Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information

for

A Calixpyridinium-Based Supramolecular Tandem Assay for Alkaline Phosphatase and Its Application to ATP Hydrolysis Reaction

Kui Wang*, Jian-Hua Cui, Si-Yang Xing*, Hong-Xi Dou

Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry, Tianjin Normal University, Tianjin 300387 (P. R. China)

	Ha	H _b	H _c	H _d	H _e
ATP	0.85	-0.14	-0.20	-0.11	0.03
ADP	0.20	-0.05	-0.07	-0.04	-0.03
AMP	0.17	-0.04	-0.05	-0.04	-0.03

Table S1. Chemical Shift Changes ($\Delta\delta$, ppm) of Calixpyridinium Protons in the Presence of ATP, ADP, and AMP at pD 7.2^{*a*,*b*}

^{*a*} $\Delta \delta = \delta$ (presence of 1 equiv of guest) – δ (free host). ^{*b*} The host and guest were mixed in a 1:1 stoichiometry at 5 mM.

Table S2. Chemical Shift Changes ($\Delta\delta$, ppm) of ATP, ADP, and AMP Protons in the Presence of Calixpyridinium at pD 7.2^{*a,b*}

guests	H_1	H_2	H_3	H_4	H_5	H_6	H_7
ATP	-0.06	-0.06	-0.10	-0.01	-0.01	0.03	0.09
ADP	-0.04	-0.02	-0.07	-0.01	-0.03	0.01	0.05
AMP	-0.07	-0.08	-0.09	-0.02	-0.03	0.00	0.03

^{*a*} $\Delta \delta = \delta$ (presence of 1 equiv of host) – δ (free guest). ^{*b*} The host and guest were mixed in a 1:1 stoichiometry at 5 mM.

Figure S1. Job's plot for calixpyridinium and PyTS in 10 mM NaOAc solution at pH 7.2 ($\lambda_{exc} = 339 \text{ nm}, \lambda_{obs} = 385 \text{ nm}$), [calixpyridinium] + [PyTS] = 4 μ M.

Figure S2. (a) ¹H NMR spectra of ADP, calixpyridinium, and calixpyridinium+ADP complex at pD 7.2; (b) ¹H NMR spectra of AMP, calixpyridinium, and calixpyridinium+AMP complex at pD 7.2. The host and guest were mixed in a 1:1 stoichiometry at 5 mM.

Figure S3. Deduced binding modes of calixpyridinium with ATP (a) and AMP (b) at pD 7.2 according to ¹H NMR spectra.

Figure S4. Competitive fluorescence titrations of ATP (a and b), ADP (c and d), and AMP (e and f) in the presence of PyTS (1.0 μ M) and calixpyridinium (4.0 μ M) in 10 mM NaOAc solution at pH 7.2 (λ_{exc} = 339 nm, λ_{obs} = 385 nm).

Figure S5. Fluorescence emission spectra of PyTS, PyTS+calixpyridinium, PyTS+calixpyridinium+ATP, PyTS+calixpyridinium+AMP, and PyTS+calixpyridinium+ATP+CIAP in 10 mM NaOAc solution at pH 7.2, excited at 339 nm.. The concentrations of PyTS, calixpyridinium, ATP, AMP, and CIAP are 1.0 μ M, 4.0 μ M, 60 μ M, 60 μ M, and 1.5 U/mL, respectively.

Figure S6. Linear relationship between the initial reaction rates and the concentrations of ATP (0–30 μ M with 1.5 U/mL CIAP, 1.0 μ M PyTS, and 4.0 μ M calixpyridinium) in 10 mM NaOAc solution at pH 7.2 ($\lambda_{exc} = 339$ nm, $\lambda_{obs} = 385$ nm).

Figure S7. Continuous fluorescent enzyme assays for CIAP and *denatured* CIAP (1.5 U/mL) with the calixpyridinium/PyTS reporter pair (60 μ M ATP, 1.0 μ M PyTS, and 4.0 μ M calixpyridinium in 10 mM NaOAc solution at pH 7.2; $\lambda_{exc} = 339$ nm, $\lambda_{obs} = 385$ nm).

Figure S8. Continuous fluorescent enzyme assays for CIAP, BChE, and Trypsin (1.5 U/mL) with the calixpyridinium/PyTS reporter pair (60 μ M ATP, 1.0 μ M PyTS, and 4.0 μ M calixpyridinium in 10 mM NaOAc solution at pH 7.2; $\lambda_{exc} = 339$ nm, $\lambda_{obs} = 385$ nm).

Figure S9. Continuous fluorescent enzyme assays for CIAP (1.5 U/mL) in the absence and presence of BChE (1.5 U/mL) or Trypsin (1.5 U/mL) with the calixpyridinium/PyTS reporter pair (60 μ M ATP, 1.0 μ M PyTS, and 4.0 μ M calixpyridinium in 10 mM NaOAc solution at pH 7.2; $\lambda_{exc} = 339$ nm, $\lambda_{obs} = 385$ nm).