Supplementary Information

Photocatalytic water disinfection by simple and low-cost monolithic and heterojunction ceramic wafers

Neel M. Makwana^a, Rachael Hazael^a, Paul F. McMillan^a, and Jawwad A. Darr*^a

^{*a*} Christopher Ingold Laboratories, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom

*Corresponding author email: j.a.darr@ucl.ac.uk

Fig. S1 Band energy diagram for a type II staggered bandgap heterostructure. Under photoirradiation, electrons can transfer across the heterojunction from the conduction band (CB) of semiconductor A to the CB of semiconductor B; conversely, holes can transfer from the valence band (VB) of semiconductor B to the VB of semiconductor A.

Material characterisation

X-ray diffraction (XRD) data was collected using a Stoe Stadi P diffractometer (Mo-K α radiation, 0.70932 Å) in transmission geometry (2 - 40° 2 θ range, 0.5° step size and 5 sec/step dwell). Field emission scanning electron microscopy (FE-SEM) images were obtained with a JEOL JSM-6700F microscope operating at 5 kV accelerating voltage. As-prepared ceramic wafers were cracked to expose the cross-sectional interface between the TiO₂ and WO₃ layers, and all samples were gold coated prior to imaging. Image analysis was performed using ImageJ software (version 1.48v).

Fig. S2 X-ray diffraction (XRD) pattern of anatase TiO_2 phase of the TiO_2 -WO₃ wafer following heat-treatment at 500 °C for 6 hours.

Fig. S3 Field emission scanning electron microscopy (FE-SEM) images of the TiO_2 –WO₃ ceramic wafer heterojunction. Images (a) and (b) identify the TiO_2 and WO₃ layers and the physical interface between the two layers. Image (c) shows the WO₃ layer, with the area marked *a* showing loosely bound particles resulting from the disrupted physical interaction when the ceramic wafer was prepared for imaging. The area marked *b* shows particles in very close contact, as a result of the compaction (occurring in the horizontal plane) of the powder upon preparation of the ceramic wafer. Image (d) shows the TiO_2 layer.

Fig. S4 Spectral output of 75 W Xenon lamp