Supporting Information

Cross-linked Supramolecular Polymer Constructed from

 Pillar[5]arene and Porphyrine via the Host-Guest interactionsNana Sun, Xin Xiao,* and Jianzhuang Jiang*

Caption of Content

Scheme S1. Synthesis of the host DMeP5 and the guest TImPor.

Fig. S1 ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR spectra of DMeP5 recorded in CDCl_{3} at $25{ }^{\circ} \mathrm{C}$.

Fig. S2 ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of DMeP5 recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$.
Fig. S3 The MALDI-TOF mass spectrum of DMeP5.

Fig. S4 ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR spectra of TImPor recorded in CDCl_{3} at $25{ }^{\circ} \mathrm{C}$.

Fig. S5 ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of TImPor recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$.
Fig. S6 The MALDI-TOF mass spectrum of TImPor.
Fig. S7 Partial NOESY NMR spectrum of the complex DMeP5@TImPor recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$.

Fig. S8 (Top) Partial ${ }^{1} \mathrm{H}$ NMR spectra and (Bottom) the non-linear curve-fitting of BuIm (0.5 mM) upon addition of MeP5 recorded in CDCl_{3} at $25{ }^{\circ} \mathrm{C}$ with the MeP5/BuIm molar ratio: 0 (A), 0.625 (B), 1.25 (C), 1.875 (D), 3.125 (E), 4.375 (F), 5 (G), $7.5(\mathrm{H}), 10(\mathrm{I}), 12.5(\mathrm{~J}), 15(\mathrm{~K}), 17.5(\mathrm{~L}), 20(\mathrm{M}), 22.5(\mathrm{~N})$, and $25(\mathrm{O})$.

Fig. S9 Electronic absorption spectrum (A) and fluorescence spectrum (B) of TImPor $\left(2 \times 10^{-6} \mathrm{~mol} / \mathrm{L}\right)$ upon addition of DMeP5 recorded in CHCl_{3} with the DMeP5/TImPor molar ratio changing from 0 to 50 .

Fig. S10 Job's plot of $\Delta \mathrm{F}$ in fluorescence intensity of guest TImPor versus the molar ratio of $[$ TImPor $] /\{[\mathrm{DMeP} 5]+[$ TImPor $]\}$.

Fig. S11 DLS data for TImPor (A), TImPor with 1.0 equiv. DMeP5 (B), and TImPor with 2.0 equiv. DMeP5 (C) at a fixed concentration of 2.0 mM recorded in CHCl_{3} at $25^{\circ} \mathrm{C}$.

Fig. S12 AFM image of the supramolecular polymer DMeP5@TImPor.
Fig. S13 Diffusion coefficient of DMeP5@TImPor upon addition of 0, 20.0, 40.0, $60.0,80.0$, and 100.0 equiv. competitive guest ADN recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$.

Fig. S14 DLS data for TImPor with 2.0 equiv. DMeP5 at a fixed concentration of 2.0 mM (A) and adding 100.0 equiv. competitive guest ADN into $\mathrm{A}(\mathrm{B})$ recorded in CHCl_{3} at $25^{\circ} \mathrm{C}$.

Scheme S1. Synthesis of the host DMeP5 and the guest TImPor.

1. General Remarks: All reagents were obtained from commercial sources without further purification. The compounds of $\mathbf{1 - 5}$ were prepared according to the literature procedures. ${ }^{[S 1-S 4]}$
2. Measurements: ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker DPX 400 spectrometer in CDCl_{3} and DMSO- d_{6}. Electronic absorption spectra were recorded on a Hitachi U-4100 spectrophotometer. Steady-state fluorescence spectroscopic studies were performed on an F4500 (Hitachi). MALDI-TOF mass spectra were taken on a Bruker BIFLEX III ultra-high resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer with α-cyano-4-hydroxycinnamic acid as matrix. Elemental analysis was performed on an Elementar Vavio El III. DLS data were obtained on a DynaPro NanoStar at $25^{\circ} \mathrm{C}$. SEM image was obtained using a JEOL JSM-6700F field-emission scanning electron microscopy. TEM image was taken on a JEM-100CX II (JEOL Ltd., Japan) electron microscope operated at 100 kV . AFM image was collected in air under ambient conditions using the tapping mode with a Nanoscope III/Bioscope scanning probe microscope from Digital Instruments.
3. Synthesis procedure: Preparation of 1,4-bis(4-methoxyphenoxy)butane (1). ${ }^{[81]}$ To a stirred solution of 1,4-dibromobutane ($6.5 \mathrm{~g}, 0.03 \mathrm{~mol}$) in dry DMF (100.0 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(3.0 \mathrm{~g}, 0.022 \mathrm{~mol})$ and 4-methoxyphenol ($1.9 \mathrm{~g}, 0.015 \mathrm{~mol}$) and the mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 5 d . After the reaction was completed, the solid was removed by filtration and the solvent was removed under reduced pressure to afford 6.81 g of product as a white solid. Yield: 75%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) δ (ppm): 6.83 (s, 4H), 3.98 (s, 2H), 3.77 (s, 3H), 1.94 (s, 2H).

Preparation of DMeP5 (2). ${ }^{[52]}$ To a solution of $\mathbf{1}(0.30 \mathrm{~g}, 1.0 \mathrm{mmol})$, 1,4dimethoxybenzene ($2.2 \mathrm{~g}, 16.0 \mathrm{mmol}$), and paraformaldehyde ($1.5 \mathrm{~g}, 50.0 \mathrm{mmol}$) in dry $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(300.0 \mathrm{~mL})$ under N_{2} atmosphere for 0.5 h , the anhydrous FeCl_{3} $(0.41 \mathrm{~g}, 2.5 \mathrm{mmol})$ was added. The mixture was stirred under N_{2} atmosphere for 8 h at room temperature. After the reaction was completed, the solution was diluted with CHCl_{3} and washed with saturated sodium chloride solution. The organic layer was dried with MgSO_{4} and solvents removed. The residue was purified by flash column chromatography on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to afford 0.42 g of product as a white solid. Yield: 28%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta(\mathrm{ppm}): ~ 6.78-6.74(\mathrm{~m}$, 20 H), 3.93-3.61 (m, 78H), $2.04(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta(\mathrm{ppm}):$ $151.04,150.15,128.47,114.33,114.25,68.31,55.92,31.74,29.94,29.55,26.98$, 22.80, 14.26. MS Calcd. for $\mathrm{C}_{92} \mathrm{H}_{102} \mathrm{O}_{20}$: 1527.78; found: m/z 1527.18. Anal. Calcd. for $\mathrm{C}_{92} \mathrm{H}_{102} \mathrm{O}_{20}$: C, 72.33; H, 6.73; found C, 72.37; H, 6.69.

Preparation of TOHPor (3). ${ }^{[53]}$ 4-Hydroxybenzaldehyde ($10.0 \mathrm{~g}, 82.0 \mathrm{mmol}$) in propionic acid (500.0 mL) was stirred at $150{ }^{\circ} \mathrm{C}$. To which pyrrole $(5.7 \mathrm{~mL}, 82.0$ mmol) dissolved in 50.0 mL propionic acid was added dropwise within 30 min . The reaction mixture was further stirred for 1 h . After the solid was filtered off, the residue was washed by $\mathrm{H}_{2} \mathrm{O}$ to afford 5.11 g of product as a dark green solid. Yield: $37 \% .{ }^{1} \mathrm{H}$

NMR (400 MHz, DMSO- $d_{6}, 25^{\circ} \mathrm{C}$) $\delta(\mathrm{ppm}): 8.86(\mathrm{~s}, 8 \mathrm{H}), 8.00(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 8 \mathrm{H})$, 7.21 (d, J = $8.0 \mathrm{~Hz}, 8 \mathrm{H}$), -2.89 (s, 2H). ${ }^{13} \mathrm{C}$ NMR (400 MHz , DMSO- $d_{6}, 25{ }^{\circ} \mathrm{C}$) δ (ppm): 175.14, 157.37, 135.47, 131.90, 119.96, 113.89, 79.14, 48.57, 26.87, 9.06. MS Calcd. for $\mathrm{C}_{44} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4}$: 678.73; found: m/z 678.33. Anal. Calcd. for $\mathrm{C}_{44} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 77.86; H, 4.46; N, 8.25; found C, 77.77; H, 4.48; N, 8.31.

Preparation of TBrPor (4). ${ }^{[81]}$ To a 250 mL flask containing anhydrous potassium carbonate ($1.7 \mathrm{~g}, 12.0 \mathrm{mmol}$) and $\mathbf{3}(1.4 \mathrm{mg}, 2.0 \mathrm{mmol})$ in dry DMF (100.0 mL), 1,4dibromobutane ($22.0 \mathrm{~g}, 100.0 \mathrm{mmol}$) was added under nitrogen atmosphere at $50^{\circ} \mathrm{C}$. The reaction mixture was stirred for 5 d . After the solid was filtered off, the solvent was removed. The residue was purified by flash column chromatography on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to afford 202.0 mg of product as a purple solid. Yield: $8 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta(\mathrm{ppm}): 8.86(\mathrm{~s}, 8 \mathrm{H}), 8.12(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 8 \mathrm{H}), 4.29$ $(\mathrm{t}, \mathrm{J}=12.0 \mathrm{~Hz}, 8 \mathrm{H}), 3.63(\mathrm{t}, \mathrm{J}=12.0 \mathrm{~Hz}, 8 \mathrm{H}), 2.28(\mathrm{~m}, 8 \mathrm{H}), 2.18(\mathrm{~m}, 8 \mathrm{H}),-2.76(\mathrm{~s}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$) $\delta(\mathrm{ppm}): 158.86,135.77,134.89,119.88$, 112.85, 67.32, 33.71, 29.83, 28.30. MS Calcd. for $\mathrm{C}_{60} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Br}_{4}$: 1218.74; found: m / z 1219.53. Anal. Calcd. for $\mathrm{C}_{60} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Br}_{4}$: C, 59.13; H, 4.80; N, 4.60; found C, 59.21; H, 4.71; N, 4.53.

Preparation of TImPor (5). ${ }^{[54]} 1 \mathrm{H}$-imidazole ($82.0 \mathrm{mg}, 1.2 \mathrm{mmol}$), $\mathrm{NaOH}(48.0 \mathrm{mg}$, $1.2 \mathrm{mmol})$, and $4(70.0 \mathrm{mg}, 0.057 \mathrm{mmol})$ in DMSO $(10.0 \mathrm{~mL})$ were stirred at $70^{\circ} \mathrm{C}$ for 24 h . The solvent was poured into water. After filtration, the residue was dried by air to afford 64.2 mg of product as a purple solid. Yield: 97%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \delta(\mathrm{ppm}): 8.85(\mathrm{~s}, 8 \mathrm{H}), 8.12(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 8 \mathrm{H}), 7.61(\mathrm{~s}, 4 \mathrm{H}), 7.14(\mathrm{~s}$, $4 \mathrm{H}), 7.05(\mathrm{~s}, 4 \mathrm{H}), 4.29(\mathrm{t}, \mathrm{J}=12.0 \mathrm{~Hz}, 8 \mathrm{H}), 4.19(\mathrm{t}, \mathrm{J}=12.0 \mathrm{~Hz}, 8 \mathrm{H}), 2.20(\mathrm{~m}, 8 \mathrm{H})$, $2.00(\mathrm{~m}, 8 \mathrm{H}),-2.77(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta(\mathrm{ppm}): 158.74$, 137.36, 135.78, 134.99, 129.85, 119.84, 118.97, 112.82, 67.57, 47.03, 31.74, 28.42, 26.68, 22.80, 14.26. MS Calcd. for $\mathrm{C}_{72} \mathrm{H}_{70} \mathrm{~N}_{12} \mathrm{O}_{4}$: 1167.40; found: m/z 1166.77. Anal. Calcd. for $\mathrm{C}_{72} \mathrm{H}_{70} \mathrm{~N}_{12} \mathrm{O}_{4}$: C, 74.08; H, 6.04; N, 14.40; found C, 74.16; H, 5.98; N, 14.29.

Fig. S1 ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR spectra of DMeP5 recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$.

Fig. S2 ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of DMeP5 recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$.

Fig. S3 The MALDI-TOF mass spectrum of DMeP5. The signals at $\mathrm{m} / \mathrm{z}=1527.18$ and 1567.15 correspond to the molecular ion $[\mathrm{M}]^{+}$and $\left[\mathrm{M}+\mathrm{K}^{+}\right]^{+}$, respectively.

Fig. S4 ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR spectra of TImPor recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$.

Fig. $55^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of TImPor recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$.

Fig. S6 The MALDI-TOF mass spectrum of TImPor. The signal at $\mathrm{m} / \mathrm{z}=1166.77$ corresponds to the molecular ion $[\mathrm{M}]^{+}$(calculated 1167.40).

Fig. S7 Partial NOESY NMR spectrum of the complex DMeP5@TImPor recorded in CDCl_{3}
at
25
${ }^{\circ} \mathrm{C}$.

Fig. S8 (Top) Partial ${ }^{1} \mathrm{H}$ NMR spectra and (Bottom) the non-linear curve-fitting of BuIm (0.5 mM) upon addition of MeP5 recorded in CDCl_{3} at $25{ }^{\circ} \mathrm{C}$ with the MeP5/BuIm molar ratio: 0 (A), 0.625 (B), 1.25 (C), 1.875 (D), 3.125 (E), 4.375 (F), 5 (G), $7.5(\mathrm{H}), 10(\mathrm{I}), 12.5(\mathrm{~J}), 15(\mathrm{~K}), 17.5(\mathrm{~L}), 20(\mathrm{M}), 22.5(\mathrm{~N})$, and $25(\mathrm{O})$. To investigate the binding affinity of DMeP5 with TImPor, 1,4-dimethoxypillar[5]arene (MeP5) and 1-Butylimidazole (BuIm) were chosen as the model compounds. ${ }^{[88]}{ }^{1} \mathrm{H}$ NMR titrations were performed with a constant concentration of BuIm (0.5 mM) and varying molar ratio of MeP5/BuIm in the range of $0-25$, Fig. S8. According to previous report, ${ }^{[8 a]}$ the stoichiometry of the complex MeP5@BuIm was determined to be $1: 1$. By a non-linear curve-fitting method, ${ }^{[80,8 e]}$ the association constant $\left(K_{\mathrm{a}}\right)$ of MeP5 with BuIm was estimated to be $1.62 \times 10^{2} \mathrm{M}^{-1}$.

Fig. S9 Electronic absorption spectrum (A) and fluorescence spectrum (B) of TImPor ($2 \times 10^{-6} \mathrm{~mol} / \mathrm{L}$) upon addition of DMeP5 recorded in CHCl_{3} with the DMeP5/TImPor molar ratio changing from 0 to 50 .

Fig. S10 Job's plot of $\Delta \mathrm{F}$ in fluorescence intensity of guest TImPor versus the molar ratio of [TImPor]/\{[DMeP5] + [TImPor]\}. To investigate the stoichiometry of the complex between DMeP5 and TImPor, the Job's plot experiment was carried out. Fig. S10 indicates the stoichiometry of the complex between DMeP5 and TImPor is 2:1 in CHCl_{3}.

Fig. S11 DLS data for TImPor (A), TImPor with 1.0 equiv. DMeP5 (B), and TImPor with 2.0 equiv. DMeP5 (C) at a fixed concentration of 2.0 mM recorded in CHCl_{3} at $25^{\circ} \mathrm{C}$. As can be seen in Fig. S11, the observation of a diameter distribution centered at 5 nm should be ascribed to TImPor. Along with mixing DMeP5 and TImPor at the molar ratio of 1:1, a diameter distribution centered at 144 nm was observed due to the formation of the low degree of polymerization. When the molar ratio between DMeP5 and TImPor was changed to $2: 1$, a new diameter distribution centered at 690 nm was observed, which is higher than those of A and B , indicating the formation of large supramolecular assemblies with high molecular weight.

Fig. S12 AFM image of the supramolecular polymer DMeP5@TImPor.

Fig. S13 Diffusion coefficient of DMeP5@TImPor upon addition of 0, 20.0, 40.0, $60.0,80.0$, and 100.0 equiv. of competitive guest ADN recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$. As shown in Fig. S13, upon addition of 100.0 equiv. of competitive guest ADN to the CDCl_{3} solution of the supramolecular polymer DMeP5@TImPor, the average diffusion coefficient of the supramolecular assemblies increased pronouncedly from 2.90×10^{-10} to $4.68 \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}$, which indicated the disassembly of cross-linked supramolecular polymer network and the formation of new inclusion complex between DMeP5 and ADN.

Fig. S14. DLS data for TImPor with 2.0 equiv. DMeP5 at a fixed concentration of 2.0 $\mathrm{mM}(\mathrm{A})$ and adding 100.0 equiv. competitive guest ADN into $\mathrm{A}(\mathrm{B})$ recorded in CHCl_{3} at $25^{\circ} \mathrm{C}$.

S1 C. Han, F. Ma, Z. Zhang, B. Xia, Y. Yu and F. Huang, Org. Lett., 2010, 12, 4360.
S2 (a) T. Ogoshi, K. Kitajima, T. Aoki, S. H. Fujinami, T. Yamagishi and Y. Nakamoto, J. Org. Chem., 2010, 75, 3268; (b) L. Gao, C. Han, B. Zheng, S. Dong and F. Huang, Chem. Commun., 2013, 49, 472.
S3 J. Sun, Y. Chen, L. Zhao, Y. Chen, D. Qi, K. Choi, D. Shin and J. Jiang, Chem.Eur. J., 2013, 19, 12613.
S4 K. Han, Y. Zhang, J. Li, Y. Yu, X. Jia and C. Li, Eur. J. Org. Chem., 2013, 2057.

