Electronic Supplementary Information

Amidoxime functionalization of mesoporous silica and its high removal of U(VI)

Yingguo Zhao^{ab}, Xiangxue Wang^a, Jiaxing Li*a,c, Xiangke Wang^{ade*}

^a School of Environment and Chemical Engineering, North China Electric Power
University, Beijing 102206, P.R. China. Fax: +86-10-61772890; Tel: +86-1061772890; E-mail: lijx@ipp.ac.cn (J. Li); xkwang@ipp.ac.cn or
xkwang2ncepu.edu.cn (X. Wang)

^b Anhui Collaborative Innovation Center for Petrochemical New Materials, Anqing Normal College, Anqing 246011, PR China

^c School for Radiological and interdisciplinary Sciences (RAD-X), Soochow University, P.R. China

^d Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, P.R. China

NAAM Research Group, Faculty of Science, King Abdulaziz University, Jeddah
21589, Saudi Arabia

Experimental procedures

Kinetic experiments

For batch kinetic tests, the initial U(VI) concentrations was 0.2 mmol/L and the initial solution pH value was 5.0 (the solution pH was not adjusted during the sorption kinetic process). The centrifuge tubes were gently shaken on a rotating oscillator for a series of preselected contact time ranging from 5 to 360 min. The residual U(VI)concentrations were determined after centrifugation.

Regeneration experiments

For desorption experiments, the solid residue of sorption experiments was thoroughly rinsed with Milli-Q water and mixed with HCl solutions at 298 K under vibrating condition for 24 h. After centrifugation, the remaining U(VI) concentration in the supernatant was measured to evaluate the desorption percentage. The regenerated sorbent was washed thoroughly with Milli-Q water and then used for the next sorption-desorption cycle.

Fig. S1 Sorption isotherms of U(VI) on SBA-AO-0.4 at 313 K (a) and 333 K (b). The scattered points represent experiment data, the solid lines represent the Langmuir model and the dash lines represent the Freundlich model.

Fig. S2. Effect of HCl concentration on U(VI) desorption. T = 298 K, m/V = 0.2 g/L.

Fig. S3 Recycling of SBA-AO-0.4 in the sorption of U(VI). pH = 5.0 ± 0.1 , T = 298 K, I = 0.01 M NaClO₄, C_{U(VI) initial} = 0.2 mmol/L, m/V = 0.2 g/L.

Sorbents	Experimental conditions	$q_{\rm max}({\rm mg/g})$	Ref
Colloidal magnetite	ambient temperature, pH = 7.0	1.4	1
Fe ₃ O ₄ /graphene oxide	T = 293K, pH = 5.5	69.5	2
Fe ₃ O ₄ @SiO ₂ -Salicylaldehyde	ambient temperature, pH = 7.0	49.0	3
Fe ₃ O ₄ @SiO ₂ -Quercetin	T = 298K, pH = 3.7	12.3	4
Fe ₃ O ₄ @SiO ₂ -Amidoxime	T = 298K, pH = 5.0	105.0	5
Polymeric-magnetite cryobead	<i>T</i> = 298K, pH = 5.0	120.5	6
Fe ₃ O ₄ @IIP	ambient temperature, pH = 4.0	71.5	7
Fe ₃ O ₄ @SiO ₂	T = 298K, pH = 6.0	52.4	8
AOMGO	<i>T</i> =298 K, pH = 5.0	284.9	9
SBA-AO-0.4	<i>T</i> =298 K, pH = 5.0	386.8	This work

Table S1 Comparison of U(VI) sorption capacity of SBA-AO-0.4 with other sorbents

References

- T. Missana, M. Garcia-Gutierrez and V. Fernndez, *Geochim. Cosmochim. Ac*, 2003, 67, 2543– 2550.
- P. F. Zong, S. F. Wang, Y. L. Zhao, H. Wang, H. Pan and C. H. He, *Chem. Eng. J.*, 2013, 220, 45–52.
- A. Rezaei, H. Khani, M. Masteri-Farahani and M. K. Rofouei, *Anal. Methods*, 2012, 4, 4107–4114.
- S. Sadeghi, H. Azhdari, H. Arabi and A. Z. Moghaddam, J. Hazard. Mater., 2012, 215, 208– 216.
- Y. G. Zhao, J. X. Li, L. P. Zhao, S. W. Zhang, Y. S. Huang, X. L. Wu and X. K. Wang, *Chem. Eng. J.*, 2014, 235, 275–283.
- 6. A. Tripathi, J. S. Melo and S. F. D'Souza, J. Hazard. Mater., 2013, 246, 87-95.
- 7. S. Sadeghi and E. Aboobakri, Microchim. Acta, 2012, 178, 89-97.
- F. L. Fan, Z. Qin, J. Bai, W. D. Rong, F. Y. Fan, W. Tian, X. L. Wu, Y. Wang and L. Zhao, J. Environ. Radioactiv, 2012, 106, 40–46.
- 9. Y. G. Zhao, J. X. Li, S. W. Zhang, H. Chen and D.D. Shao, RSC Adv., 2013, 3, 18952–18959.

<i>T</i> (K)	$\Delta G^0 (\mathrm{kJ/mol})$	ΔH^0 (kJ/mol)	$\Delta S^0 (J/(K mol))$
298	-25.853		
318	-28.054	9.548	118.619
338	-30.613		

Table S2 Thermodynamic parameters of U(VI) sorption on SBA-AO-0.4 at 298, 318, and 338 K.