SUPPLEMENTARY INFORMATION ## Subtle Structural Changes in Octupolar Merocyanine Dyes Influence the Photosensitized Production of Singlet Oxygen Mikkel Bregnhøj, ^a Frederico M. Pimenta, ^a Yevgen M. Poronik, ^b Daniel T. Gryko, ^{*b} and Peter R. Ogilby*^a ^a Center for Oxygen Microscopy and Imaging, Department of Chemistry, Aarhus University, Aarhus, 8000 Denmark. E-mail: progilby@chem.au.dk ## **Contents:** 1 H and 13 C NMR spectra for merocyanine dyes $\mathbf{1}_{but}$ and $\mathbf{2}_{met}$ pages S2-S5 2D NOESY experiment for $\mathbf{1}_{but}$ pages S6-S7 Crystal Structure for $\mathbf{1}_{met}$ page S8 ^b Institute of Organic Chemistry of the Polish Academy of Sciences, 01-224 Warsaw, Poland. E-mail: dtgryko@icho.edu.pl ## Crystallographic Data for 1_{met} : X-ray diffraction analysis was performed on $\mathbf{1}_{met}$ (see below). The structure was deposited (CCDC 1057779). It clearly resolves the configuration of double bonds as all-E isomer.