Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Palladium-Catalyzed Direct C-H Arylation of Pyridine N-oxides

with Potassium Aryl- and Heteroaryltrifluoroborates

Mengli Li, Xing Li,* Honghong Chang, Wenchao Gao and Wenlong Wei*

Department of Chemistry and Chemical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China.

> E-mail: <u>lixing@tyut.edu.cn</u> weiwenlong@tyut.edu.cn,

CONTENTS:

I. General		S3
II. Optimization o	f the other reaction parameters	S3
III. Characterizatio	n data for coupling products	S5
V. References		S10
IV. ¹ HNMR and ¹³ C	CNMR spectra	S11
¹ H NMR of con	npound 3a	S11
¹ H NMR of con	npound 3b	S11
¹ H NMR of con	npound 3c	S12
¹ H NMR of con	npound 3d	S12
¹ H NMR of con	npound 3e	S13
¹ H NMR of con	npound 3f	S13
¹ H NMR and ¹³	C NMR of compound 3g	S14
¹ H NMR of con	npound 3h	S15
¹ H NMR of con	npound 3i	S15
¹ H NMR of con	npound 3j	S16
¹ H NMR of con	npound 3k	S16
¹ H NMR of con	npound 31	S17
¹ H NMR of con	npound 3m	S17
¹ H NMR of con	npound 3n	S18
¹ H NMR and ¹³	C NMR of compound 30	S18
¹ H NMR and ¹³	C NMR of compound 3p	S19
¹ H NMR of con	pound 3q	S20

¹ H NMR of compound 3 <i>r</i>	S21
¹ H NMR of compound 3s	S21
¹ H NMR of compound 3 t	S22
¹ H NMR of compound 3u	S22
¹ H NMR of compound 3v	S23
¹ H NMR and ¹³ C NMR of compound $3w$	S23
¹ H NMR of compound 3 x	S24

I. General

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. Deuterated solvents were purchased from Aldrich. Refinement of the mixted system through Column chromatography which was performed on silica gel (200-300 mesh) with ethyl acetate (solvent A)/alcohol (solvent B) gradients as elution. In addition, all yields were referred to isolated yields (average of two runs) of compounds unless otherwise specified. On the one hand, the known compounds were partly characterized by melting points (for solid samples), ¹H NMR, and compared to authentic samples or the literature data. Melting points were determined with a RD-II digital melting point apparatus and were uncorrected. ¹H NMR data were obtained at 300 K on a Bruker AMX-600 spectrometer. The ¹H NMR (600 MHz) chemical shifts were measured relative to CDCl₃ as the internal reference (CDCl₃: $\delta = 7.26$ ppm). Spectra are reported as follows: chemical shift (δ = ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration, and assignment. On the other hand, the unknown compounds were partly characterized by ¹³C NMR and HR-MS as well. The ¹³C NMR (100 MHz) chemical shifts were given using CDCl₃ as the internal standard (CDCl₃: $\delta =$ 77.16 ppm). High-resolution mass spectra (HR-MS) were obtained with a Waters-Q-TOF-Premier (ESI).

II. Optimization of the other reaction parameters

An extensive survey of catalysts was conducted and the results are listed in Table *S1*. No reaction was detected in the absence of a catalyst (Table *S1*, entry 1). Using Pd(OAc)₂ as the catalyst resulted in 60% yield of **3a** (Table *S1*, entry 2). Inferior yields were obtained with Cu(OAc)₂, Ni(OAc)₂.4H₂O and FeCl₃ (Table *S1*, entries 3-5). Unfortunately, other Pd catalysts including PdCl₂, Pd (dppf) Cl₂, Pd (PhCN) Cl₂, Pd(PPh₃)₂Cl₂, Pd(dppe)Cl₂, Pd(PPh₃)₄ and Pd(OAc)₂(PPh₃) all gave lower yields (Table *S1*, entries 6-12 *vs*. 2). The examination of oxidants demonstrated Oxone, TBHP, I₂, MCPBA, KMnO₄, and Cu(OAc)₂ provided inferior results (Table *S1*, entries 14-19). When 1,4-dioxane was replaced with DMF, DMSO and NMP, the yield of **3a** was dramatically decreased (Table *S1*, entries 20-22 *vs*. 2).

	N + 1 0 1a 22	BF ₃ K catalyst, oxident	N O 3a	
Entry	Catalyst	Oxidant	Solvent	3a (%) ^b
1	-	Ag ₂ O	1,4-dioxane	n.r. ^c
2	Pd(OAc) ₂	$\underline{Ag_2O}$	1,4-dioxane	<u>60</u>
3	Cu(OAc) ₂	Ag ₂ O	1.4-dioxane	9

Table S1 Optimization of the catalysts, oxidants and solvents for the reaction^a

4	Ni(OAc) ₂ .4H ₂ O	Ag ₂ O	1,4-dioxane	7
5	FeCl ₃	Ag ₂ O	1,4-dioxane	trace
6	PdCl ₂	Ag ₂ O	1,4-dioxane	34
7	Pd (dppf)Cl ₂	Ag ₂ O	1,4-dioxane	19
8	Pd (PhCN)Cl ₂	Ag ₂ O	1,4-dioxane	46
9	Pd(PPh ₃) ₂ Cl ₂	Ag ₂ O	1,4-dioxane	44
10	Pd(dppe)Cl ₂	Ag ₂ O	1,4-dioxane	39
11	Pd(PPh ₃) ₄	Ag ₂ O	1,4-dioxane	29
12	$Pd(OAc)_2(PPh_3)$	Ag ₂ O	1,4-dioxane	51
13	$Pd(OAc)_2$	-	1,4-dioxane	trace
14	Pd(OAc) ₂	Oxone	1,4-dioxane	n.r.
15	$Pd(OAc)_2$	TBHP	1,4-dioxane	16
16	Pd(OAc) ₂	I_2	1,4-dioxane	n.r.
17	Pd(OAc) ₂	MCPBA	1,4-dioxane	n.r.
18	Pd(OAc) ₂	$\rm KMnO_4$	1,4-dioxane	7
19	Pd(OAc) ₂	Cu(OAc) ₂	1,4-dioxane	trace
20	$Pd(OAc)_2$	Ag ₂ O	DMF	27
21	Pd(OAc) ₂	Ag ₂ O	DMSO	trace
22	Pd(OAc) ₂	Ag ₂ O	NMP	29
$^{\rm a}$ Reactions were carried out with pyridine N-oxide $1a$ (0.45 mmol), potassium				
phenyltrifluoroborate $\mathbf{2a}$ (0.15 mmol), oxidant (0.3 mmol, 2 equiv.) and catalyst (10				

mol%) in solvent (0.5 mL) at 90 °C for 17 h. $^{\rm b}$ Isolated yields. $^{\rm c}$ n.r. = no reaction.

The examination of catalyst loading indicated that 10 mol % was the most suitable (Table *S2*, entry 1 *vs.* 2 and 3). 2.0 equiv. of Ag₂O exhibited the better results (Table *S2*, entry 5 *vs.* 4 and 6). It was found that up to 95% yield was obtained when 3.3 equiv of pyridine *N*-oxide **1a** was used at 90 °C (Table *S2*, entry 9 *vs.* 7 and 8). Lower yields were offered when using other temperature (Table *S2*, entry 9 *vs.* 10 and 11).

Table S2 Optimization of other reaction conditions	
--	--

$ + \qquad + $					
	0	Di 3it	0		
	1a	2a	3a		
Entry	Pd(OAc) ₂ (mol%)	Ag ₂ O (equiv.)	1a (equiv.)	T (°C)	Yield (%) ^a
1 ^b	10	2.0	3	90	60
2 ^b	5	2.0	3	90	56
3 ^b	15	2.0	3	90	57
4 ^c	10	1.5	3	90	50
5°	10	2.0	3	90	60
6 ^c	10	2.5	3	90	55
7 ^d	10	2.0	3	90	88
8 ^d	10	2.0	2.5	90	78
9 ^d	10	2.0	<u>3.3</u>	90	<u>95</u>
10 ^e	10	2.0	3.3	80	92
11e	10	2.0	3.3	100	80
^a Isolated yields. ^b Reactions were carried out with pyridine N-oxide 1a (0.45 mmol, 3 equiv), potassium					

phenyltrifluoroborate **2a** (0.15 mmol), Ag₂O (0.3 mmol, 2 equiv) and Pd(OAc)₂ in 1,4-dioxane (0.5 mL) at 90 °C for 17 h. ° Reactions were carried out with pyridine *N*-oxide **1a** (0.45 mmol, 3 equiv), potassium phenyltrifluoroborate **2a** (0.15 mmol), Ag₂O and Pd(OAc)₂ (10 mol %) in 1,4-dioxane (0.5 mL) at 90 °C for 17 h. ^d Reactions were carried out with pyridine *N*-oxide **1a**, potassium phenyltrifluoroborate **2a** (0.15 mmol), Ag₂O and Pd(OAc)₂ (10 mol %) in 1,4-dioxane (0.5 mL) at 90 °C for 17 h. ^d Reactions were carried out with pyridine *N*-oxide **1a**, potassium phenyltrifluoroborate **2a** (0.15 mmol), Ag₂O (0.3 mmol, 2 equiv.) Pd(OAc)₂ (10 mol %) and TBAI (20 mol %) in 1,4-dioxane (0.5 mL) at 90 °C for 17 h. ^e Reactions were carried out with pyridine *N*-oxide **1a** (0.5 mmol, 3.3 equiv), potassium phenyltrifluoroborate **2a** (0.15 mmol), Ag₂O (0.3 mmol, 2 equiv.) Pd(OAc)₂ (10 mol %) and TBAI (20 mol %) in 1,4-dioxane (0.5 mL) at 90 °C for 17 h. ^e Reactions were carried out with pyridine *N*-oxide **1a** (0.5 mmol, 3.3 equiv), potassium phenyltrifluoroborate **2a** (0.15 mmol), Ag₂O (0.3 mmol, 2 equiv.) Pd(OAc)₂ (10 mol %) and TBAI (20 mol %) in 1,4-dioxane (0.5 mL) for 17 h.

III. Characterization data for coupling products

2-phenylpyridine N-oxide (3a). ^[1, 2]

 $R_f = 0.5$ (AcOEt/Alcohol = 10/1 v/v); light yellow solid; M.p. = 141-142 °C; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.20-7.24$ (m, 1H), 7.28 (td, J = 7.6, 1.1 Hz, 1H), 7.41 (dd, J = 8.0, 2.2 Hz, 1H), 7.44-7.47 (m, 1H), 7.46-7.50 (m, 2H), 7.80-7.83 (m, 2H), 8.32 (dd, J = 6.6, 0.7 Hz, 1H) ppm. IR (cm⁻¹, KBr): 3063, 3044, 1477, 1418, 1240, 841, 759, 724, 697.

2-(4-methoxyphenyl)-pyridine N-oxide (3b). ^[3, 4, 5, 6]

 $R_f = 0.6$ (AcOEt/Alcohol = 6/1 v/v); Yellowish solid; M.p. = 121-123 °C; ¹H NMR (600 MHz, CDCl₃): $\delta = 3.87$ (s, 3H), 6.99 (dt, J = 8.9, 2.9 Hz, 2H), 7.17-7.21 (m, 1H), 7.27 (td, J = 7.7, 1.2 Hz, 1H), 7.41 (dd, J = 7.9, 2.0 Hz, 1H), 7.81 (dt, J = 8.9, 2.9 Hz, 2H), 8.31 (dd, J = 6.6, 0.5 Hz, 1H) ppm. IR (cm⁻¹, KBr): 3064, 2984, 1584, 1497, 1446, 1332, 1251, 1204, 1179, 833, 766.

2-(3-methoxyphenyl)-pyridine N-oxide (3c).^[4]

 $R_f = 0.6$ (AcOEt/Alcohol = 6/1 v/v); White solid; M.p. = 120-122 °C; ¹H NMR (600 MHz, CDCl₃): $\delta = 3.85$ (s, 3H), 6.99 (ddd, J = 8.2, 2.6, 1.0 Hz, 1H), 7.22-7.26 (m, 1H), 7.29-7.34 (m, 2H), 7.38 (t, J = 7.7 Hz, 1H), 7.42-7.44 (m, 2H), 8.32 (dd, J = 6.5, 0.8 Hz, 1H) ppm. IR (cm⁻¹, KBr): 3102, 3057, 2935, 2841, 1608, 1531, 1435, 1243, 830, 761.

2-(2-methoxyphenyl)-pyridine N-oxide (3d). ^[5]

 $R_f = 0.5$ (AcOEt/Alcohol = 6/1 v/v); White solid; M.p. = 169-171 °C; ¹H NMR (600 MHz, CDCl₃): $\delta =$

3.82 (s, 3H), 7.01 (d, *J* = 8.3 Hz, 1H), 7.05 (td, *J* = 7.5, 1.0 Hz, 1H), 7.23-7.27 (m, 1H), 7.27 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.34-7.37 (m, 1H), 7.38 (dd, *J* = 7.5, 1.7Hz, 1H), 7.43-7.46 (m, 1H), 8.33-8.35 (m, 1H) ppm. IR (cm⁻¹, KBr): 3094, 3044, 2961, 2843, 1598, 1487, 1435, 1367, 1243, 961, 827, 733.

2-(4-methylphenyl)-pyridine N-oxide (3e). ^[3, 4, 5, 6]

 $R_f = 0.6$ (Petroleum ether/AcOEt = 6/1 v/v); Yellowish solid; M.p. = 129-131 °C; ¹H NMR (600 MHz, CDCl₃): $\delta = 2.41$ (s, 3H), 7.19-7.23 (m, 1H), 7.28-7.32 (m, 3H), 7.60-7.64 (m, 3H), 7.4 (dd, J = 7.9, 2.3 Hz, 1H), 7.71 (dt, J = 8.1, 2.0 Hz, 2H), 8.32 (dt, J = 6.1, 1.0 Hz, 1H) ppm. IR (cm⁻¹, KBr): 3066, 3043, 2915, 1614, 1430, 1240, 1010, 816, 760.

2-(4-fluorophenyl)-pyridine N-oxide (3f). [7]

 $R_f = 0.6$ (AcOEt/Alcohol = 10/1 v/v); Yellowish solid; M.p. = 161-163 °C; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.15-7.20$ (m, 2H), 7.23-7.26 (m, 1H), 7.30 (td, J = 7.8, 1.2 Hz, 1H), 7.41 (dd, J = 7.8, 2.0 Hz, 1H), 7.83-7.86 (m, 2H), 8.33 (dd, J = 6.4, 0.9Hz, 1H) ppm. IR (cm⁻¹, KBr): 3062, 3040, 2463, 1916, 1597, 1246, 1018, 760, 572.

2-(3-fluorophenyl)-pyridine N-oxide (3g).

 R_f = 0.6 (AcOEt /Alcohol = 6/1 v/v); Yellowish solid; M.p. = 106-107 °C; ¹H NMR (600 MHz, CDCl₃): δ = 7.14-7.18 (m, 1H), 7.25-7.29 (m, 1H), 7.31 (td, *J* = 7.7, 1.2 Hz, 1H), 7.43-7.48 (m, 2H), 7.55-7.58(m, 1H), 7.61 (dt, *J* = 9.9, 1.7 Hz, 1H), 8.34 (dd, *J* = 6.4, 0.7 Hz, 1H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ = 119.4, 119.5, 119.7, 127.9, 128.8, 130.2, 132.7 (d, *J* = 8.6 Hz), 132.8, 143.5, 164.5 (d, *J* = 244.2 Hz) ppm; HRMS (ESI, *m/z*): Calcd for C₁₁H₈FNO [M + H]⁺ 190.0668, found 190.0662. IR (cm⁻¹, KBr): 3074, 3051, 2421, 1603, 1497, 1332, 1263, 1007, 801, 596.

4-(N-Oxopyridin-2-yl)benzoic acid (3h). CAS:281234-68-2

R_f = 0.2 (AcOEt); Yellow solid; M.p. = 162-164 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.28-7.33 (m, 1H), 7.33 (td, *J* = 7.6, 1.3 Hz, 1H), 7.46 (dd, *J* = 7.8, 2.0 Hz, 1H), 8.00 (s, 4H), 8.35 (dd, *J* = 6.2, 0.8 Hz, 1H), 10.8 (s, 1H) ppm. IR (cm⁻¹, KBr): 3632, 3103, 3051, 2443, 1597, 1497, 1348, 1203, 819, 796.

2-(3-nitrophenyl)-pyridine N-oxide (3i). CAS:103985-13-3

 $R_f = 0.4$ (AcOEt/Alcohol = 10/1 v/v); pale yellow solid; M.p. = 175-177 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.31$ (td, J = 6.4, 2.2 Hz, 1H), 7.36 (td, J = 7.6, 1.4 Hz, 1H), 7.50 (dd, J = 7.8, 2.2 Hz, 1H), 7.66 (t, J = 8.0 Hz, 1H), 8.25 (dt, J = 8.1, 1.3 Hz, 1H), 8.31 (dq, J = 8.3, 1.0 Hz, 1H), 8.36 (dd, J = 6.2, 0.9 Hz, 1H), 8.66 (t, J = 1.9 Hz, 1H) ppm. IR (cm⁻¹, KBr): 3076, 3041, 1580, 1440, 1368, 1237, 1108, 928, 743.

2-(2-naphthalenyl)-pyridine N-oxide (3j). CAS: 1622867-80-4

 $R_f = 0.4$ (AcOEt/Alcohol = 6/1 v/v); pale solid; M.p. = 139-141 °C; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.25-7.28$ (m, 1H), 7.33 (td, J = 7.6, 1.1 Hz, 1H), 7.50-7.53 (m, 1H), 7.52-7.57 (m, 2H), 7.87 (d, J = 7.9 Hz, 1H), 7.91 (t, J = 5.9 Hz, 1H), 7.93-7.97 (m, 2H), 8.26 (s, 1H), 8.37-8.39 (m, 1H) ppm. IR (cm⁻¹, KBr): 3097, 3056, 1607, 1529, 1430, 1368, 1137, 892, 698.

2-(2-furanyl)-pyridine N-oxide (3k). CAS: 55484-25-8

 $R_f = 0.4$ (AcOEt); pale yellow solid; M.p. = 94-96 °C; ¹H NMR (600 MHz, CDCl₃): $\delta = 6.61$ (q, J = 1.7 Hz, 1H), 7.11 (td, J = 7.1, 1.9 Hz, 1H), 7.29-7.33 (m, 1H), 7.59 (d, J = 1.1 Hz, 1H), 7.93 (dd, J = 8.2, 1.9 Hz, 1H), 8.02 (d, J = 3.4 Hz, 1H), 8.27 (d, J = 6.4 Hz, 1H) ppm. IR (cm⁻¹, KBr): 3075, 1594, 1498, 1423, 1276, 1258, 898, 841, 591.

2-(3-thienyl)-pyridine N-oxide (31). CAS: 92928-98-8

 $R_f = 0.4$ (AcOEt); pale yellow solid; M.p. = 118-119 °C; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.15-7.18$ (m, 1H), 7.28-7.32 (m, 1H), 7.40 (dd, J = 5.2, 3.1 Hz, 1H), 7.64 (dd, J = 5.2, 1.3 Hz, 1H), 7.68 (dd, J = 8.1, 1.9 Hz, 1H), 8.33 (dd, J = 6.2, 0.8 Hz, 1H), 8.86 (dd, J = 3.2, 1.3 Hz, 1H) ppm. IR (cm⁻¹, KBr): 3044, 1563, 1477, 1450, 1291, 1197, 898, 872, 633.

2-(2-thienyl)-pyridine N-oxide (3m).^[8]

 $R_f = 0.4$ (AcOEt); Pale solid; M.p. = 143-146 °C; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.11$ (td, J = 6.9, 1.9 Hz, 1H), 7.21-7.23 (m, 1H), 7.30-7.34 (m, 1H), 7.57 (dd, J = 5.2, 1.1 Hz, 1H), 7.86 (dd, J = 4.0, 1.1 Hz, 1H), 7.93 (td, J = 8.3, 1.8 Hz, 1H), 8.31 (dd, J = 6.8, 0.8 Hz, 1H) ppm. IR (cm⁻¹, KBr): 3059, 1544, 1498, 1423, 1276, 1258, 898, 841, 591.

2-(5-methyl-2-thienyl)-pyridine N-oxide (3n). ^[2, 9]

 $R_f = 0.4$ (AcOEt); Yellow solid; M.p. = 140-142 °C; ¹H NMR (600 MHz, CDCl₃): $\delta = 2.55$ (s, 3H), 6.88 (dd, J = 4.0, 1.0 Hz, 1H), 7.06 (td, J = 7.1, 1.9 Hz, 1H), 7.28 (dd, J = 7.6, 1.3 Hz, 1H), 7.67 (d, J = 4.0 Hz, 1H), 7.85 (dd, J = 8.3, 1.7 Hz, 1H), 8.27-8.30 (m, 1H) ppm. IR (cm⁻¹, KBr): 3034, 3017, 2986, 1599, 1509, 1479, 1329, 1276, 1128, 935, 698.

2-(5-bromo-2-thienyl)-pyridine N-oxide (30).

 $R_f = 0.4$ (AcOEt); pale yellow solid; M.p. = 164-166 °C; ¹H NMR (600 MHz, CDCl₃): δ = 7.14 (dd, J = 7.2, 1.8 Hz, 1H), 7.18 (d, J = 4.3 Hz, 1H), 7.33-7.36 (m, 1H), 7.59 (d, J = 4.3 Hz, 1H), 7.87 (dd, J = 8.3, 1.7 Hz, 1H), 8.30 (d, J = 6.9 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 119.9, 121.3, 122.3, 126.1, 126.5, 128.8, 132.4, 139.1, 142.5 ppm; HRMS (ESI, *m/z*): Calcd for C₉H₆BrNOS [M + H]⁺ 255.9432, found 255.9442. IR (cm⁻¹, KBr): 3071, 1603, 1508, 1329, 1307, 1258, 1124, 1085, 876, 691.

2-(2,5-dimethyl-3-thienyl)-pyridine N-oxide (3p).

 R_f = 0.4 (AcOEt/Alcohol = 6/1 v/v); pale yellow liquid; ¹H NMR (600 MHz, CDCl₃): δ = 2.38 (s, 3H), 2.42 (s, 3H), 6.89 (d, *J* = 0.6 Hz, 1H), 7.18 (td, *J* = 6.7, 2.5 Hz, 1H), 7.23 (d, *J* = 8.1 Hz, 1H), 7.26-7.29 (m, 1H), 8.31 (d, *J* = 6.4 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 14.4, 15.2, 124.2, 124.9, 126.4, 128.0, 129.1, 136.1, 138.0, 140.5, 146.0 ppm; HRMS (ESI, *m/z*): Calcd for C₁₁H₁₂NOS [M + H]⁺ 206.0640, found 206.0643. IR (cm⁻¹, KBr): 3077, 3049, 2989, 2908, 1583, 1494, 1371, 1267, 1209, 1107, 877, 806.

2-(2-benzofuranyl)-pyridine N-oxide (3q).^[2]

 $R_f = 0.5$ (AcOEt); Pale yellow solid; M.p. = 139-141 °C; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.19-7.22$ (m, 1H), 7.28-7.31 (m, 1H), 7.35 (dd, J = 8.2, 0.9 Hz, 1H), 7.37-7.42 (m, 1H), 7.52 (dd, J = 8.3, 0.7 Hz, 1H), 7.71-7.74 (m, 1H), 8.15 (dd, J = 8.2, 2.0 Hz, 1H), 8.34-8.36 (m, 1H), 8.46 (d, J = 0.9, Hz, 1H) ppm. IR (cm⁻¹, KBr): 3098, 3059, 1558, 1494, 1307, 1298, 1109, 1047, 897, 791.

4-nitro-2-phenylpyridine N-oxide (3r). [10]

R_f = 0.5 (AcOEt); Pale yellow solid; M.p. = 135-136 °C; ¹H NMR (600 MHz, CDCl₃): δ = 7.52-7.54 (m, 3H), 7.80-7.82 (m, 2H), 8.02 (dd, *J* = 7.1, 3.2 Hz, 1H), 8.28 (d, *J* = 3.2 Hz, 1H), 8.36 (d, *J* = 7.2 Hz, 1H) ppm. IR (cm⁻¹, KBr): 3041, 1597, 1508, 1339, 1284, 1231, 1114, 895, 724.

2-chloro-6-phenylpyridine N-oxide (3s). CAS: 119492-88-5

 $R_f = 0.3$ (Petroleum ether/AcOEt = 3/1 v/v); Pale yellow solid; M.p. = 141-142 °C; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.20$ (t, J = 8.0 Hz, 1H), 7.35 (dd, J = 7.9, 2.0 Hz, 1H), 7.45-7.50 (m, 4H), 7.78-7.81 (m, 2H) ppm. IR (cm⁻¹, KBr): 3048, 1610, 1508, 1497, 1328, 1263, 1209, 1095, 747, 678.

4-methyl-2-phenylpyridine N-oxide (3t). CAS: 80635-42-3

 $R_f = 0.2$ (AcOEt /Alcohol = 6/1 v/v); Pale yellow liquid; ¹H NMR (400 MHz, CDCl₃): $\delta = 2.39$ (s, 3H), 7.04 (dd, J = 6.5, 2.3 Hz, 1H), 7.31 (t, J = 8.1 Hz, 1H), 7.45-7.50 (m, 3H), 7.78-7.84 (m, 2H), 8.27 (d, J = 6.7 Hz, 1H) ppm. IR (cm⁻¹, KBr): 3072, 2978, 1598, 1541, 1469, 1382, 1294, 1098, 814,716.

5-methyl-2-phenylpyridine N-oxide (3u). [6]

 $R_f = 0.3$ (AcOEt /Alcohol = 10/1 v/v); Pale solid; M.p. = 168-169 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 2.33$ (s, 3H), 7.12-7.15 (m, 1H), 7.30 (d, J = 8.0 Hz, 1H), 7.42-7.50 (m, 3H), 7.78 (dd, J = 8.3, 1.7 Hz, 2H), 8.20 (s, 1H) ppm. IR (cm⁻¹, KBr): 3048, 2967, 1603, 1523, 1481, 1378, 1321, 1245, 1103, 829, 732, 699.

6-methyl-2-phenylpyridine N-oxide (3v). ^[3, 6, 8]

 $R_f = 0.5$ (Petroleum ether/AcOEt = 2/1 v/v); Pale solid; M.p. = 118-119 °C; ¹H NMR (600 MHz, CDCl₃): $\delta = 2.58$ (s, 3H), 7.18 (t, J = 7.7 Hz, 1H), 7.24 (d, J = 2.2 Hz, 1H), 7.30 (dd, J = 8.0, 2.2 Hz, 1H), 7.42-7.48 (m, 3H), 7.77 (dd, J = 8.3, 1.6 Hz, 2H) ppm. IR (cm⁻¹, KBr): 3059, 3015, 2946, 2889, 1597, 1523, 1470, 1369, 1315, 1287, 1103, 799, 693.

4-methoxy-2-phenylpyridine N-oxide (3w).

8.23 (d, J = 7.3 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 56.1$, 110.9, 112.4, 128.3, 129.3, 129.7, 132.8, 141.2, 149.8, 157.6 ppm; HRMS (ESI, m/z): Calcd for C₁₂H₁₁NO₂[M + H]⁺ 202.0868, found 202.0867. IR (cm⁻¹, KBr): 3074, 2954, 2883, 1590, 1514, 1473, 1382, 1342, 1291, 1249, 1073, 832, 719.

3-methyl-4-nitro-6-phenylpyridine N-oxide (3x). CAS:1344663-62-2

 $R_f = 0.3$ (Petroleum ether/AcOEt = 3/1 v/v); Yellow solid; M.p. = 169-170 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 2.63$ (d, J = 0.5 Hz, 3H), 7.50-7.53 (m, 3H), 7.78-7.81 (m, 2H), 8.20 (s, 1H), 8.26 (s, 1H) ppm. IR (cm⁻¹, KBr): 3082, 1590, 1514, 1346, 1295, 1249, 1073, 827, 743.

V. References

- [1] (a) Cho, S. H.; Hwang, S. J.; Chang, S. J. Am. Chem. Soc. 2008, 130, 9254. (b) Kokatla, H. P.; Thomson, P. F.;
 Bae, S.; Doddi, V. R.; Lakshman, M. K., J. Org. Chem. 2011, 76, 7842–7848.(c) Cuny, G. D.; Hauske, J. R.;
 Hoemann, M. Z.; Chopra, I. Preparation of quinolinylindoles as antimicrobial agents. US6376670B1, 2002.
- [2] Liu, W.; Yu, X.; Li, Y.; Kuang, C. Chem. Commun., 2014, 50, 9291-9294.
- [3] Do, H. Q. R.; Khan, M. K.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 15185-15192.
- [4] Ackermann, L.; Fenner, S. Chem. Commun. 2011, 47, 430-432.
- [5] Campeau, L.-C.; Rousseaux, S.; Fagnou, K. J. Am. Chem. Soc. 2005, 127, 18020-18021.
- [6] Liu, C., Zhang, S.-K., Zhang, Y.-X., Jin, Z.-L. Chinese Chem. Lett. 2015, 26, 55-57.

[7] Ackermann. L.; Fenner, S. Chem. Commun., 2011, 47, 430-432.

- [8] Zhang, F., Zhang, S., Duan, X, -F, Org. Lett. 2012, 14, 5618–5620.
- [9] Xi, P.; Yang, F.; Qin, S.; Zhao, D.; Lan, J.; Gao, G.; Hu, C.; You, J. J. Am. Chem. Soc. 2010, 132, 1822–1824.
- [10] Zhang, F.; Duan, X.-F. Org. Lett. 2011, 13, 6102–6105.

-		
NAME	20141212zhaojir	njin
EXPNO	10	
PROCNO	1	
Date_	20141212	
Time	10.47	
INSTRUM	spect	
PROBHD	5 mm PADUL 13C	
PULPROG	zg30	
TD	65536	
SOLVENT	CDC13	
NS	4	
DS	2	
SWH	12335.526	Ηz
FIDRES	0.188225	Hz
AQ	2.6564426	sec
RG	203	
DW	40.533	usec
DE	6.50	usec
TE	290.7	К
D1	1.00000000	sec
	CHANNEL fl ====	
NUC1	1H	
P1	14.00	usec
SI	32768	
SF	600.1300092	MHz
WDW	EM	
SSB	0	
LB	-0.10	Ηz
GB	0	
PC	1.00	
	NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS SSWH FIDRES AQ RG DW DE TE D1 ======= NUC1 P1 SI SSB LB GB PC	NAME 20141212zhaojir EXPNO 10 PROCNO 1 Date_ 20141212 Time 10.47 INSTRUM spect PROBHD 5 mm PADUL 13C PULPROG zg30 TD 65536 SOLVENT CDC13 NS 4 DS 2 SWH 12335.526 AQ 2.6564426 RG 203 DW 40.533 DE 6.50 TE 290.7 D1 1.00000000 ===== CHANNEL fl ==== NUC1 1H P1 14.00 SF 600.1300092 WDW EM SSB 0 LB -0.10 GB 0 CC 1.00

NAME	20141212zhaojir	ıjin
EXPNO	3	
PROCNO	1	
Date_	20141212	
Time	10.20	
INSTRUM	spect	
PROBHD	5 mm PADUL 13C	
PULPROG	zg30	
TD	65536	
SOLVENT	CDC13	
NS	4	
DS	2	
SWH	12335.526	Ηz
FIDRES	0.188225	Hz
AQ	2.6564426	sec
RG	203	
DW	40.533	usec
DE	6.50	usec
TE	291.0	K
D1	1.00000000	sec
	CHANNEL fl ====	
NUC1	1H	
P1	14.00	usec
SI	32768	
SF	600.1300134	MHz
WDW	EM	
SSB	0	
LB	-0.10	Hz
GB	0	
PC	1.00	

