Highly Red-Shifted NIR Emission from a Novel Anthracene Conjugated Polymer Backbone Containing Pt(II) Porphyrins

D. M. E. Freeman, ${ }^{\text {a }}$ A. Minotto, ${ }^{\text {b }}$ W. Duffy, ${ }^{\text {c K. J. Fallon, }}{ }^{\text {a I. McCulloch, }}{ }^{\text {c }}$ F. Caciallib and H. Bronstein ${ }^{\text {a }}$
a. Department of Chemistry, University College London, London WC1H OAJ, UK.
${ }^{\text {b. }}$ Department of Physics and Astronomy, London Centre for Nanotechnology, University College London, London WC1E 6BT, UK.
c. SPERC, King Abdulla University of Science and Technology, Thuwal 23955-6900, Saudi Arabia

Electronic supplementary information

Contents

1. Experimental details
2. Polymer synthesis
3. DFT and NMR of polymers
4. PESA spectra
5. TGA spectra

1. Experimental details

All reagents and solvents were used as received. $\mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and n-hexane were HiPerSolv grade. $\mathrm{Et}_{2} \mathrm{O}$ and EtOAc were GPR grade. All other chemicals were used as supplied unless otherwise indicated. All reactions were carried out in oven-dried glassware under an argon atmosphere unless otherwise indicated. Air and moisture sensitive reagents were transferred by syringe. Reactions performed at temperatures other than rt were recorded as silicon oil bath temperatures. The phrase "concentrated in vacuo" refers to rotary evaporation. Brine refers to an aqueous solution of NaCl . Column chromatography was carried out using BDH (40-60 $\mu \mathrm{m}$) silica gel and analytical thin layer chromatography was carried out using Merck Keiselgel aluminium-backed plates coated with silica gel. If necessary, components were visualised using combinations of ultra-violet light and potassium permanganate.
${ }^{1} \mathrm{H}$ NMR spectra were recorded at 300 MHz on a Bruker AMX300 spectrometer, at 500 MHz on a Bruker Avance 500 spectrometer, or at 600 MHz on a Bruker Avance 600 spectrometer in the stated solvent using residual protic solvent $\mathrm{CHCl}_{3}(\delta=7.26 \mathrm{ppm}, \mathrm{s})$ or $\mathrm{DMSO}(\delta=2.56 \mathrm{ppm}, \mathrm{qn})$ as the internal standard. Chemical shifts are quoted in ppm using the following abbreviations: s, singlet; d, doublet; t , triplet; q, quartet; q n, quintet; m, multiplet; br, broad or a combination of these. The coupling constants (J) are measured in Hertz. ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 75 MHz on a Bruker AMX300 spectrometer, at 125 MHz on a Bruker Avance 500 spectrometer or at 150 MHz on a Bruker Avance 600 spectrometer in the stated solvent using the central reference of $\mathrm{CHCl}_{3}(\delta=77.0 \mathrm{ppm}, \mathrm{t}$) or DMSO ($\delta=39.52 \mathrm{ppm}$, septet) as the internal standard. Chemical shifts are reported to the nearest 0.1 ppm . UV-visible spectra were recorded at room temperature on a Thermo Unicam UV500 spectrometer in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions at concentrations of $\sim 10^{-5} \mathrm{M}$. Thin films of polymers were spin coated from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of $10 \mathrm{mg} / \mathrm{mL}$ on a Laurell spin coater at 2000 rpm for 30 s . Mass spectra was obtained from the mass spectrometry service at the Department of Chemistry, University College London. Number-average (Mn) and weight-average (Mw) molecular weights were determined against a polystyrene standard using an Agilent Technologies 1200 series GPC in chlorobenzene at $80^{\circ} \mathrm{C}$. Thermal gravimetric analysis (TGA) measurements: $\sim 0.2 \mathrm{mg}$ material was used for the TGA experiments, which was performed under nitrogen at heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$ with a Mettler Toledo TGA system.

2. Polymer synthesis

1,2-bis(octyloxy)benzene

1-bromooctane ($25.0 \mathrm{~mL}, 145.30 \mathrm{mmol}$) was added slowly to a solution of catechol ($2.0 \mathrm{~g}, 18.18$ $\mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(10.0 \mathrm{~g}, 72.65 \mathrm{mmol})$ in acetone $(100 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$. The reaction mixture was stirred at reflux for 18 h . The reaction mixture was concentrated in vacuo and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50$ mL) from brine (50 mL). The crude product was purified via column chromatography (SiO_{2}, Eluent Hexane) to give white crystals ($4.39 \mathrm{~g}, 13.12 \mathrm{mmol}, 72 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.89$ (s, J=2.6 $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{PhH}$), $3.99\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{PhOCH}_{2} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{CH}_{3}\right.$), 1.88 - $1.73\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PhOCH}_{2} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{CH}_{3}\right)$, $1.54-1.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhOCH}_{2} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{CH}_{3}\right), 0.95-0.82\left(\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{PhOCH}_{2} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{CH}_{3}\right) ; \mathrm{MS}$ $\left(\mathrm{El}^{+}\right) \mathrm{m} / \mathrm{z} 334(\mathrm{M})^{+}$. All spectroscopic data is in accordance with literature values. ${ }^{1}$

9,10-bis(4-bromophenyl)-2,3,6,7-tetra(octyloxy)anthracene

Following a modified procedure by Xia, ${ }^{2}$ 1,2-bis(octyloxy)benzene ($3.0 \mathrm{~g}, 8.97 \mathrm{mmol}$), 4bromobenzaldehyde ($2.5 \mathrm{~g}, 13.44 \mathrm{mmol}$) and $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ were added slowly to a $1: 10 \mathrm{w} / \mathrm{w}$ solution of $\mathrm{P}_{2} \mathrm{O}_{5}(0.42 \mathrm{~g})$ in $\mathrm{MeSO}_{3} \mathrm{H}(3.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under an atmosphere of argon. The reaction mixture was heated to reflux and stirred for 2 h. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (2.0 g , 8.97 mmol) was added and the reaction was cooled to $40^{\circ} \mathrm{C}$ and stirred for 2 h . The reaction mixture was washed with brine ($2 \times 30 \mathrm{~mL}$) and the aqueous fractions were further extracted with $\mathrm{CHCl}_{3}(2 \times$ 50 mL). The organic fractions were dried over MgSO_{4} and concentrated in vacuo. The crude product was purified via column chromatography (SiO_{2}, Eluent $\mathrm{Et}_{2} \mathrm{O}$:Hexane (1:19)) and recrystallization from CHCl_{3} and $\mathrm{MeOH}(716 \mathrm{mg}, 0.72 \mathrm{mmol}, 8 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{PhH})$,
$7.33(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{PhH}), 6.72\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{C}_{8} \mathrm{H}_{17} \mathrm{OCCH}\right), 3.85\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{CH}_{3}\right), 1.83$ - 1.69 ($\mathrm{m}, 8 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{CH}_{3}$), 1.48 - $1.19\left(\mathrm{~m}, 40 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{CH}_{3}\right), 0.88(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 12 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 149.0, 139.0, 133.0, 132.0, 131.5, 125.7, 121.6, 105.1, 68.7, 32.0, 29.5, 29.4, 29.0, 26.2, 22.8, 14.3; MS (ES ${ }^{+}$m/z 998, 1000, 1002 (M) ${ }^{+}$; HRMS 998.4424 calculated for $\mathrm{C}_{58} \mathrm{H}_{80}{ }^{79} \mathrm{Br}_{2} \mathrm{O}_{4}$ found 998.5254.

2,2'-(mesitylmethylene)bis(1H-pyrrole)

Pyrrole (188 mL) and mesitaldehyde ($4.0 \mathrm{~mL}, 27.2 \mathrm{mmol}$) were degassed for 10 min . Magnesium bromide ($0.5 \mathrm{~g}, 2.7 \mathrm{mmol}$) was added and the reaction mixture was stirred at rt for $2 \mathrm{~h} . \mathrm{NaOH}$ solution was added and the reaction mixture was passed through a plug of silica using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. Concentration in vacuo afforded a solid that was washed with pentane (50 mL) to yield the product as a white solid ($5.5 \mathrm{~g}, 20.8 \mathrm{mmol}, 77 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94$ (br s, 2H, NH), 6.87 (s, 2H), $6.66(\mathrm{~s}, 2 \mathrm{H}), 6.18(\mathrm{dd}, \mathrm{J}=5.6,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.01(\mathrm{~s}, 2 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}$, $6 \mathrm{H})$; $\mathrm{MS}\left(\mathrm{El}^{+}\right) \mathrm{m} / \mathrm{z} 264(\mathrm{M})^{+}$. All spectroscopic data is in accordance with literature values. ${ }^{3}$

5,15-bis(4-bromophenyl)-10,20-dimesitylporphyrin (MPP)

A solution of 2,2'-(mesitylmethylene)bis(1H-pyrrole) ($0.54 \mathrm{~g}, 2.04 \mathrm{mmol}$) and 4-bromobenzaldehyde ($0.38 \mathrm{~g}, 2.04 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ was degassed and TFA ($0.28 \mathrm{~mL}, 3.68 \mathrm{mmol}$) was added slowly in the dark under an argon atmosphere. The reaction mixture was stirred for 30 min . DDQ $(0.56 \mathrm{~g}, 2.45 \mathrm{mmol})$ was added and the reaction mixture was stirred for a further 4 h . The reaction mixture was passed through a plug of silica using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. Concentration in vacuo and washing with $\mathrm{MeOH}(100 \mathrm{~mL})$ yielded the product as purple crystals ($156 \mathrm{mg}, 0.19 \mathrm{mmol}, 18 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl $)^{\text {}}$) 8.77 (d, $J=4.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{NHCCHCH}$), $8.70(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{NHCCHCH}), 8.09$ (d, J = 8.2 Hz, 4H, CBrCHCH), 7.88 (d, J = $8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CBrCHCH}$), 7.29 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{Ph}-\mathrm{H}$), 2.63 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Ph}-$ CH_{3}), $1.83\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}_{3}\right),-2.66(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 141.0,139.5,138.3,138.0$, 135.9, 132.6, 131.1, 130.0, 127.9, 122.5, 118.8, 118.0, 114.4, 21.8, 21.6. MS (EI+) $\mathrm{m} / \mathrm{z} 855,857$ and $859(\mathrm{M}[+\mathrm{H}])^{+}$; HRMS 855.1698 calculated for $\mathrm{C}_{50} \mathrm{H}_{41}{ }^{79} \mathrm{Br}_{2} \mathrm{~N}_{4}$ found 855.1660.

5,15-bis(4-bromophenyl)-10,20-dimesitylporphyrinato platinum(II) (MPP-Pt)

A solution of $\mathrm{PtCl}_{2}(30 \mathrm{mg}, 0.117 \mathrm{mmol})$ in benzonitrile $(10 \mathrm{~mL})$ was heated to $100^{\circ} \mathrm{C} .5,15$-dimesityl-10,20-diparabromophenyl porphyrin ($50 \mathrm{mg}, 0.058 \mathrm{mmol}$) was added in one portion and the reaction mixture was heated to reflux and stirred for 18 h . The reaction mixture was then cooled and concentrated in vacuo. The crude product was passed through a plug of silica using CHCl_{3} as eluent, concentrated in vacuo and washed with $\mathrm{MeOH}(70 \mathrm{~mL})$ to give the product as a red powder (35 mg , $0.033 \mathrm{mmol}, 56 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.68(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{NHCCHCH}), 8.61(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}$, $4 \mathrm{H}, \mathrm{NHCCHCH}$), 8.04 ($\mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CBrCHCH}$), 7.86 ($\mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CBrCHCH}$), 7.26 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{Ph}-$ H), 2.61 (s, 6H, Ph-CH3), 1.83 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.8,140.5,140.4,139.2$, $138.1,137.4,135.3,131.0,130.1,129.9,128.0,122.6,120.9,120.3,21.6,21.5 . ; \mathrm{MS}\left(\mathrm{TOF} \mathrm{ES}^{-}\right) \mathrm{m} / \mathrm{z}$ 1049 (M)

PDPA MPP(Pt) - Poly 2,3,6,7-(octyloxy)diphenylanthracene 5,15-dimesityl-10,20-

 diphenylporphyrin(Pt)

4 polymers were synthesised with varying weight percentages of porphyrin to diphenylanthracene; 0.0 \%, 1.0 \%, 5.0 \% and 10.0 \%; PDPA, PDPA MPP(Pt) 1, PDPA MPP(Pt) 5 and PDPA MPP(Pt) 10 respectively.

General Synthesis

A mixture of 9,10-bis(4-bromophenyl)-2,3,6,7-tetrakis(octyloxy)anthracene, 1,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene, 5,15-bis(4-bromophenyl)-10,20-dimesitylporphyrinato platinum(II), $\mathrm{Pd}_{2}(\mathrm{dba})_{3},(o-t o l)_{3} \mathrm{P}$, aliquat 336 , and toluene was degassed in a microwave vial for 30 min . A degassed 1.0 M solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added and the reaction mixture was stirred for 3 d at $120^{\circ} \mathrm{C}$. The reaction was allowed to cool and the product was precipitated from MeOH and filtered. The polymer product was then washed with acetone and hexane and extracted with CHCl_{3}.

PDPA: Reagents and solvents used were 9,10-bis(4-bromophenyl)-2,3,6,7tetrakis(octyloxy)anthracene (108.9 mg, 0.109 mmol), 1,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene ($35.9 \mathrm{mg}, 0.109 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.0 \mathrm{mg}, 0.002 \mathrm{mmol})$, (o-tol) ${ }_{3} \mathrm{P}(2.6 \mathrm{mg}$, 0.009 mmol), aliquat 336 (1 drop), $1.0 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(1.0 \mathrm{~mL}$), and toluene (4.0 mL). Polymer was obtained as per the above synthesis ($79 \mathrm{mg}, 79 \%$). UV (chlorobenzene) $\lambda \max 381$; GPC (PS): $\mathrm{M}_{\mathrm{n}}=$ $7800, \mathrm{M}_{\mathrm{w}}=10000, \mathrm{PDI}=1.3$.

PDPA MPP(Pt) 1: Reagents and solvents used were 9,10-bis(4-bromophenyl)-2,3,6,7tetrakis(octyloxy)anthracene (216.1 $\mathrm{mg}, 0.216 \mathrm{mmol}$), 1,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (71.8 mg, 0.218 mmol), 5,15-bis(4-bromophenyl)-10,20dimesitylporphyrinato platinum(II) $(2.2 \mathrm{mg}, 0.002 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.0 \mathrm{mg}, 0.004 \mathrm{mmol})$, (o-tol $)_{3} \mathrm{P}$
($5.2 \mathrm{mg}, 0.017 \mathrm{mmol}$), aliquat 336 (1 drop), $1.0 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(2.0 \mathrm{~mL}$), and toluene (8.0 mL). Polymer was obtained as per the above synthesis ($120 \mathrm{mg}, 60 \%$). UV (chlorobenzene) λ max 382 ; GPC (PS): $M_{n}=8800, M_{w}=12000, P D I=1.4$.

PDPA MPP(Pt) 5: Reagents and solvents used were 9,10-bis(4-bromophenyl)-2,3,6,7tetrakis(octyloxy)anthracene (103.7 mg, 0.104 mmol), 1,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (35.9 mg, 0.109 mmol$)$, 5,15-bis(4-bromophenyl)-10,20dimesitylporphyrinato platinum(II) $(5.4 \mathrm{mg}, 0.005 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.0 \mathrm{mg}, 0.002 \mathrm{mmol})$, (o-tol $)_{3} \mathrm{P}$ ($2.6 \mathrm{mg}, 0.009 \mathrm{mmol}$), aliquat 336 (1 drop), $1.0 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(1.0 \mathrm{~mL})$, and toluene (4.0 mL). Polymer was obtained as per the above synthesis ($80 \mathrm{mg}, 80 \%$). UV (chlorobenzene) $\lambda \max 408$; GPC (PS): M_{n} $=12000, \mathrm{M}_{\mathrm{w}}=20000, \mathrm{PDI}=1.7$.

PDPA MPP(Pt) 10: Reagents and solvents used were 9,10-bis(4-bromophenyl)-2,3,6,7tetrakis(octyloxy)anthracene ($98.2 \mathrm{mg}, 0.098 \mathrm{mmol}$), 1,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene ($35.9 \mathrm{mg}, \quad 0.109 \mathrm{mmol}$), 5,15-bis(4-bromophenyl)-10,20-dimesitylporphyrinato platinum(II) (10.9 mg, 0.010 mmol$), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.0 \mathrm{mg}, 0.002 \mathrm{mmol})$, (o-tol $)_{3} \mathrm{P}(2.6 \mathrm{mg}, 0.009 \mathrm{mmol})$, aliquat 336 (1 drop), $1.0 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(1.0 \mathrm{~mL})$, and toluene $(4.0 \mathrm{~mL})$. Polymer was obtained as per the above synthesis (42 mg, 42%). UV (chlorobenzene) $\lambda \max 411$; GPC (PS): $M_{n}=11000, M_{w}=21000$, $\mathrm{PDI}=1.8$.

3. DFT and NMR of polymers

DFT of polymers

DFT B3LYP was run with a $6-31 G^{*}$ basis set on an approximation of the relevant polymers. PDPA is reported in the main text, figure 2. AlkPDPA is reported below.

AlkPDPA LUMO

AlkPDPA HOMO

NMR of polymers

${ }^{1} \mathrm{H}$ NMR spectroscopy was utilised to estimate the incorporation ratio of the polymers. This was obtained by measuring the ratio of the peak at 3.90 ppm to the peak at 8.85 ppm (i.e. the ratio of the methylene protons α to oxygen on the alkoxy chains to the pyrollic protons of the porphyrin dopant).

PDPA

PDPA MPP(Pt) 1

PDPA MPP(Pt) 5

PDPA MPP(Pt) 10

4. PESA spectra

PESA was used to obtain the HOMO energy levels for the polymers. Shown below are representative spectra of each of the 4 polymers discussed.

PDPA MPP(Pt) 1

PDPA MPP(Pt) 5

PDPA MPP(Pt) 10

5. TGA spectra

PDPA

Lab: METTLER

PDPA MPP(Pt) 1

Lab: METTLER
STARe SW 12.00

PDPA MPP(Pt) 5

Lab: METTLER

PDPA MPP(Pt) 10

References

(1) Q. Zhang; H. Peng; G. Zhang; Q. Lu; J. Chang; Y. Dong; X. Shi and J. Wei, J Am Chem Soc, 2014, 136, 5057.
(2) Z.-Y. Xia; J.-H. Su; W.-Y. Wong; L. Wang; K.-W. Cheah; H. Tian and C. H. Chen, J Mater Chem, 2010, 20, 8382.
(3) K. D. Seo; M. J. Lee; H. M. Song; H. S. Kang and H. K. Kim, Dyes Pigments, 2012, 94, 143.

