Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

In Vitro Selectivity of an Acyclic Cucurbit[n]uril Molecular Container towards Neuromuscular Blocking Agents Relative to Commonly Used Drugs

By Shweta Ganapati,^a Peter Y. Zavalij,^a Matthias Eikermann^{b,*} and Lyle Isaacs^{a,*}

^aDepartment of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742; ^bDepartment of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114

Supporting Information

Table of Contents	Pages
General experimental details	S2
Procedures and binding models for UV/Vis titrations	S2-S4
UV/Vis spectra and plots of absorbance data for K_a determination of various drugs with 2	S5-S24
Binding model for ¹ H NMR titrations and plots of chemical shift data for K_a determination by direct ¹ H NMR titrations	S25-S32
¹ H NMR stack plots for drugs with 2	S33-S59
Job plots of selected drugs with 2	S60-S63
Three dimensional surface plot of [AChR•NMBA] versus log [Drug] and log K ₃ for vecuronium with 2 equivalents of calabadion 2	S65
Three dimensional surface plot of [AChR•NMBA] versus log [Drug] and log K ₃ for cisatracurium with 32 equivalents of calabadion 2	S65
Three dimensional surface plot of [AChR•NMBA] versus log [Drug] and log K_3 for cisatracurium with 16 equivalents of calabadion 2	S66

General experimental details. Drugs used for measuring binding constants with **2** were purchased from commercial suppliers and used without further purification. Compound **2** was prepared according to the literature procedure.¹ ¹H NMR spectra were measured on commercial spectrometers operating at 400 or 600 MHz. UV-Vis absorbance was measured on a Varian Cary 100 UV spectrophotometer.

Determination of K_a between Host 2 with various drugs using UV/Vis spectroscopy. K_a values up to 10^4 M⁻¹ can be measured reliably by ¹H NMR spectroscopic methods. For values that exceed this level it is necessary to use other techniques such as UV/Vis, fluorescence, or isothermal titration calorimetry. UV/Vis spectroscopy was used in this work.

The K_a between 2 and 4 (tetracycline, UV/Vis active drug) was determined by direct titration of a fixed concentration of 4 with increasing concentrations of 2. The K_a value was determined by fitting the change in absorbance as a function of host concentration to a 1:1 binding model. In order to determine the K_a value for 2 toward guests which were not UV/Vis active, an indicator displacement assay involving the addition of guest to a solution of 2 and dye Rhodamine 6G was used. The change in UV/Vis absorbance as a function of guest concentration was fitted to a competitive binding model which allowed determination of the K_a values based on the known total concentrations of 2, Rhodamine 6G, and drug. The known K_a value of the 2•Rhodamine 6G complex (2.3 x 10⁶ M⁻¹) was used as input in the competitive binding model.²

References: 1) D. Ma, G. Hettiarachchi, D. Nguyen, B. Zhang, J. B. Wittenberg, P. Y. Zavalij, V. Briken, L. Isaacs *Nat. Chem.* 2012, **4**, 503-510. 2) D. Ma, B. Zhang, U. Hoffmann, M. G. Sundrug, M. Eikermann, L. Isaacs *Angew. Chem. Int. Ed.* 2012, **51**, 11358-11362.

Binding Models Used to Determine Values of K_a with Micromath Scientist

1:1 Binding Model for UV/Vis.

// Micromath Scientist Model File // 1:1 Host:Guest binding model //This model assumes the guest concentration is fixed and host concentration is varied IndVars: ConcHostTot DepVars: SpectroscopicSignal Params: Ka, ConcGuestTot, SpectroscopicSignalMin, SpectroscopicSignalMax Ka = ConcHostGuest/(ConcHostFree*ConcGuestFree) ConcHostTot=ConcHostFree + ConcHostGuest ConcGuestTot=ConcGuestFree + ConcHostGuest SpectroscopicSignal = SpectroscopicSignalMin + (SpectroscopicSignalMax - SpectroscopicSignalMin) * (ConcHostGuest/ConcGuestTot) //Constraints 0 < ConcHostFree < ConcHostTot 0 < Ka0 < ConcGuestFree < ConcGuestTot 0 < ConcHostGuest < ConcHostTot

Competitive Binding (Indicator Displacement) Models.

Competitive Model Fitting Absorbance at One Wavelength.

// MicroMath Scientist Model File IndVars: ConcAntot DepVars: Absorb Params: ConcHtot, ConcGtot, Khg, Kha, AbsorbMax, AbsorbMin Khg = ConcHG / (ConcH * ConcG) Kha = ConcHAn / (ConcH * ConcAn) Absorb = AbsorbMin + (AbsorbMax-AbsorbMin)*(ConcHG/ConcGtot) ConcHtot = ConcH + ConcHG + ConcHAn ConcGtot = ConcHG + ConcG ConcAntot = ConcHG + ConcHAn 0 < ConcHG < ConcHtot 0 < ConcHG < ConcHtot 0 < ConcG < ConcGtot 0 < ConcAn < ConcAntot ***

Competitive Model Fitting Absorbance at Two Wavelengths.

// MicroMath Scientist Model File
IndVars: ConcAntot
DepVars: Absorb1, Absorb2
Params:Khg, Kha, AbsorbMax1, AbsorbMin1, AbsorbMax2, AbsorbMin2
Khg = ConcHG / (ConcH * ConcG)

```
\label{eq:concHAn} \begin{array}{l} \mbox{Kha} = \mbox{ConcHAn} / (\mbox{ConcH} * \mbox{ConcAn}) \\ \mbox{Absorb1} = \mbox{AbsorbMin1} + (\mbox{AbsorbMax1-AbsorbMin1})*(\mbox{ConcHG}/0.00001) \\ \mbox{Absorb2} = \mbox{AbsorbMin2} + (\mbox{AbsorbMax2-AbsorbMin2})*(\mbox{ConcHG}/0.00001) \\ \mbox{0.00001} = \mbox{ConcH} + \mbox{ConcHG} + \mbox{ConcHAn} \\ \mbox{0.00001} = \mbox{ConcHG} + \mbox{ConcHAn} \\ \mbox{0 < ConcHG} < \mbox{0.00001} \\ \mbox{0 < ConcH} < \mbox{0.00001} \\ \mbox{0 < ConcAn} < \mbox{ConcAntot} \\ \mbox{***} \end{array}
```


(A)

CONCENTRATION OF HOST

Figure S1. (A) UV/Vis spectra from the titration of **2** (0–610 μ M) with guest **4** (57.3 μ M) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₃₉₀ as a function of the concentration of **2**. The solid line represents the best non-linear fit of the data to a 1:1 binding model (K_a = (2.3 ± 0.2) × 10³ M⁻¹).

Figure S2. (A) UV/Vis spectra from the titration of 2 (5.07 μ M) and Rhodamine 6G (5.01 μ M) with guest 8 (0 – 6.08 mM) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of 8. The solid line represents the best non-linear fit of the data to a competitive binding model (K_a = (5.9 ± 0.5) × 10³ M⁻¹).

Figure S3. (A) UV/Vis spectra from the titration of **2** (10.1 μ M) and Rhodamine 6G (9.96 μ M) with guest **10** (0 – 4.32 mM) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of **10**. The solid line represents the best non-linear fit of the data to a competitive binding model (K_a = (8.6 ± 0.8) × 10³ M⁻¹).

Figure S4. (A) UV/Vis spectra from the titration of **2** (9.98 μ M) and Rhodamine 6G (9.96 μ M) with guest **12** (0 – 1.11 mM) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of **12**. The solid line represents the best non-linear fit of the data to a competitive binding model (K_a = (2.1 ± 0.2) × 10⁴ M⁻¹).

Figure S5. (A) UV/Vis spectra from the titration of 2 (10.2 μ M) and Rhodamine 6G (9.96 μ M) with guest 14 (0 – 447 μ M) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of 14. The solid line represents the best non-linear fit of the data to a competitive binding model (K_a = (4.4 ± 0.3) × 10⁴ M⁻¹).

Figure S6. (A) UV/Vis spectra from the titration of 2 (9.92 μ M) and Rhodamine 6G (10.0 μ M) with guest 15 (0 – 2.05 mM) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of 15. The solid line represents the best non-linear fit of the data to a competitive binding model (K_a = (4.8 ± 0.3) × 10⁴ M⁻¹)

Figure S7. (A) UV/Vis spectra from the titration of **2** (9.92 μ M) and Rhodamine 6G (10.0 μ M) with guest **16** (0 – 1.32 mM) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of **16**. The solid line represents the best non-linear fit of the data to a competitive binding model (K_a = (8.3 ± 0.6) × 10⁴ M⁻¹).

Figure S8. (A) UV/Vis spectra from the titration of 2 (10.1 μ M) and Rhodamine 6G (9.96 μ M) with guest 17 (0 – 486 μ M) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of 17. The solid line represents the best non-linear fit of the data to a competitive binding model (K_a = (1.9 ± 0.1) × 10⁵ M⁻¹).

Figure S9. (A) UV/Vis spectra from the titration of **2** (10.2 μ M) and Rhodamine 6G (9.96 μ M) with guest **18** (0 – 686 μ M) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of **18**. The solid line represents the best non-linear fit of the data to a competitive binding model (K_a = (1.9 ± 0.6) × 10⁵ M⁻¹).

Figure S10. (A) UV/Vis spectra from the titration of 2 (10.2 μ M) and Rhodamine 6G (10.3 μ M) with guest **19** (0 – 510 μ M) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of **19**. The solid line represents the best non-linear fit of the data to a competitive binding model (K_a = (2.5 ± 0.7) × 10⁵ M⁻¹).

Figure S11. (A) UV/Vis spectra from the titration of **2** (5.07 μ M) and Rhodamine 6G (5.01 μ M) with guest **20** (0 – 107 μ M) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of **20**. The solid line represents the best non-linear fit of the data to a competitive binding model (K_a = (5.3 ± 0.4) × 10⁵ M⁻¹).

Figure S12. (A) UV/Vis spectra from the titration of 2 (12.5 μ M) and Rhodamine 6G (12.4 μ M) with guest 21 (0 –131 μ M) in 20mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of 21. The solid line represents the best non-linear fit of the data to a competitive binding model (K_a = (5.9 ± 0.7) × 10⁵ M⁻¹).

Figure S13. (A) UV/Vis spectra from the titration of 2 (9.92 μ M) and Rhodamine 6G (10.0 μ M) with guest 22 (0 – 968 μ M) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of 22. The solid line represents the best non-linear fit of the data to a competitive binding model (K_a = (8.0 ± 0.7) × 10⁵ M⁻¹).

Figure S14. (A) UV/Vis spectra from the titration of **2** (5.07 μ M) and Rhodamine 6G (5.01 μ M) with guest **23** (0 – 616 μ M) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of **23**. The solid line represents the best non-linear fit of the data to a competitive binding model (K_a = (8.2 ± 0.9) × 10⁵ M⁻¹).

Figure S15. (A) UV/Vis spectra from the titration of 2 (5.07 μ M) and Rhodamine 6G (5.01 μ M) with guest 24 (0 – 237 μ M) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of 24. The solid line represents the best non-linear fit of the data to a competitive binding model (K_a = (9.3 ± 0.9) × 10⁵ M⁻¹).

Figure S16. (A) UV/Vis spectra from the titration of **2** (10.1 μ M) and Rhodamine 6G (9.96 μ M) with guest **25** (0 – 345 μ M) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of **25**. The solid line represents the best non-linear fit of the data to a competitive binding model (K_a = (9.7 ± 1.1) × 10⁵ M⁻¹

Figure S17. (A) UV/Vis spectra from the titration of **2** (10.1 μ M) and Rhodamine 6G (9.96 μ M) with guest **26** (0 – 450 μ M) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of **26**. The solid line represents the best non-linear fit of the data to a competitive binding model (K_a = (9.8 ± 0.5) × 10⁵ M⁻¹).

Figure S18. (A) UV/Vis spectra from the titration of 2 (9.92 μ M) and Rhodamine 6G (10.0 μ M) with guest 27 (0 – 552 μ M) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of 27. The solid line represents the best non-linear fit of the data to a competitive binding model (K_a = (2.8 ± 0.1) × 10⁶ M⁻¹).

Figure S19. (A) UV/Vis spectra from the titration of 2 (9.92 μ M) and Rhodamine 6G (10.0 μ M) with guest 28 (0 – 1.21 mM) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of 28. The solid line represents the best non-linear fit of the data to a competitive binding model (K_a = (3.3 ± 0.5) × 10⁶ M⁻¹).

Figure S20. (A) UV/Vis spectra from the titration of 2 (5.07 μ M) and Rhodamine 6G (5.01 μ M) with guest 29 (0 – 14.2 μ M) in 20 mM NaH₂PO₄ buffer (pH = 7.4); (B) plot of the A₅₅₀ as a function of the concentration of 29. The solid line represents the best non-linear fit of the data to a competitive binding model (K_a = (4.5 ± 0.7) × 10⁶ M⁻¹).

1:1 Binding Models for NMR

Model Fitting Absorbance at One Chemical Shift.

// Micromath Scientist Model File // 1:1 Host:Guest binding model for NMR //This model assumes the guest concentration is fixed and host concentration is varied IndVars: ConcHostTot DepVars: Deltaobs Params: Ka, ConcGuestTot, Deltasat, Deltazero Ka = ConcHostGuest/(ConcHostFree*ConcGuestFree) ConcHostTot=ConcHostFree + ConcHostGuest ConcGuestTot=ConcGuestFree + ConcHostGuest Deltaobs = Deltazero + (Deltasat - Deltazero) * (ConcHostGuest/ConcGuestTot) //Constraints 0 < ConcHostFree < ConcHostTot 0 < Ka0 < ConcGuestFree < ConcGuestTot 0 < ConcHostGuest < ConcHostTot ***

Model Fitting Absorbance at Two Chemical Shifts.

// Micromath Scientist Model File IndVars: ConcHost DepVars: CSA, CSB Params: Ka, CSAzero, CSAsat, CSBzero, CSBsat Ka = ConcHG/(ConcHfree*ConcGfree) ConcHost=ConcHfree+ConcHG 0.0001=ConcGfree+ConcHG CSA = CSAzero + ((CSAsat-CSAzero)*(ConcHG/0.0001)) CSB = CSBzero + ((CSBsat-CSBzero)*(ConcHG/0.0001)) 0<ConcHfree<ConcHost 0<ConcGfree<0.0001</pre>

Figure S21. (A) ¹H NMR (600 MHz) stack plot of the titration of 2 (0.104 mM) with guest 3 (0 - 1.03 mM) in 20 mM NaH₂PO₄ buffered D₂O (pH = 7.4); (B) plot of the chemical shift at 7.67 ppm as a function of guest concentration. The solid line represents the best non-linear fit of the data to a 1:1 model ($K_a = (2.0 \pm 0.4) \times 10^3 \text{ M}^{-1}$).

Figure S22. (A) ¹H NMR (600 MHz) stack plot of the titration of **2** (0 - 4.5 mM) with guest **5** (1.86 mM) in 20 mM NaH₂PO₄ buffered D₂O (pH = 7.4); (B) plot of the chemical shift at 1.46 ppm as a function of host concentration. The solid line represents the best non-linear fit of the data to a 1:1 model ($K_a = (3.0 \pm 0.4) \times 10^3 \text{ M}^{-1}$).

Figure S23. (A) ¹H NMR (400 MHz) stack plot of the titration of 2 (0.976 mM) with guest 6 (0 - 7.24 mM) in 20 mM NaH₂PO₄ buffered D₂O (pH = 7.4); (B) plot of the chemical shift at 7.17 ppm as a function of guest concentration. The solid line represents the best non-linear fit of the data to a 1:1 model ($K_a = (3.0 \pm 0.6) \times 10^3 \text{ M}^{-1}$).

Figure S24. (A) ¹H NMR (600 MHz) stack plot of the titration of **2** (0.199 mM) with guest **7** (0 - 1.26 mM) in 20 mM NaH₂PO₄ buffered D₂O (pH = 7.4); (B) plot of the chemical shift at 7.69 ppm as a function of guest concentration. The solid line represents the best non-linear fit of the data to a 1:1 model ($K_a = (4.6 \pm 0.5) \times 10^3 \text{ M}^{-1}$).

(A)

Figure S25. (A) ¹H NMR (600 MHz) stack plot of the titration of **2** (1.50 mM) with guest **9** (0 - 2.7 mM) in 20 mM NaH₂PO₄ buffered D₂O (pH = 7.4); (B) plot of the chemical shift at 7.15 and 7.72 ppm as a function of guest concentration. The solid line represents the best non-linear fit of the data to a 1:1 model ($K_a = (5.9 \pm 1.8) \times 10^3 \text{ M}^{-1}$).

Figure S26. (A) ¹H NMR (600 MHz) stack plot of the titration of **2** (0.150 mM) with guest **11** (0 - 1.3 mM) in 20 mM NaH₂PO₄ buffered D₂O (pH = 7.4); (B) plot of the chemical shift at 7.12 and 7.68 ppm as a function of guest concentration. The solid line represents the best non-linear fit of the data to a 1:1 model ($K_a = (1.4 \pm 0.4) \times 10^4 \text{ M}^{-1}$).

Figure S27. (A) ¹H NMR (600 MHz) stack plot of the titration of **2** (0.150 mM) with guest **13** (0 - 1.26 mM) in 20 mM NaH₂PO₄ buffered D₂O (pH = 7.4); (B) plot of the chemical shift at 7.12 and 7.68 ppm as a function of guest concentration. The solid line represents the best non-linear fit of the data to a 1:1 model ($K_a = (3.3 \pm 1.0) \times 10^4 \text{ M}^{-1}$).

Figure S28. ¹H NMR spectra recorded (400 MHz, RT, D_2O) for a) **3**, b) **2**, c) an equimolar mixture of **2** and **3** (5 mM), and d) a 1:2 mixture of **2** (5 mM) and **3** (10 mM).

Figure S29. ¹H NMR spectra recorded (400 MHz, RT, D_2O) for a) 4, b) 2, c) an equimolar mixture of 2 and 4 (12.5 mM), and d) a 1:2 mixture of 2 (12.5 mM) and 4 (25 mM).

Figure S30. ¹H NMR spectra recorded (400 MHz, RT, D_2O) for a) 5, b) 2, c) an equimolar mixture of 2 and 5 (5 mM), and d) a 1:2 mixture of 2 (5 mM) and 5 (10 mM).

Figure S31. ¹H NMR spectra recorded (400 MHz, RT, D_2O) for a) 6, b) 2, c) an equimolar mixture of 2 and 6 (12.5 mM), and d) a 1:2 mixture of 2 (12.5 mM) and 6 (25 mM).

Figure S32. ¹H NMR spectra recorded (400 MHz, RT, D_2O) for a) 7, b) 2, c) an equimolar mixture of 2 and 7 (5 mM), and d) a 1:2 mixture of 2 (5 mM) and 7 (10 mM).

Figure S33. ¹H NMR spectra recorded (400 MHz, RT, D₂O) for a) **8**, b) **2**, c) an equimolar mixture of **2** and **8** (5 mM), and d) a 1:2 mixture of **2** (5 mM) and **8** (10 mM).

Figure S34. ¹H NMR spectra recorded (400 MHz, RT, D₂O) for a) **9**, b) **2**, c) an equimolar mixture of **2** and **9** (5 mM), and d) a 1:2 mixture of **2** (5 mM) and **9** (10 mM).

Figure S35. ¹H NMR spectra recorded (400 MHz, RT, D₂O) for a) **10**, b) **2**, c) an equimolar mixture of **2** and **10** (4 mM), and d) a 1:2 mixture of **2** (4 mM) and **10** (8 mM).

Figure S36. ¹H NMR spectra recorded (400 MHz, RT, D_2O) for a) **11**, b) **2**, c) an equimolar mixture of **2** and **11** (4 mM), and d) a 1:2 mixture of **2** (4 mM) and **11** (8 mM).

Figure S37. ¹H NMR spectra recorded (400 MHz, RT, D₂O) for a) **12**, b) **2**, c) an equimolar mixture of **2** and **12** (4 mM), and d) a 1:2 mixture of **2** (4 mM) and **12** (8 mM).

Figure S38. ¹H NMR spectra recorded (400 MHz, RT, D_2O) for a) **13**, b) **2**, c) an equimolar mixture of **2** and **13** (12.5 mM), and d) a 1:2 mixture of **2** (4 mM) and **13** (8 mM).

Figure S39. ¹H NMR spectra recorded (400 MHz, RT, D₂O) for a) **14**, b) **2**, c) an equimolar mixture of **2** and **14** (4 mM), and d) a 1:2 mixture of **2** (1 mM) and **14** (2 mM).

Figure S40. ¹H NMR spectra recorded (400 MHz, RT, D_2O) for a) **15**, b) **2**, c) an equimolar mixture of **2** and **15** (12.5 mM), and d) a 1:2 mixture of **2** (12.5 mM) and **15** (25 mM).

Figure S41. ¹H NMR spectra recorded (400 MHz, RT, D_2O) for a) **16**, b) **2**, and c) an equimolar mixture of **2** and **16** (2 mM), and d) a 1:2 mixture of **2** (0.7 mM) and **16** (1.3 mM).

Figure S42. ¹H NMR spectra recorded (400 MHz, RT, D₂O) for a) **17**, b) **2**, and c) an equimolar mixture of **2** and **17** (4 mM).

Figure S43. ¹H NMR spectra recorded (400 MHz, RT, D₂O) for a) **18**, b) **2**, c) an equimolar mixture of **2** and **18** (4 mM), and d) a 1:2 mixture of **2** (4 mM) and **18** (8 mM).

Figure S44. ¹H NMR spectra recorded (400 MHz, RT, D_2O) for a) **19**, b) **2**, c) an equimolar mixture of **2** and **19** (4 mM), and d) a 1:2 mixture of **2** (4 mM) and **19** (8 mM).

Figure S45. ¹H NMR spectra recorded (400 MHz, RT, D₂O) for a) **20**, b) **2**, c) an equimolar mixture of **2** and **20** (5 mM), and d) a 1:2 mixture of **2** (5 mM) and **20** (10 mM).

Figure S46. ¹H NMR spectra recorded (400 MHz, RT, D₂O) for a) **21**, b) **2**, and c) an equimolar mixture of **2** and **21** (4 mM), and d) a 1:2 mixture of **2** (2 mM) and **21** (4 mM).

Figure 47. ¹H NMR spectra recorded (400 MHz, RT, D₂O) for a) **22**, b) **2**, c) an equimolar mixture of **2** and **22** (12.5 mM), and d) a 1:2 mixture of **2** (6.25 mM) and **22** (12.5 mM).

Figure S48. ¹H NMR spectra recorded (400 MHz, RT, D₂O) for a) 23, b) 2, c) an equimolar mixture of 2 and 23 (5 mM), and d) a 1:2 mixture of 2 (5 mM) and 23 (10 mM).

Figure S49. ¹H NMR spectra recorded (400 MHz, RT, D₂O) for a) 24, b) 2, c) an equimolar mixture of 2 and 24 (5 mM), and d) a 1:2 mixture of 2 (5 mM) and 24 (10 mM).

Figure S50. ¹H NMR spectra recorded (400 MHz, RT, D_2O) for a) **25**, b) **2**, and c) an equimolar mixture of **2** and **25** (2 mM), and d) a 1:2 mixture of **2** (0.7 mM) and **25** (1.3 mM).

Figure S51. ¹H NMR spectra recorded (400 MHz, RT, D₂O) for a) **26**, b) **2**, c) an equimolar mixture of **2** and **26** (4 mM), and d) a 1:2 mixture of **2** (4 mM) and **26** (8 mM).

Figure S52. ¹H NMR spectra recorded (400 MHz, RT, D_2O) for a) 27, b) 2, c) an equimolar mixture of 2 and 27 (5 mM), and d) a 1:2 mixture of 2 (5 mM) and 27 (10 mM).

Figure S53. ¹H NMR spectra recorded (400 MHz, RT, D₂O) for a) **28**, b) **2**, c) an equimolar mixture of **2** and **28** (12.5 mM), and d) a 1:2 mixture of **2** (12.5 mM) and **28** (25 mM).

Figure S54. ¹H NMR spectra recorded (400 MHz, RT, D₂O) for a) **29**, b) **2**, c) an equimolar mixture of **2** and **29** (5 mM), and d) a 1:2 mixture of **2** (5 mM) and **29** (10 mM).

Figure S55. Job plot establishing 1:1 binding of **6** (0 - 1 mM) with **2** (0 - 1 mM) based on change in chemical shift of ¹H NMR (400 MHz, D_2O).

Figure S56. Job plot establishing 1:1 binding of 7 (0 - 1 mM) with 2 (0 - 1 mM) based on change in chemical shift of ¹H NMR (400 MHz, D_2O).

Figure S57. Job plot establishing 1:1 binding of **13** (0 - 1 mM) with **2** (0 - 1 mM) based on change in chemical shift of ¹H NMR (400 MHz, D_2O).

Figure S58. Job plot establishing 1:1 binding of **15** (0 - 1 mM) with **2** (0 - 1 mM) based on change in chemical shift of ¹H NMR (400 MHz, D_2O).

Figure S59. Job plot establishing 1:1 binding of **20** (0 - 1 mM) with **2** (0 - 1 mM) based on change in chemical shift of ¹H NMR (400 MHz, D_2O).

Figure S60. Job plot establishing 1:1 binding of **21** (0 - 1 mM) with **2** (0 - 1 mM) based on change in chemical shift of ¹H NMR (400 MHz, D_2O).

Figure S61. Job plot establishing 1:1 binding of **22** (0 - 1 mM) with **2** (0 - 1 mM) based on change in chemical shift of ¹H NMR (400 MHz, D_2O).

Figure S62. Job plot establishing 1:1 binding of **23** (0 - 1 mM) with **2** (0 - 1 mM) based on change in chemical shift of ¹H NMR (400 MHz, D_2O).

Figure S63. Job plot establishing 1:1 binding of **28** (0 - 1 mM) with **2** (0 - 1 mM) based on change in chemical shift of ¹H NMR (400 MHz, D_2O).

Figure S64. Three dimensional surface plot of the equilibrium mole fraction of AChR•vecuronium versus log [Drug] and log K₃ for vecuronium at [Vecuronium] = [AChR] = 27 μ M, [**2**] = 54 μ M (2 eqv.), K₁ = 10⁵ M⁻¹, K₂ = 1.6 × 10⁹ M⁻¹. The red dots mark the points corresponding to each of the 27 drugs (**2** – **29**).

Figure S65. Three dimensional surface plot of the equilibrium mole fraction of AChR•cisatracurium versus log [Drug] and log K₃ at [Cisatracurium] = [AChR] = 18 μ M, [**2**] = 576 μ M (32 eqv.), K₁ = 10⁵ M⁻¹, K₂ = 4.8 × 10⁶ M⁻¹. The red dots mark the points corresponding to each of the 27 drugs (**2** – **29**).

Figure S66. Three dimensional surface plot of the equilibrium mole fraction of AChR•cistracurium versus log [Drug] and log K₃ at [Cisatracurium] = [AChR] = 18 μ M, [2] = 288 μ M (16 eqv.), K₁ = 10⁵ M⁻¹, K₂ = 4.8 × 10⁶ M⁻¹. The red dots mark the points corresponding to each of the 27 drugs (2 – 29).