Supporting information

4,7-Di-2-thienyl-2,1,3-benzothiadiazole with hexylthiophene side chains and a benzodithiophene Q2 based copolymer for efficient organic solar cells

Junzhen Ren^{a,b‡}, Xichang Bao^{b‡}, Liangliang Han^b, Jiuxing Wang^b, Meng Qiu^b, Qianqian Zhu^b, Tong Hu^{a,b}, Ruiying Sheng^{a,b}, Mingliang Sun^{a*}, Renqiang Yang^{b*}.

^a Institute of Material Science and Engineering, Ocean University of China, Qingdao 266100, People's Republic of China. Fax: 86-532-66781927; Tel: 86-532-66781690; E-mail: mlsun@ouc.edu.cn

^b CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China. Fax: 86-532-80662778; Tel: 86-532-80662700; E-mail: yangrq@qibebt.ac.cn ‡J. Ren and X. Bao contributed equally to this work.

Figure S1. The absorption coefficient of PBDT-DTTBT in the $CHCl_3$ solution (a) and thin solid film (b).

Ratio	DIO	V _{oc}	$J_{ m sc}$	FF	
(A : D,	(%)	(V)	(mA/cm ²)	(%)	PCE _{max} /PCE _{ave} ^a
w/w)					
1.5 : 1	2	0.81±0.01	10.64±0.04	57.53±0.16	4.97/ (4.96±0.01)
1:1	2	0.80±0.01	12.56±0.22	60.38±0.70	6.19/ (6.05±0.16)
1:1.5	2	0.80±0.01	9.99±0.10	62.82±0.23	4.93/ (4.87±0.07)
1:2	2	0.79±0.01	9.68±0.17	62.14±1.04	4.91/ (4.78±0.12)

Table S1 Photovoltaic properties of the PSCs based on the blend of PBDT-DTTBT and $PC_{71}BM$

^a The average PCE was obtained from five devices.

Figure S2. *J-V* curves of the PSCs based on PBDT-DTTBT and PC₇₁BM with different D/A ratios.

 $C_{8}H_{17}$

PBDTC₆TBT

PBDT_{HDO}-DT_HBTff

PBDTDTBT

Figure S3. The molecular structures of PBDT-DTBT, PBDT-TBT-C8, P(BDT-TT-BT), P(BDT-TT-BT), PBDT_{HDO}-DT_HBTff and PBDTDTBT.

Figure S4. XRD pattern of PBDT-DTTBT as film

Figure S5. ¹H NMR spectrum of compound 4.

Figure S6. ¹H NMR spectrum of DTTBT.

Figure S7. ¹³C NMR spectrum of DTTBT.

Figure S8. ¹H NMR spectrum of PBDT-DTTBT.