Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2015

Supplementary Information for

Anion-dipole interactions regulating the self-assembled nanostructures of polymers

Long-Hai Wang, Wu Ting, Ye-Zi You

*To whom correspondence should be addressed. E-mail: <u>yzyou@utsc.edu.cn</u>

1. ¹H-NMR Measurements.¹

Stock solutions of PMEO₃MA (2-(2-(2-methoxyethoxy)ethoxy)ethyl methacrylate, 10.0 mg/mL) and aqueous sodium salt solutions (2.0 M) were prepared using D₂O as solvent, respectively. All the testing samples have PMEO₃MA of 3.0 mg/mL, and sodium salt concentrations of 0.01 M to 1.0 M. ¹H-NMR spectra for PMEO₃MA under different sodium salts concentration were obtained on a Bruck AV 400 (400 MHz) spectrometer equipped with Bruck BCU-05 temperature control unit. ¹H-NMR spectra were recorded with NMR tubes adapted with coaxial inserts. CDCl₃ containing 0.03% TMS was in the inner of the concentric capillary tube, while the mixed solution of PMEO₃MA and sodium salt was in the outer capillary tube. As such, the TMS control was never exposed to PMEO₃MA or varying salt concentrations.

Fig. S1 The illustration depicting¹H-NMR measurement: the mixed solution of PMEO₃MA and sodium salt was in the NMR tube, and CDCl₃ containing 0.03% TMS was in the inner of the concentric capillary tube.

Fig. S3 GPC curve of the PMEO₃MA prepared via AIBN initiated traditional free radical polymerization.

Fig. S4 GPC curves of the homopolymer of PMEO₃MAs with different molecular weights prepared from RAFT polymerization.

Fig. S5 Synthesis of PEG-based copolymer P(MEO₂MA-*co*-OEGMA) via RAFT polymerization.

Fig. S6 GPC curve of the copolymer P(MEO₂MA-*co*-OEGMA) prepared from RAFT polymerization.

Fig. S7 TEM images for the self-assembled nanostructures from copolymer P(MEO₂MA-*co*-OEGMA) in NaSCN solution with different concentrations.

2. Calculation of K_A

Apparent equilibrium association constants (K_A) of CHn unitwith SCN- were abstracted from isotherm fitting of the ¹H-NMR data of PMEO₃MA in the presence of NaSCN at 300 K and 323 K. To calculate association constants at other temperatures, Arrhenius equation was used: $\ln(k_2/k_1) = -E_a(1/T_2-1/T_1)/R$. First, the apparent activation energy (E_a) for each binding site was obtained from Arrhenius equation using the known K_A at 300 K and 323 K, then association constants at other temperatures were obtained from Arrhenius equation using the E_a .

3. Calculation of amount of CH_n units boundwith SCN^- based on the follow equation.

$$CHn + SCN^{-} \stackrel{K_{A}}{\underset{\longrightarrow}{\longrightarrow}} CHn^{\dots}SCN^{-}$$

$$K_{A}(average) = \frac{[CHn^{\dots}SCN^{-}]}{[CHn] \times [SCN^{-}]}$$

$$= \frac{[CHn^{\dots}SCN^{-}]}{([CHn]_{0} - [CHn^{\dots}SCN^{-}]) \times ([SCN^{-}]_{0} - [CHn^{\dots}SCN^{-}])}$$

¹H-NMR spectra of PMEO₃MAwith different NaSCN concentration were carried out in D_2O . The CDCl₃ containing 0.03% TMS was in the inner of the concentric capillary tube, and the spectra were externally referenced to TMS.

	300 K	323 K	328 K	330 K	333 K	340 K
CH _n position	$K_{\rm A}({ m M}^{-1})$	$K_{\rm A}({\rm M}^{-1})$	$K_{\rm A}({\rm M}^{-1})$	$K_{\rm A}({ m M}^{-1})$	$K_{\rm A}({ m M}^{-1})$	$K_{\rm A}({ m M}^{-1})$
1	15.3	8.93	8.02	7.69	7.23	6.29
2	8.1	4.55	4.05	3.87	3.62	3.12
3	11.2	5.99	5.29	5.04	4.69	3.98
4	10.5	4.97	4.28	4.04	3.71	3.05
5	17.3	9.43	8.36	7.97	7.44	6.35
average ^a	12.1	6.55	5.80	5.53	5.15	4.39

Table S1. The K_A values for various CH_n units in PMEO₃MAat different temperatures.

The average association constant $K_A(\text{average}) = (K_{A1} + K_{A2} + 3 \times K_{A3} + K_{A4} + K_{A5})/7$.

4. Morphology control of the self-assembled nanostructures by using SCN⁻ ion.

For regulating the morphology of the self-assembled nanostructures, different amount of NaSCN were added into PMEO₃MA solutions (PMEO₃MA concentration is 3.0 mg/mL), and these solutions were heated to the temperature above their LCSTs.

Fig. S8 Transmittance change of the PMEO₃MA (3.0 mg/mL) in water at different concentration of NaSCN with temperature. The PMEO₃MA was prepared via AIBN initiated traditional free radical polymerization.

Fig. S9 ITC titration curves showing that there is no interaction of the prepared PMEO₃MA with Na₂SO₄. The PMEO₃MA was prepared via AIBN initiated traditional free radical polymerization.

Fig. S10 TEM images for the self-assembled nanostructures from the prepared $PMEO_3MA$ in Na_2SO_4 aqueous solution with various concentrations. The $PMEO_3MA$ was prepared via AIBN initiated traditional free radical polymerization.

Fig. S11 TEM images for the self-assembled nanostructures from the prepared neutral polar PMEO₃MA in NH₄SCN solution with different concentrations. The PMEO₃MA was prepared via AIBN initiated traditional free radical polymerization.

Fig. S12 The effect of molecular weight of homopolymer on the self-assembly in NaSCN solution. a) Homopolymer PMEO₃MA with different molecular weight prepared via RAFT polymerization. b) TEM images for the self-assembled nanostructures from the prepared homopolymer of PMEO₃MA with molecular weight of 8.9 kg/mol and 37.1 kg/mol in NaSCN solution.

References:

 K. B. Rembert, J. Paterová, J. Heyda, C. Hilty, P. Jungwirth, and P. S. Cremer, Molecular Mechanisms of Ion-Specific Effects on Proteins. J. Am. Chem. Soc. 134, 10039.