Polymers synthesized by RAFT as versatile macrophotoinitiators

J. Poly,* B. Cabannes-Boué, L. Hebinger, R. Mangin, A. Sauvage, P. Xiao, F. Morlet-Savary & J. Lalevée

Supporting Information

Characterization of the polymers by SEC

Chromatograms corresponding to the polymers described in the manuscript (signals of the refractive index detector).

• **PVAc** $M_n = 4.28.10^3$ g/mol; $M_w/M_n = 1.15 \rightarrow$ degree of polymerization (DP) ≈ 47

• Block copolymer: PVAc-b-PNVC

Chromatograms corresponding to the PVAc precursor and the products of the chain-extension experiment, before and after purification by selective precipitations.

Photodissociation of the chain-end functions

ESR spectra

Photodissociation of the xanthate chain-ends evidenced by a spin-trap experiment using TEMPO.

Only one spectrum out of two is shown for a better visibility.

PVAc

PNVC

• PVAc-*b*-PNVC

NMR spectra

The photodissociation of chain-ends can be also directly evidenced by ¹H NMR on similar products but with shorter lengths: PVAc of DP \approx 25 and PNVC of DP \approx 10.

In order to collect enough polymer for further characterizations, the experiment was not performed directly in an ESR tube but in a Schlenk tube, using a larger volume (30 mL) of solution at the same concentration (5.0.10⁻⁴ mol/L; 3 equivalents of TEMPO). Irradiation was stopped when the ESR spectrum of TEMPO reached its minimum intensity.

- PVAc
 - Before irradiation:

• After irradiation and recovery of the product by precipitation:

- PNVC
 - *Before irradiation:*

• After irradiation and recovery of the product by centrifugation:

UV-visible spectra

In the case of the PVAc described in the previous section, the removal of the xanthate chain-end can be more simply and clearly evidenced by UV-visible spectroscopy through the decrease of the characteristic absorbance of the xanthate function at $\lambda \approx 290$ nm (solutions in toluene at $1.0.10^{-4}$ mol/L).

Photopolymerizations

Photopolymerization of TMPTA

A formulation containing 10 mg of PNVC in 1 g of TMPTA was prepared before being deposited (thickness: 35 μ m) on a BaF₂ pellet in laminate conditions (the formulation is sandwiched between two polypropylene films). The conversion of the acrylate functions (band at 1630 cm⁻¹) occurring during the irradiation of the film was followed by real time Fourier Transform InfraRed spectroscopy (JASCO FTIR 4100 spectrometer). A Xe-Hg lamp (Hamamatsu LC8; 100 mW.cm⁻²) was used.

• Formulation based on the PNVC of DP \approx 26: initial and final FT-IR spectra

• Formulation based on the PNVC of DP \approx 10: comparison with PVAc (DP \approx 10) and xanthate used at the same molar concentration

• Formulation based on the PNVC of DP ≈ 26: other lamps

The same experiment was tested using two other light sources: LED at 365 nm (M365L2 – ThorLabs; 31 mW.cm⁻²) and LED at 405 nm (M405L2 – ThorLabs; 110 mW.cm⁻²).

Photopolymerization of EPOX

A formulation containing 10 mg of PNVC and 10 mg of Ph_2I^+ , PF_6^- in 1 g of EPOX was prepared. The procedure was the same as for TMPTA, except that the photopolymerization was performed in air with the formulation being directly deposited (thickness: 35 µm) on the BaF₂ pellet. The conversion of the epoxide functions was monitored following the evolution of the band at 790 cm⁻¹.

• Formulation based on the PNVC of DP \approx 26: initial and final FT-IR spectra

 Formulation based on the PNVC of DP ≈ 26: other lamp The same experiment was tested using another light source: LED at 365 nm (M365L2 – ThorLabs; 31 mW.cm⁻²).

