), 1.80-1.74 (m, 6 H), 1.41-1.33 (m, 12 H), 0.96-0.88 (m, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 176.3, 171.7, 171.1, 170.6, 161.7, 156.5, 156.4, 156.0, 153.2, 132.0, 129.7, 126.7, 122.0, 108.7, 105.4, 101.0, 34.3, 33.7, 31.2, 31.1, 31.0, 24.5, 24.4 (2 C), 22.3, 22.2 (2 C), 13.9, 13.8; HRMS (ESI) calcd for C₃₃H₄₀O₉Na [M+Na]⁺ 603.2565, found 603.2562.

3,7,4'-Tri-*O-tert*-butyldimethylsilyl-5-*O*-(2",3",4",6"-tetra-*O*-benzoyl-β-D-glucop yranosyl)-kaempferol (10)

To a suspension of acceptor 2 (63 mg, 0.1 mmol), donor 6 (115 mg, 0.15 mmol), and activated powdered 4Å MS in dry CH₂Cl₂ (3 mL) was added PPh₃AuNTf₂ (22 mg, 0.03 mmol) under the protection of N₂. The reaction mixture was then stirred at 30 $^{\circ}$ C overnight. Filtration and concentration under reduced pressure gave the crude product which was further purified by silica gel chromatography (eluent system: PE : EA = 15 : 1) to furnish **10** (103 mg, 90%), as a white solid: $[\alpha]_{D}^{28}$ 6.0 (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 7.2 Hz, 2 H), 7.93-7.87 (m, 6 H), 7.82 (d, J = 8.8 Hz, 2 H), 7.52-7.28 (m, 12 H), 6.91 (d, J = 8.8 Hz, 2 H), 6.62 (d, J = 2.4 Hz, 1 H), 6.61 (d, J = 2.4 Hz, 1 H), 6.04-5.95 (m, 2 H), 5.86 (t, J = 9.2 Hz, 1 H), 5.71 (d, J = 6.8 Hz, 1 H), 4.61 (dd, J = 3.1, 12.4 Hz, 1 H), 4.50 (dd, J = 4.7, 12.0 Hz, 1 H), 4.23 (m, 1 H), 1.00 (s, 9 H), 0.95 (s, 9 H), 0.75 (s, 9 H), 0.23 (s, 6 H), 0.22 (s, 3 H), 0.21 (s, 3 H), 0.01 (d, J = 4.0 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 166.0, 165.8, 165.2, 165.1, 159.3, 157.6, 157.1, 155.9, 149.5, 137.7, 133.4, 133.1, 133.0, 132.8, 130.1, 129.8 (2 C), 129.7, 129.6, 129.5, 128.9, 128.8, 128.4, 128.3, 128.1, 124.6, 119.8, 110.8, 109.6, 103.9, 99.9, 73.1, 72.4, 72.0, 69.6, 65.5, 63.0, 25.8, 25.6, 25.5, 18.7, 18.3, 18.2, 1.0, -3.9, -4.0, -4.4; HRMS (ESI) calcd for C₆₇H₇₈O₁₅Si₃Na [M+Na]⁺ 1229.4541, found 1229.4542.

3,7,4'-Tri-*O-tert*-butyldimethylsilyl-5-*O*-(2",3",4"-tri-*O*-benzoyl-6-*O-tert*-butyldi phenylsilyl-β-D-glucopyranosyl)-kaempferol (11)

Similar procedure as that used for the synthesis of **10** was adopted to give **11** (121 mg, 90%) as a white solide: $[\alpha]^{28}{}_{\rm D}$ -0.1 (*c* 2.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 8.0 Hz, 2 H), 7.91-7.88 (m, 4 H), 7.84 (d, *J* = 8.8 Hz, 2 H), 7.62 (d, *J* =

8.0 Hz, 2 H), 7.56-7.19 (m, 15 H), 7.14 (t, J = 7.6 Hz, 2 H), 6.92 (d, J = 8.8 Hz, 2 H), 6.67 (d, J = 2.4 Hz, 1 H), 6.64 (d, J = 2.4 Hz, 1 H), 6.01-5.86 (m, 3 H), 5.69 (d, J =7.2 Hz, 1 H), 3.93-3.89 (m, 1 H), 3.83 (d, J = 2.8 Hz, 2 H), 1.01 (s, 9 H), 0.98 (s, 9 H), 0.94 (s, 9 H), 0.75 (s, 9 H), 0.23 (s, 6 H), 0.19 (s, 3 H), 0.18 (s, 3 H), 0.07 (s, 3 H), -0.04 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 166.0, 165.2, 164.9, 159.4, 157.6, 157.0, 156.4, 149.4, 137.7, 135.6, 135.4, 133.1, 133.0, 132.9, 132.7, 132.6, 130.2, 129.8 (2 C), 129.5, 129.4, 129.3, 129.1, 128.3, 128.2, 128.1, 127.6, 127.5, 124.6, 119.8, 110.8, 109.3, 103.5, 100.1, 75.2, 73.6, 72.0, 68.9, 62.2, 26.5, 25.8, 25.7, 25.5, 19.0, 18.7, 18.3, 18.2, -4.0 (2 C), -4.4 (3 C); HRMS (ESI) calcd for C₇₆H₉₂O₁₄Si₄Na [M+Na]⁺ 1363.5456, found 1363.5458.

3,7,4'-Tri-*O-tert*-butyldimethylsilyl-5-*O*-(2",3",4",6"-tetra-*O*-benzoyl-β-D-galact opyranosyl)-kaempferol (12)

Similar procedure as that used for the synthesis of **10** was adopted to give **12** (120 mg, 99%) as a white solid: $[\alpha]^{28}{}_{D} 47.6 (c \ 1.6, CHCl_3); {}^{1}H NMR (400 MHz, CDCl_3) \delta$ 8.14 (d, *J* = 7.2 Hz, 2 H), 8.06 (d, *J* = 7.2 Hz, 2 H), 7.94 (d, *J* = 7.6 Hz, 2 H), 7.84 (d, *J* = 7.2 Hz, 2 H), 7.82 (d, *J* = 8.8 Hz, 2 H), 7.65 (t, *J* = 7.2 Hz, 1 H), 7.54-7.24 (m, 11 H), 6.91 (d, *J* = 8.8 Hz, 2 H), 6.70 (d, *J* = 2.2 Hz, 1 H), 6.63 (d, *J* = 2.2 Hz, 1 H), 6.27 (dd, *J* = 8.0, 10.4 Hz, 1 H), 6.08 (d, *J* = 3.2 Hz, 1 H), 5.70 (dd, *J* = 3.8, 10.4 Hz, 1 H), 5.65 (d, *J* = 8.0 Hz, 1 H), 4.68-4.62 (m, 1 H), 4.44-4.38 (m, 2 H), 1.00 (s, 9 H), 0.98 (s, 9 H), 0.74 (s, 9 H), 0.26 (s, 6 H), 0.22 (s, 6 H), 0.07 (s, 3 H), -0.10 (s, 3 H); {}^{13}C NMR (100 MHz, CDCl_3) \delta 172.5, 165.9, 165.6, 165.3, 159.4, 157.6, 157.1, 156.4, 149.4, 137.7, 133.5, 133.2 (2 C), 132.8, 130.2, 130.1, 129.8, 129.7, 129.3, 129.1, 128.8, 128.6, 128.4 (2 C), 128.2, 128.1, 124.6, 119.8, 110.7, 109.6, 103.8, 100.6, 71.9, 71.6, 69.4, 68.0, 61.7, 25.8, 25.7, 25.6, 18.7, 18.3, 18.2, -3.9, -4.1, -4.3 (2 C), -4.4; HRMS (ESI) calcd for C₆₇H₇₈O₁₅Si₃Na [M+H]⁺ 1207.4721, found 1207.4726.

3,7,4'-Tri-*O-tert*-butyldimethylsilyl-5-*O*-(2",3",4"-tri-*O*-benzoyl-α-L-rhamnopyr anosyl)-kaempferol (13)

Similar procedure as that used for the synthesis of **10** was adopted to give **13** (73 mg, 72%) as a white solide: $[\alpha]_{D}^{28}$ 17.9 (*c* 1.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 7.2 Hz, 2 H), 8.05 (d, *J* = 7.2 Hz, 2 H), 7.93 (d, *J* = 8.8 Hz, 2 H), 7.89 (d,

J = 7.2 Hz, 2 H), 7.63 (t, J = 7.2 Hz, 1 H), 7.54-7.50 (m, 3 H), 7.44-7.36 (m, 3 H), 7.29-7.25 (m, 2 H), 6.95 (d, J = 8.8 Hz, 2 H), 6.62 (d, J = 2.0 Hz, 1 H), 6.54 (d, J = 2.0 Hz, 1 H), 6.53 (dd, J = 3.4, 10.0 Hz, 1 H), 6.13-6.12 (m, 1 H), 5.89 (s, 1 H), 5.81 (t, J = 10.0 Hz, 1 H), 4.55-4.51 (m, 1 H), 1.33 (d, J = 6.4 Hz, 3 H), 1.01 (s, 9 H), 1.007 (s, 9 H), 0.36 (s, 3 H), 0.31 (s, 3 H), 0.294 (s, 3 H), 0.291 (s, 3 H), 0.24 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 166.0, 165.5, 164.9, 159.7, 157.9, 157.1, 155.5, 149.1, 138.0, 133.4, 133.2, 132.8, 130.1, 130.0, 129.9, 129.7, 129.6, 129.5, 129.4, 128.6, 128.3, 128.2, 124.6, 119.8, 110.2, 105.3, 102.6, 96.1, 72.0, 70.7, 69.7, 68.2, 26.0, 25.7 (2 C), 25.6, 19.0, 18.3, 18.2, 17.6, -3.4 (2 C), -4.3, -4.4 (2 C). HRMS (MALDI) calcd for C₆₀H₇₅O₁₃Si₃ [M+H]⁺ 1087.4783, found 1087.4510.

3,7,3',4'-Tetra-*O-tert*-butyldimethylsilyl-5-*O*-(2",3",4",6"-tetra-*O*-benzoyl-β-D-gl ucopyranosyl)-quercetin (14)

Similar procedure as that used for the synthesis of **10** was adopted to give **14** (125 mg, 93%) as a white solide: $[\alpha]^{28}{}_{\rm D}$ 7.3 (*c* 1.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 7.2 Hz, 2 H), 7.92 (d, *J* = 6.5 Hz, 2 H), 7.88 (d, *J* = 7.2 Hz, 2 H), 7.52-7.41 (m, 5 H), 7.37-7.26 (m, 9 H), 6.88 (d, *J* = 8.4 Hz, 2 H), 6.62 (d, *J* = 2.2 Hz, 1 H), 6.56 (d, *J* = 2.2 Hz, 1 H), 6.04-5.93 (m, 2 H), 5.85 (t, *J* = 9.6 Hz, 1 H), 5.71 (d, *J* = 7.2 Hz, 1 H), 4.96 (dd, *J* = 3.2, 12.0 Hz, 1 H), 4.49 (dd, *J* = 4.8, 12.0 Hz, 1 H), 4.22-4.17 (m, 1 H), 1.00 (s, 9 H), 0.99 (s, 9 H), 0.94 (s, 9 H), 0.73 (s, 9 H), 0.223 (s, 3 H), 0.218 (s, 3 H), 0.21 (s, 3 H), 0.20 (s, 6 H), 0.198 (s, 3 H), -0.01 (s, 3 H), -0.02 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 166.0, 165.8, 165.2, 165.1, 159.3, 157.5, 155.9, 159.6, 148.6, 146.6, 137.6, 133.3, 133.1, 133.0, 132.8, 130.1, 129.8 (2 C), 129.7, 129.6, 129.5, 128.9, 128.8, 128.3, 128.2, 128.1, 124.7, 123.0, 121.4, 120.7, 110.9, 109.9, 103.8, 100.0, 73.1, 72.4, 72.0, 69.6, 62.9, 25.9, 25.7, 25.5, 15.6, 18.5, 18.4, 18.2, -4.0, -4.1 (2 C), -4.2 (3 C), -4.4 (2 C); HRMS (ESI) calcd for C₇₃H₉₂O₁₆Si₄Na [M+Na]⁺ 1359.5355, found 1359.5361.

3,7,3',4'-Tetra-*O-tert*-butyldimethylsilyl-5-*O*-(2",3",4"-tri-*O*-benzoyl-6-*O-tert*-bu tyldiphenylsilyl-β-D-glucopyranosyl)-quercetin (15)

Similar procedure as that used for the synthesis of **10** was adopted to give **15** (121 mg, 90%) as a white solide: $[\alpha]_{D}^{28}$ -0.1 (*c* 2.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ

8.08 (d, J = 7.6 Hz, 2 H), 7.90 (d, J = 8.0 Hz, 4 H), 7.61 (d, J = 6.8 Hz, 2 H), 7.55-7.24 (m, 15 H), 7.20 (t, J = 7.2 Hz, 2 H), 7.15 (t, J = 7.6 Hz, 2 H), 6.89 (d, J = 8.4 Hz, 1 H), 6.67 (d, J = 2.1 Hz, 1 H), 6.60 (d, J = 2.1 Hz, 1 H), 5.99-5.92 (m, 2 H), 5.88 (t, J = 9.2 Hz, 1 H), 5.69 (d, J = 7.2 Hz, 1 H), 3.91 (m, 1 H), 3.82 (d, J = 2.5 Hz, 1 H), 1.00 (s, 9 H), 0.99 (s, 9 H), 0.97 (s, 9 H), 0.94 (s, 9 H), 0.74 (s, 9 H), 0.22 (s, 6 H), 0.20 (s, 6 H), 0.19 (s, 3 H), 0.188 (s, 3 H), 0.04 (s, 3 H), -0.05 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 166.0, 165.2, 164.9, 159.4, 157.6, 156.4, 149.5, 148.6, 146.6, 137.7, 135.6, 135.4, 133.1, 133.0 (2 C), 132.7, 132.6, 130.2, 129.8 (3 C), 129.5, 129.4 (2 C), 129.1, 128.3, 128.2, 128.0, 127.6, 127.5, 124.8, 123.0, 121.4, 120.7, 110.9, 109.5, 103.5, 100.2, 75.2, 73.6, 72.1, 69.0, 62.2, 26.5, 25.9, 25.8, 25.5, 19.0, 18.7, 18.6, 18.4, 18.2, -4.1 (3 C), -4.2, -4.3, -4.4; HRMS (ESI) calcd for C₇₆H₉₂O₁₄Si₄Na [M+Na]⁺ 1363.5456, found 1363.5458.

3,7,3'4'-Tetra-*O-tert*-butyldimethylsilyl-5-*O*-(2",3",4",6"-tetra-*O*-benzoyl-β-D-ga lactopyranosyl)-quercetin (16)

Similar procedure as that used for the synthesis of 10 was adopted to give 16 (87 mg, 70%) as a white solide: $[\alpha]_{D}^{28}$ 41.7 (*c* 1.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 7.2 Hz, 2 H), 8.06 (d, J = 7.2 Hz, 2 H), 7.94 (d, J = 7.2 Hz, 7.84 (d, J = 7.2 Hz, 2 H), 7.64 (t, J = 7.2 Hz, 1 H), 7.54-7.24 (m, 13 H), 6.88 (d, J = 8.4 Hz, 1 H), 6.70 (d, J = 2.2 Hz, 1 H), 6.58 (d, J = 2.2 Hz, 1 H), 6.25 (dd, J = 8.0, 10.4 Hz, 1 H), 6.07 (d, *J* = 3.3 Hz, 1 H), 5.70 (dd, *J* = 3.4, 10.4 Hz, 1 H), 5.65 (d, *J* = 8.0 Hz, 1 H), 4.66-4.61 (m, 1 H), 4.44-4.37 (m, 1 H), 1.00 (s, 9 H), 0.998 (s, 9 H), 0.990 (s, 9 H), 0.98 (s, 9 H), 0.72 (s, 9 H), 0.26 (d, J = 1.8 Hz, 6 H), 0.22 (s, 6 H), 0.20 (s, 6 H), 0.03(s, 3 H), -0.12 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 165.9, 165.6, 165.3, 159.4, 157.6, 156.3, 149.6, 148.6, 146.6, 137.7, 133.5, 133.2 (2 C), 132.8, 130.1, 130.0, 129.8 (2 C), 129.7, 129.3, 129.2, 129.1, 128.8, 128.6, 128.5, 128.4 (2 C), 128.3 (2 C), 128.1, 126.3, 124.7, 123.0, 121.4, 120.7, 110.8, 109.3, 103.7, 100.6, 71.9, 71.6, 69.5, 68.0, 61.7, 25.9, 25.7, 25.6, 18.7, 18.6, 18.4, 18.3, -4.1, -4.2 (2 C), -4.3 (2 C); HRMS (ESI) calcd for $C_{73}H_{93}O_{16}Si_4 [M+H]^+$ 1338.5560, found 1338.5561. 3,7,3',4'-Tetra-O-tert-butyldimethylsilyl-5-O-(2",3",4"-tri-O-benzoyl-α-L-rhamn opyranosyl)-quercetin (17)

Similar procedure as that used for the synthesis of **10** was adopted to give **17** (120 mg, 99%) as a white solide: $[\alpha]^{28}{}_{\rm D}$ 7.7 (*c* 1.9, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 7.2 Hz, 2 H), 8.04 (d, *J* = 7.2 Hz, 2 H), 7.88 (d, *J* = 7.2 Hz, 2 H), 7.64 (t, *J* = 7.2 Hz, 1 H), 7.56-7.49 (m, 4 H), 7.43-7.36 (m, 4 H), 7.28 (t, *J* = 8.0 Hz, 2 H), 6.92 (d, *J* = 8.4 Hz, 1 H), 6.58 (d, *J* = 2.0 Hz, 1 H), 6.54 (d, *J* = 2.0 Hz, 1 H), 6.52 (dd, *J* = 3.4, 10.0 Hz, 1 H), 6.12 (m, 1 H), 5.88 (bs, 1 H), 5.80 (t, *J* = 6.0 Hz, 1 H), 4.56-4.52 (m, 1 H), 1.02 (s, 9 H), 1.01 (s, 18 H), 0.83 (s, 9 H), 0.33 (s, 3 H), 0.29 (s, 6 H), 0.28 (s, 3 H), 0.24 (s, 6 H), 0.23 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 166.0, 165.5, 164.9, 159.7, 157.9, 155.6, 149.2, 148.6, 146.6, 138.0, 133.4, 133.2, 132.8, 130.0 (2 C), 129.7, 129.6 (2 C), 129.4, 128.6, 128.3, 128.1, 124.8, 123.0, 121.3, 120.7, 110.2, 105.2, 96.1, 72.0, 70.7, 69.7, 68.2, 26.0, 25.9, 25.6, 19.0, 18.6, 18.5, 18.3, 17.6, -3.5, -3.6, -4.0 (2 C), -4.1, -4.2, -4.3, -4.4; HRMS (ESI) calcd for C₆₆H₈₉O₁₄Si₄Na [M+Na]⁺ 1217.5324, found 1217.5314.

3,7,4'-Tri-*O*-benzyl-5-*O*-(2",3",4",6"-tetra-*O*-benzoyl-β-D-glucopyranosyl)-kaem pferol (18)

Similar procedure as that used for the synthesis of **10** was adopted to give **18** (108 mg, 87%) as a white solide: $[\alpha]^{28}_{D}$ 9.0 (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 7.2 Hz, 2 H), 7.98-7.89 (m, 6 H), 7.53-7.20 (m, 29 H), 6.99 (d, *J* = 12.8 Hz, 2 H), 6.84 (d, *J* = 2.3 Hz, 1 H), 6.64 (d, *J* = 2.3 Hz, 1 H), 6.07 (t, *J* = 9.2 Hz, 1 H), 6.00 (dd, *J* = 7.2, 9.2 Hz, 1 H), 5.86 (t, *J* = 9.6 Hz, 1 H), 5.70 (d, *J* = 7.2 Hz, 1 H), 5.12 (s, 2 H), 5.06 (s, 2 H), 4.77 (d, *J* = 10.8 Hz, 1 H), 4.72 (dd, *J* = 2.9, 12.0 Hz, 1 H), 4.70 (d, *J* = 10.8 Hz, 1 H), 4.52 (dd, *J* = 5.6, 12.0 Hz, 1 H), 4.31-4.26 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 166.0, 165.8, 165.3, 165.2, 162.0, 160.2, 157.8, 156.6, 153.3, 139.2, 137.0, 136.4, 135.6, 133.4, 133.1, 132.9, 132.7, 130.1, 130.0, 129.8 (2 C), 129.6, 129.4, 128.9, 128.8, 128.7, 128.6, 128.4, 128.3, 128.2 (2 C), 128.1, 128.0 (2 C), 127.8, 127.4 (2 C), 123.4, 114.5, 111.0, 104.7, 100.2, 97.6, 73.3, 72.8, 72.6, 71.8, 70.4, 70.0, 69.5, 62.8. HRMS (MALDI) calcd for C₇₀H₅₅O₁₅ [M+H]⁺ 1135.1688, found 1135.3535.

3,7,4'-Tri-*O*-benzyl-5-*O*-(2",3",4"-tri-*O*-benzoyl-6-*O*-*tert*-butyldiphenylsilyl-β-Dglucopyranosyl)-kaempferol (19) Similar procedure as that used for the synthesis of **10** was adopted to give **19** (87 mg, 69%) as a white solide: $[\alpha]^{28}{}_{D} 6.1 (c \ 1.4, CHCl_3)$; ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 7.6 Hz, 2 H), 7.93 (dd, J = 8.0, 8.4 Hz, 6 H), 7.65 (d, J = 7.2 Hz, 2 H), 7.56 (d, J = 7.2 Hz, 3 H), 7.46-7.13 (m, 29 H), 6.99 (d, J = 8.9 Hz, 2 H), 6.92 (d, J = 1.8 Hz, 1 H), 6.71 (d, J = 1.8 Hz, 1 H), 6.02-5.95 (m, 2 H), 5.81 (t, J = 9.6 Hz, 1 H), 5.65 (d, J = 6.8 Hz, 1 H), 5.12 (s, 2 H), 5.02 (s, 2 H), 4.74 (AB, 2 H), 3.98 (m, 1 H), 3.89-3.82 (m, 2 H), 0.97 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 165.9, 165.4, 164.9, 162.2, 160.2, 158.0, 157.1, 153.2, 139.3, 137.1, 136.5, 135.6, 135.5, 135.4, 133.2, 133.0, 132.9, 132.8, 132.6, 130.1, 130.0, 129.9, 129.8, 129.5, 129.2, 129.1, 128.8, 128.6, 128.3, 128.2, 128.1, 128.0 (2 C), 127.8, 127.6 (2 C), 127.4, 123.5, 114.5, 111.2, 105.3, 100.7, 97.2, 75.5, 73.3, 71.9, 70.4, 70.0, 69.1, 62.5, 26.5, 19.0; HRMS (ESI) calcd for C₇₉H₆₈O₁₄SiNa [M+Na]⁺ 1291.4271, found 1291.4280.

3,7,4'-Tri-*O*-benzyl-5-*O*-(2",3",4",6"-tetra-*O*-benzoyl-β-D-galactopyranosyl)-kae mpferol (20)

Similar procedure as that used for the synthesis of **10** was adopted to give **20** (123 mg, 99%) as a white solide: $[\alpha]^{28}_{D}$ 70.8 (*c* 1.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 7.2 Hz, 2 H), 8.05 (d, *J* = 7.2 Hz, 2 H), 8.00 (d, *J* = 7.2 Hz, 2 H), 7.91 (d, *J* = 8.8 Hz, 2 H), 7.86 (d, *J* = 7.2 Hz, 2 H), 7.64 (t, *J* = 7.4 Hz, 1 H), 7.51-7.14 (m, 22 H), 6.98 (d, *J* = 9.0 Hz, 2 H), 6.95 (d, *J* = 2.3 Hz, 1 H), 6.68 (d, *J* = 2.3 Hz, 1 H), 6.34 (dd, *J* = 8.0, 10.4 Hz, 1 H), 6.09 (d, *J* = 2.9 Hz, 1 H), 5.74 (dd, *J* = 3.4, 10.4 Hz, 1 H), 5.60 (d, *J* = 8.0 Hz, 1 H), 5.11 (s, 2 H), 5.09 (s, 2 H), 4.71 (dd, *J* = 4.2, 11.2 Hz, 1 H), 4.62 (AB, 2 H), 4.52-4.45 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 166.0, 165.6, 165.4, 162.1, 160.1, 157.9, 157.3, 153.2, 139.3, 137.0, 136.4, 135.6, 133.6, 133.2, 133.1, 132.6, 130.0 (2 C), 129.9, 129.8, 129.7, 129.3, 128.9, 128.7 (2 C), 128.6, 128.3, 128.2, 128.1, 128.0, 127.8, 127.4, 123.4, 114.5, 111.0, 104.6, 101.3, 97.3, 73.2, 71.9, 70.4, 70.0, 69.2, 68.1, 62.4; HRMS (ESI) calcd for C₇₀H₅₄O₁₅ [M+H]⁺ 1135.3535, found 1135.3527.

3,7,4'-Tri-*O*-benzyl-2",3",4"-tri-*O*-benzoyl-α-L-rhamnopyranosyl)-kaempferol (21)

Similar procedure as that used for the synthesis of 10 was adopted to give 21 (100 mg,

99%) as a white solide: $[\alpha]^{28}{}_{D} 22.3 (c \ 0.6, CHCl_3); {}^{1}H \ NMR (400 \ MHz, CDCl_3) \delta$ 8.17 (d, *J* = 7.6 Hz, 2 H), 8.05 (d, *J* = 7.6 Hz, 2 H), 8.00 (d, *J* = 8.4 Hz, 2 H), 7.89 (d, *J* = 7.6 Hz, 2 H), 7.64 (t, *J* = 7.2 Hz, 1 H), 7.53-7.26 (m, 23 H), 7.03 (d, *J* = 8.4 Hz, 2 H), 6.80 (s, 1 H), 6.72 (s, 1 H), 6.43 (dd, *J* = 3.4, 10.4 Hz, 1 H), 6.14 (s, 1 H), 5.92 (s, 1 H), 5.84 (t, *J* = 10.0 Hz, 1 H), 5.22-5.10 (m, 6 H), 4.61-4.58 (m, 1 H); {}^{13}C \ NMR (100 MHz, CDCl_3) \delta 173.2, 166.0, 165.4, 165.2, 162.4, 160.2, 158.4, 156.2, 153.7, 139.6, 137.0, 136.5, 135.7, 133.4, 133.2, 132.9, 130.2, 030.0, 129.9, 129.7, 129.5, 129.4, 129.3, 129.1, 128.7, 128.6 (2 C), 128.4, 128.2, 128.1, 127.9, 127.5 (2 C), 123.5, 114.6, 110.7, 101.4, 96.6, 96.5, 74.0, 71.9, 70.7, 70.5, 70.0, 69.9, 68.4; HRMS (ESI) calcd for C₆₃H₅₀O₁₃Na [M+Na]⁺ 1037.3144, found 1037.3140.

3,7,4'-Tri-*O*-hexanoyl-5-*O*-(2",3",4",6"-tetra-*O*-benzoyl-β-D-glucopyranosyl)-ka empferol (22)

Similar procedure as that used for the synthesis of **10** was adopted to give **22** (115 mg, 99%) as a white solide: $[\alpha]^{28}_{D} 11 (c 1.3, CHCl_3); {}^{1}H NMR (400 MHz, CDCl_3) \delta$ 8.01-7.90 (m, 8 H), 7.80 (d, *J* = 8.8 Hz, 2 H), 7.54-7.43 (m, 4 H), 7.40-7.30 (m, 8 H), 7.21 (d, *J* = 8.8 Hz, 2 H), 7.08 (d, *J* = 2.1 Hz, 1 H), 6.96 (d, *J* = 2.1 Hz, 1 H); 6.03 (t, *J* = 9.2 Hz, 1 H), 5.94 (dd, *J* = 7.2, 8.8 Hz, 1 H), 5.82 (t, *J* = 9.2 Hz, 1 H), 5.64 (d, *J* = 7.2 Hz, 1 H), 4.73 (dd, *J* = 3.2, 12.0 Hz, 1 H), 4.50 (dd, *J* = 5.6, 12.4 Hz, 1 H), 4.33 (m, 1 H), 2.60 (t, *J* = 7.6 Hz, 2 H), 2.46-2.41 (m, 4 H), 1.79-1.60 (m, 6 H), 1.43-1.28 (m, 12 H), 0.95-0.88 (m, 9 H); 13 C NMR (100 MHz, CDCl₃) δ 171.7, 170.9, 170.4, 169.4, 166.0, 165.8, 165.3, 165.1, 157.1, 156.5, 154.2, 153.3, 152.7, 134.1, 133.4, 133.2, 133.0, 132.7, 130.0, 129.9, 129.8, 129.7, 129.5, 129.4, 128.9, 128.8, 128.4, 128.3 (2 C), 128.0, 127.1, 121.8, 113.8, 109.5, 106.5, 100.0, 72.7, 71.7, 69.4, 62.9, 34.3, 34.2, 33.7, 31.2, 31.1, 24.5, 24.3, 24.2, 22.3, 13.9; HRMS (ESI) calcd for C₆₇H₆₆O₁₈Na [M+Na]⁺ 1181.4141, found 1181.4148.

3,7,4'-Tri-*O*-hexanoyl-5-*O*-(2",3",4"-tri-*O*-benzoyl-6-*O*-tert-butyldiphenylsilyl-β-D-glucopyranosyl)-kaempferol (23)

Similar procedure as that used for the synthesis of **10** was adopted to give **23** (127 mg, 98%) as a white solide: $[\alpha]^{28}{}_{D}$ 14.7 (*c* 1.36, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 7.2 Hz, 2 H), 7.90-7.86 (m, 4 H), 7.81 (d, *J* = 8.8 Hz, 2 H), 7.57-7.27 (m,

14 H), 7.25-7.18 (m, 5 H), 7.16 (d, J = 2.2 Hz, 1 H), 7.03 (d, J = 2.2 Hz, 1 H), 5.95-5.93 (m, 2 H), 5.78-5.73 (m, 1 H), 5.61 (d, J = 7.2 Hz, 1 H), 4.05-4.01 (m, 1 H), 6.90-3.82 (m, 2 H), 2.60 (t, J = 3.4 Hz, 2 H), 2.46-2.40 (m, 4 H), 1.81-1.74 (m, 2 H), 1.70-1.60 (m, 4 H), 1.42-1.26 (m, 12 H), 0.96-0.86 (m, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 170.9, 170.4, 169.4, 165.9, 165.4, 164.9, 157.2, 157.1, 154.2, 153.2, 152.7, 135.5, 135.4, 134.1, 133.2, 133.0, 132.8, 132.5, 130.0, 129.9 (2 C), 129.8, 129.6, 129.4, 129.2, 129.0, 128.3, 128.2, 128.0, 127.6, 127.1, 121.8, 113.8, 109.3, 106.4, 100.5, 73.1, 71.7, 68.9, 62.5, 34.3 (2 C), 33.7, 31.2 (2 C), 31.1, 26.6, 24.5, 24.2, 22.2 (2 C), 19.1, 13.9, 13.8 (2 C); HRMS (MALDI) calcd for C₇₆H₈₀O₁₇Si₃Na [M+Na]⁺ 1315.5062, found 1315.5057.

3,7,4'-Tri-*O*-hexanoyl-5-*O*-(2",3",4",6"-tetra-*O*-benzoyl-β-D-galactopyranosyl)-k aempferol (24)

Similar procedure as that used for the synthesis of **10** was adopted to give **24** (115 mg, 99%) as a white solide: $[\alpha]^{28}_{D} 66.3 (c 2.4, CHCl_3); {}^{1}H NMR (400 MHz, CDCl_3) \delta$ 8.13 (d, *J* = 7.2 Hz, 2 H), 8.01 (dd, *J* = 7.2, 8.8 Hz, 4 H), 7.85 (d, *J* = 7.2 Hz, 2 H), 7.79 (d, *J* = 8.8 Hz, 2 H), 7.64 (t, *J* = 7.6 Hz, 1 H), 7.58-7.25 (m, 11 H), 7.20 (d, *J* = 8.8 Hz, 2 H), 7.12 (d, *J* = 2.1 Hz, 1 H), 7.03 (d, *J* = 2.0 Hz, 1 H), 6.27 (dd, *J* = 8.0, 10.3 Hz, 1 H), 6.07 (d, *J* = 3.2 Hz, 1 H), 4.68 (dd, *J* = 6.8, 11.1 Hz, 1 H), 4.55-4.47 (m, 2 H), 2.59 (t, *J* = 7.6 Hz, 2 H), 2.44-2.37 (m, 4 H), 1.78-1.57 (m, 6 H), 1.40-1.28 (m, 12 H), 0.95-0.88 (m, 9 H); {}^{13}C NMR (100 MHz, CDCl_3) \delta 171.7, 171.0, 170.4, 169.3, 166.0, 165.6, 165.5, 157.1 (2 C), 154.2, 153.3, 152.7, 134.1, 133.6, 133.2 (2 C), 132.6, 130.1, 130.0, 129.8 (2 C), 129.4, 128.9, 128.7, 128.6, 128.4, 128.3, 128.0, 127.0, 121.8, 113.7, 109.1, 106.6, 101.0, 71.9, 71.6, 69.1, 68.0, 62.2, 34.3, 34.2, 33.6, 31.2 (2 C), 31.1, 24.5, 24.2 (2 C), 22.2, 13.4; HRMS (ESI) calcd for C₆₇H₆₆O₁₈Na [M+Na]⁺ 1181.4146, found 1181.4140.

3,7,4'-Tri-*O*-hexanoyl-2",3",4"-tri-*O*-benzoyl-α-L-rhamnopyranosyl)-kaempfero l (25)

Similar procedure as that used for the synthesis of **10** was adopted to give **25** (85 mg, 82%) as a white solide: $[\alpha]_{D}^{28}$ 15.9 (*c* 0.9, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 7.2 Hz, 2 H), 8.04 (d, *J* = 7.6 Hz, 2 H), 7.90 (t, *J* = 5.8, 8.4 Hz, 4 H), 7.64

(t, J = 7.4 Hz, 1 H), 7.54-7.49 (m, 3 H), 7.44-7.37 (m, 3 H), 7.29-7.24 (m, 4 H), 7.10 (d, J = 1.8 Hz, 1 H), 6.94 (d, J = 1.8 Hz, 1 H), 6.36 (dd, J = 3.3, 10.1 Hz, 1 H), 6.05 (s, 1 H), 5.89 (s, 1 H), 5.81 (t, J = 10.0 Hz, 1 H), 4.44-4.38 (m, 1 H), 2.68 (t, J = 7.2 Hz, 2 H), 2.62 (td, J = 3.3, 7.6 Hz, 4 H), 1.80 (dd, J = 7.2, 14.4 Hz, 6 H), 1.41-1.39 (m, 12 H), 1.35 (d, J = 6.2 Hz, 3 H), 0.96 (dd, J = 6.8, 13.0 Hz, 6 H), 0.86 (t, J = 6.8 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 171.0 (2 C), 165.9, 165.4, 165.0, 157.6, 156.1, 154.6, 153.6, 152.8, 134.2, 133.5, 133.2, 132.8, 129.9, 129.7, 129.5, 129.4, 129.3 (2 C), 128.6, 128.3, 128.2, 127.1, 121.9, 113.1, 105.7, 105.4, 96.3, 71.6, 70.6, 69.7, 68.3, 34.3, 33.9, 31.2 (2 C), 31.1, 24.5, 24.4 (2 C), 22.3, 22.2, 17.6, 13.8 (3 C); HRMS (ESI) calcd for C₆₀H₆₂O₁₆Na [M+Na]⁺ 1061.3934, found 1061.3930.

3,7,4'-Tri-*O*-hexanoyl-5-*O*-(2",3",4"-tri-*O*-benzoyl-β-D-glucopyranosyl)-kaempfe rol (26)

To a solution of 23 (70 mg, 0.06 mmol) in THF (2 mL) was added HOAc (0.02 mL, 0.36 mmol) and TBAF (1 mmol/ml in THF, 0.18 mL, 0.18 mmol) at 0 °C. Then the reaction mixture was warmed to room temperature and stirred overnight. Ethly acetate (20 mL) was added and the solution was washed with water, saturated NaHCO₃ and brine successively, and then dried over Na₂SO₄. Filtration and concentration under reduced pressure to afford the crude product which was further purified by silica gel chromatography (eluent system: PE : EA = 4 : 1) to afford 26 (32 mg, 57%) as a white solide: $[\alpha]^{28}_{D}$ -9.6 (c 1.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 7.2 Hz, 2 H), 7.99 (d, J = 7.6 Hz, 2 H), 7.90 (d, J = 8.4 Hz, 2 H), 7.81 (d, J = 8.4 Hz, 2 H), 7.55-7.28 (m, 9 H), 7.22 (d, J = 8.4 Hz, 2 H), 7.08 (d, J = 2.1 Hz, 1 H), 7.03 (d, J = 2.1 Hz, 1 Hz, 1 H), 7.03 (d, J = 2.1 Hz, 1 H 2.1 Hz, 1 H), 6.05 (t, J = 9.2 Hz, 1 H), 5.95 (dd, J = 7.2, 9.6 Hz, 1 H), 5.62 (d, J = 7.6 Hz, 1 H), 5.62 (dd, J = 7.6, 9.6 Hz, 1 H), 3.98-3.95 (m, 1 H), 3.88-3.80 (m, 2 H), 2.60 (t, J = 7.6 Hz, 4 H), 2.48 (t, J = 7.6 Hz, 2 H), 1.79-1.72 (m, 4 H), 1.69-1.62 (m, 2 H), 1.40-1.29 (m, 12 H), 0.95-0.89 (m, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 171.2, 170.5, 169.6, 165.8, 165.7, 165.2, 157.2, 156.3, 154.1, 153.4, 152.8, 134.1, 133.5, 133.2, 132.7, 129.9 (2 C), 129.8, 129.7, 129.4, 128.9, 128.7, 128.4, 128.2, 128.0, 127.0, 121.8, 76.0, 72.5, 71.7, 69.8, 61.7, 34.3 (2 C), 33.7, 31.2, 31.1, 24.4, 24.3, 24.2, 22.2, 13.9, 13.8. HRMS (MALDI) calcd for $C_{60}H_{63}O_{17}$ [M+H]⁺ 1055.4040, found

1055.4060.

3,7,4'-Tri-*O*-hexanoyl-5-*O*-[2",3",4"-tri-*O*-benzoyl-6"-*O*-(2"',3"',4"'-tri-*O*-benzo yl-α-L-rhamnopyranonyl)-β-D-glucopyranosyl]-kaempferol (27)

Similar procedure as that used for the synthesis of **10** was adopted to give **27** (36 mg, 82%) as a white solide: $[\alpha]_{D}^{28}$ 33.0 (*c* 0.57, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.03 (dd, J = 7.2, 7.6 Hz, 6 H), 7.95 (t, J = 8.0 Hz, 4 H), 7.78 (d, J = 8.8 Hz, 4 H), 7.59 (t, *J* = 7.2 Hz, 1 H), 7.52-7.30 (m, 15 H), 7.23-7.17 (m, 4 H), 7.08 (d, *J* = 1.8 Hz, 1 H), 7.05 (s, 1 H), 6.05 (t, J = 9.2 Hz, 1 H), 5.94 (dd, J = 7.2, 9.2 Hz, 1 H), 5.72-5.54 (m, 5 H), 4.98 (s, 1 H), 4.30 (t, J = 6.8 Hz, 1 H), 4.10-3.90 (m, 3 H), 2.60 (t, J = 7.6Hz, 2 H), 2.46-2.39 (m, 4 H), 1.81-1.73 (m, 2 H), 1.67-1.53 (m, 4 H), 1.43-1.18 (m, 15 H), 0.96-0.88 (m, 6 H), 0.82 (t, J = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 171.1, 170.4, 169.5, 165.7, 165.3, 165.1 (2 C), 157.2, 156.4, 154.3, 153.3, 152.7, 134.1, 133.5, 133.3, 133.2, 133.1, 132.9, 132.7, 130.0, 129.9, 129.8, 129.7, 129.6, 129.5, 129.3, 128.9, 128.8, 128.5 (2 C), 128.4, 128.3, 128.2, 128.0, 127.2, 121.8, 113.8, 109.8, 106.8, 100.2, 98.1, 74.4, 72.5, 71.7 (2 C), 70.4, 69.9, 69.7, 67.2, 66.9, 34.4, 34.1, 33.7, 31.2, 31.0, 29.7, 24.5, 24.2 (2 C), 22.3, 22.2, 17.5, 13.9 (2 C), 13.8. HRMS (MALDI) calcd for $C_{87}H_{85}O_{24}$ [M+H]⁺ 1513.5419, found 1513.5425. 3,7,4'-Tri-O-benzyl-5-O-(2",3",4"-tri-O-benzoyl-β-D-glucopyranosyl)-kaempfero l (29)

Similar procedure as that used for the synthesis of **26** was adopted to give **29** (130 mg, 99%) as a white solide: $[\alpha]^{28}{}_{D}$ 4.7 (*c* 1.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.06 (t, *J* = 7.6 Hz, 4 H), 7.96 (dd, *J* = 6.4, 8.0 Hz, 4 H), 7.60 (t, *J* = 7.2 Hz, 1 H), 7.46-7.24 (m, 23 H), 7.01 (d, *J* = 8.4 Hz, 2 H), 6.87 (s, 1 H), 6.68 (d, *J* = 10.4 Hz, 1 H), 6.09-6.02 (m, 2 H), 5.76-5.69 (m, 2 H), 5.13 (s, 4 H), 4.74 (s, 2 H), 4.03 (s, 1 H), 3.94 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 165.9, 165.6, 165.0, 162.3, 160.0, 157.6, 157.4, 152.9, 139.2, 136.9, 136.4, 135.8, 133.3, 133.0, 132.6, 129.9, 129.8 (2 C), 129.0, 128.9, 128.8, 128.5, 128.3, 128.2, 128.1, 128.0, 127.9, 127.7, 127.6, 127.3, 123.2, 114.3, 110.3, 102.1, 100.5, 97.0, 76.7, 76.0, 73.3, 73.0, 71.6, 70.4, 69.8, 69.7, 61.5; HRMS (ESI) calcd for C₆₃H₅₀O₁₄Na [M+Na]⁺ 1053.3093, found 1053.3104. **3,7,4'-Tri-***O***-benzyl-5-***O***-[2",3",4"-tri-***O***-benzoyl-6"-***O***-(2"",3",4"-tri-***O***-benzoyl**

-α-L-rhamnopyranonyl)-β-D-glucopyranosyl]-kaempferol (30)

Similar procedure as that used for the synthesis of **10** was adopted to give **27** (106 mg, 67%) as a white solide: $[\alpha]^{28}_{D} 21.5 (c 1.2, CHCl_3); {}^{1}H NMR (400 MHz, CDCl_3) \delta$ 8.1 (d, *J* = 7.2 Hz, 2 H), 8.03 (dd, *J* = 7.6, 8.4 Hz, 4 H), 7.94 (d, *J* = 7.6 Hz, 4 H), 7.87 (d, *J* = 8.8 Hz, 2 H), 7.87 (d, *J* = 7.2 Hz, 2 H), 7.57-7.18 (m, 33 H), 6.97 (d, *J* = 8.8 Hz, 2 H), 6.91 (d, *J* = 2.0 Hz, 1 H), 6.49 (d, *J* = 2.0 Hz, 1 H), 6.09 (t, *J* = 9.2 Hz, 1 H), 6.00 (dd, *J* = 7.2, 9.2 Hz, 1 H), 5.75-5.54 (m, 5 H), 5.11 (s, 2 H), 5.10 (AB, 2 H), 4.99 (s, 1 H), 4.80 (AB, 2 H), 4.31-4.25 (m, 1 H), 4.11-4.02 (m, 1 H), 4.02-3.91 (m, 2 H); 1³C NMR (100 MHz, CDCl₃) δ 172.7, 165.7, 165.3, 165.1, 162.1, 160.1, 157.8, 156.4, 153.3, 139.2, 137.0, 136.4, 135.8, 133.4, 133.2 (2 C), 133.1, 132.8, 132.7, 130.1, 130.0, 129.9 (2 C), 129.8, 129.7, 129.6, 129.4, 129.2, 128.9, 128.8, 128.7, 128.6 (2 C), 128.4, 128.3, 128.2, 128.1, 128.0, 127.8, 127.4, 127.3, 123.4, 114.4, 111.1, 105.2, 100.2, 98.0, 97.7, 74.4, 73.3, 72.6, 71.8, 71.7, 70.4, 69.9, 69.8 (2 C), 66.9 (2 C); HRMS (ESI) calcd for C₉₀H₇₃O₂₁ [M+H]⁺ 1489.4639, found 1489.4647.

3,7,4'-Tri-*O*-acetyl-5-*O*-[2",3",4"-tri-*O*-acetyl-6"-*O*-(2"',3"',4"'-tri-*O*-acetyl-α-Lrhamnopyranonyl)-β-D-glucopyranosyl]-kaempferol (28)

To a solution of **30** in MeOH (5 mL) and THF (5 mL) was added NaOMe (in MeOH solution). The reaction mixture was stirred at room temperature for 6 hours, then ⁺H resin was added to quench the reaction. Filtration and concentration to get the crude deacylated intermediate which was not purified for the next hydrogenolysis step. The above obtained intermediate was dissolved in ethyl acetate (2 mL) and ethanol (2 mL), to which 10% Pd/C was added. The reaction flask was evacuate and then refilled with H₂. After repeating this process three times, the mixture was stirred at room temperature for another 24 hours. Filtration and concentration yield the crude **28a** which was put directly to next acetylation step.

To a solution of **28a** in dry pyridine (1 mL) was added Ac_2O (1 mL) dropwise at 0 °C. Then the addition was completed, the temperature was raised to room temperature. The stirring was continued for another 36 hours, at which time TLC showed that the starting material disappeared and one new compound was formed. Ethyl acetate (30 mL) was added to dilute the reaction mixture, the solution was washed with 1 N HCl, saturated NaHCO₃, and brine successively and then dried over Na₂SO₄. Filtration and concentration under reduced pressure to give the crude product which was further purified by silica gel chromatography (eluent system: PE : EA = 2 : 1) to afford **30** (20 mg, 99%) as a white solide: $[\alpha]^{28}_{D}$ -129.0 (*c* 0.25, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.8 Hz, 2 H), 7.25 (d, *J* = 8.8 Hz, 2 H), 7.15 (d, *J* = 2.0 Hz, 1 H), 6.92 (d, *J* = 2.0 Hz, 1 H), 5.43 (dd, *J* = 7.8, 9.4 Hz, 1 H), 5.32 (dd, *J* = 9.3, 11.0 Hz, 1 H), 5.24-5.21 (m, 2 H), 5.15 (d, *J* = 7.7 Hz, 1 H), 5.13 (t, *J* = 10.0 Hz, 1 H), 5.06 (t, *J* = 9.8 Hz, 1 H), 4.74 (s, 1 H), 3.93-3.89 (m, 1 H), 3.85 (dd, *J* = 5.6, 9.7 Hz, 1 H), 3.80 (d, *J* = 11.4 Hz, 1 H), 3.71 (dd, *J* = 6.0, 11.6 Hz, 1 H), 2.34 (s, 3 H), 2.33 (s, 3 H), 2.31 (s, 3 H), 2.10 (s, 3 H), 2.07 (s, 3 H), 2.06 (s, 3 H), 2.05 (s, 3 H), 2.04 (s, 3 H), 1.97 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 170.0, 169.8 (2 C), 169.5, 169.4, 168.9, 168.2, 167.9, 157.4, 157.2, 154.4, 153.3, 152.7, 134.3, 129.5, 127.1, 122.0, 113.3, 107.8, 106.2, 100.5, 98.0, 77.2, 73.5, 72.4, 70.8, 70.5, 69.3, 69.1, 69.0, 66.6, 21.1, 20.8, 20.7, 20.6 (2 C), 17.3; HRMS (ESI) calcd for C₄₅H₄₉O₂₄ [M+H]⁺ 973.2613, found 973.2626.

Key correlations in compound 28:

Figure 1. Key HMBC and NOE correlations in 28

Parameter Value CDC13 Solvent Spectrometer Frequency 400.13 1H Nucleus

-178.1089 -161.7759 -157.6340 -156.4440 -153.1346		$\int_{76}^{77} \frac{77}{66} \cdot \frac{3174}{6820}$
---	--	--

7130 6673 5328	6393 3048 2167	
$\begin{cases} 25. \\ 25. \\ 25. \end{cases}$	18.	

∧ - ⁻ . -4.	

Parameter	Value
Solvent	CDC13
Experiment	1D
Spectrometer Frequency	100.61
Nucleus	13C

Parameter	Value	
Solvent	CDC13 T	B
Experiment	1D	
Spectrometer Frequency	100.61	
Nucleus	13C	

	1			

	1 1	1 1	1 1	1			1	1	· 1					·	1		1			
190	180	170	160	150	140	130	120	110	100	922 f1 (ppm)	80	70	60	50	40	30	20	10	0	-10

Parame	Value	
Solvent		CDC13
Experiment		1D
Spectrometer	Frequency	400.13
Nucleus		1H

ParameterValueSolventCDC13Experiment1DSpectrometer Frequency100.61Nucleus13C

Parameter	Value
Solvent	CDC13
Experiment	1D-DEPT-135
Spectrometer Frequency	100.61
Nucleus	13C

ParameterValueSolventCDC13Experiment1DSpectrometer Frequency400.13Nucleus1H

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5**S28**0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0. f1 (ppm)

→ 131.9675 → 129.7215 → 126.6709 → 122.0326

Parameter	Value		
Solvent	CDC13		
Experiment	1D		
Spectrometer Frequency	100.61		
Nucleus	13C		

Parameter Solvent Experiment Spectrometer Frequ Nucleus	Value CDC13 1D-DEPT-135 ency 100.61 13C					→ 34.315 → 33.735 → 31.175 → 31.135 → 31.089	$\sum_{i=1}^{2} \frac{1}{2} $	√13.86 √13.82 √13.82 √
			C ₅ H ₁₁ OCO	ОС ОСОС ₅ H ₁₁ ОН О 5	OC₅H ₁₁			
	140 130	120		90 \$30 f1 (ppm)	70 60	 40 30	20	

ParameterValueSolventCDC13Experiment1DSpectrometer Frequency100.61Nucleus13C

fl (ppm)

Parameter	Value
Solvent	CDC13
Experiment	1D
Spectrometer Frequency	100.61
Nucleus	13C

Parame	Value	
Solvent		CDC13
Experiment		1D
Spectrometer	Frequency	100.61
Nucleus		13C

	· 1	1	1	· 1	1	1		· 1	' '	, ,	1		1		1		1				
180	170	160	150	140	130	120	110	100	90 f	S40 ⁸⁰ (ppm)		70	60	50	40	ç	80	20	10	0	-10

Parameter	Value
Solvent	CDC13
Experiment	1D
Spectrometer Frequency	400.13
Nucleus	1H
	,

4. 5496 4. 5339 4. 5253 4. 5097 $< 1.3298 \\ < 1.3143$

1 0131 -1.0067 -0.8474 0. 3553 0. 3136 0. 2941 0. 2908

Parameter	Value
Solvent	CDC13
Experiment	1D
Spectrometer Frequence	y 100.61
Nucleus	13C

5334 9370 7539	5415 5415 0553 6853 5607 4486 1939
25. 25.	25. 19. 18. 18. 18.

Parameter Solvent Experiment Spectrometer Freque Nucleus	Value CDC13 1D ency 100.61 13C		TBSO TBDPSO BZO	OTBS OTBS		
			BzO OBz 1	D 15		
180 170 160	· · · · · · · · · · · · · · · · · · ·	140 130 120		S46 80 70 60 51 f1 (ppm)	50 40 30 20	10 0 -10

Parameter	Value
Solvent	CDC13
Experiment	1D
Spectrometer Frequency	100.61
Nucleus	13C

Paramet	er Value
Solvent	CDC13
Experiment	1D
Spectrometer F	requency 400.13
Nucleus	1H

ſ 117 5 5 1 1 OTBS TBSO. `OTBS `OTBS 0 BzO 17 ΒzÓ ÓВz

 $-\frac{1}{0.073}$ -0.8331

0. 3267 0. 2921 0. 2822 0. 2822 0. 2822 0. 2276 0. 2276

 $\|$

-	1		·						1		'	1	' '	1	'			
170	160	150	140	130	120	110	100	90	\$50 80 f1 (ppm)	70	60	50	40	30	20	10	0	-10

Parameter	Value
Solvent	CDC13
Experiment	1D
Spectrometer Frequency	100.61
Nucleus	13C

— 19. 0259

Parameter	Value
Solvent	CDC13
Experiment	1D
Spectrometer Frequency	100.61
Nucleus	13C

Parameter	Value
Solvent	CDC13
Experiment	1D
Spectrometer Frequency	100.61
Nucleus	13C

 $< 1.3644 \\ -1.3497$

Parameter	Value
Solvent	CDC13
Experiment	1D
Spectrometer Frequency	100.61
Nucleus	13C

Parame	ter	Value			
Solvent		CDC13			
Experiment		1D			
Spectrometer	Frequency	400.13			
Nucleus		1Н (
	<i>\</i>		/	ſ	1

7189 6961 6887 966 660 525 313 863

0287	
100.	

Parameter	Value
Solvent	CDC13
Experiment	1D
Spectrometer Frequency	100.61
Nucleus	13C

		· · · ·				1	· 1	1	· · ·	· 1	· 1	·		·	, 1 ,		· · ·
180	170	160	150	140	130	120	110	100	S60 f1 (ppm)	80	70	60	50	40	30	20	10

Parameter	Value
Solvent	CDC13
Experiment	1D
Spectrometer Frequency	100.61
Nucleus	13C

ParameterValueSolventCDC18Experiment1DSpectrometer Frequency400.13Nucleus1H

 $\begin{array}{c} & 2.5943 \\ \hline 2.5757 \\ 2.5569 \\ \hline 2.4392 \\ 2.3691 \end{array}$ $\sum_{i=1}^{i} 1.5705$ ----0. 9524 ---0. 8841

/ / / / 155 1

3176 2030 0000 6819 9114 6283 6829 9682 9682	1968
$\overbrace{\begin{array}{c} 777\\777.\\766.\\711.\\69.\\67.\end{array}}^{77.}$	62.

Parameter	Value
Solvent	CDC13
Experiment	1D
Spectrometer Frequency	100.61
Nucleus	13C

· 1 ·							, , ,			· 1				· 1	· 1			
170	160	150	140	130	120	110	100	$90_{ m f1}$ S64 (ppm	80)	70	60	50	40	30	20	10	0	

1 5 5 5

$3325 \\ 9498 \\ 1964 \\ 1511 \\ 1511 \\ 1380 \\ 1380 \\$	$5036 \\ 4071 \\ 3672 \\$	2635 2301	6190 8569 8334 8065
$\overbrace{}^{34.}_{33.}$	$\swarrow^{24.}_{24.}$	122. 122.	13.

Parameter Solvent Experiment Spectrometer Frequenc Nucleus	Value CDC13 1D cy 100.61 13C	C ₅ H ₁₁ OCO.		COC₅H ₁₁	
		BzO BzO	25 OBz	I	
		1			
170 160	150 140 1	30 120 110	100 9 %66 f1 (ppm)	80 70 60	 10 0

Parameter Value Solvent CDC13 Experiment 1D Spectrometer Frequency 400.13 Nucleus 1H

55 ,OCOC₅H₁₁ C₅H₁₁OCO OH COCOC₅H₁₁ BZ ö 26 ÒΒz

3173 2017 2017 9995 6819 9864 9864 9864 7237 7545	7404
77.77.77.77.77.77.77.76.69.	-61.

3417 3070 6917 1774 1389	4808 3314 2309 2321	8671 8495
	24.24.24.22.	$^{13.}$

ParameterValueSolventCDC13Experiment1DSpectrometer Frequency100.61Nucleus13C

Parameter	Value
Solvent	CDC13
Experiment	1D
Spectrometer Frequency	100.61
Nucleus	13C

	$ \begin{array}{c} \begin{array}{c} & 165. \ 8647 \\ -165. \ 6030 \\ -165. \ 0464 \\ -165. \ 0464 \\ -162. \ 2862 \\ -157. \ 6589 \\ -157. \ 6589 \\ -157. \ 3715 \\ \end{array} $	152. 8791 152. 8791 139. 1770 136. 8842 135. 8842 135. 8842 135. 8842 133. 3375 133. 3375 133. 3375 133. 3375 133. 3375 129. 9181 129. 9869 128. 9869 128. 1397 128. 1397 128. 1398 127. 9398 127. 9398 127. 9398 127. 9398 127. 9384 127. 5310 127. 5310			$\begin{array}{c} 77. \ 3181 \\ 77. \ 3181 \\ 77. \ 2025 \\ 76. \ 0000 \\ 77. \ 2025 \\ 76. \ 0000 \\ 77. \ 2036 \\ 72. \ 9685 \\ 72. \ 9685 \\ 72. \ 9685 \\ 69. \ 7257 \\ 69. \ 7257 \end{array}$
--	--	---	--	--	---

----61.4706

Parameter	Value
Solvent	CDC13
Experiment	1D
Spectrometer Frequency	100.61
Nucleus	13C

Parameter	Value
Solvent	CDC13
Experiment	1D
Spectrometer Frequency	100.61
Nucleus	13C

3183 0001

-77.

1123349 1123349 328 666

66.

 ∞

 ~ 100.1942 ~ 97.9898 97.7162

4779 3964 8218 4837	3104 0852
722. 772. 70.	-69.

----0. 9915

Parameter	Value
Solvent	CDC13
Experiment	1D-DEPT-135
Spectrometer Frequency	100.61
Nucleus	13C

fl (ppm)

4.0 f2 (ppm) 8.5 8.0 6.5 6.0 5.5 3.5 3.0 7.5 7.0 5.0 **S79**4.5 2.5 2.0 1.5 1.0 0.5 fl (ppm)

0.0

