Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is © The Royal Society of Chemistry 2015

Supplementary Information for

Saturated and Stabilized White Electroluminescence with Simultaneous Three-Color Emission from a Six-Armed Star-Shaped Single-Polymer System

Yuan-Da Jiu,^{a,‡} Cheng-Fang Liu,^{a,‡} Jian-Yun Wang,^a Wen-Yong Lai^{*,a,b}, Yi Jiang,^a Wei-Dong Xu,^a

Xin-Wen Zhang*^{,a} Wei Huang^{*,a,b}

¹Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Institute of

Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials

(SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023,

China

²Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China

*Email: iamwylai@njupt.edu.cn; iamxwzhang@njupt.edu.cn

Figure S1. (a) Thermal properties of TRCZ; (b) Electrochemical properties of TRCZ; (c) The absorption spectrum of TRCZ and emission spectra of TRCZ, BBT, PF.

Figure S2. Thermal properties of P1-P5

Figure S3. XRD patterns (0-60°) of P1-P5 powders (n = 2,3). All samples were tested under the same

conditions and each pattern was at its original intensity.

Figure S4. Electrochemical properties of P1-P5.

Compounds	<i>T</i> _g (°C)	<i>T</i> _d (°C)	Eonset	Ered	E _{HOMO}	E _{LUMO}	$E_{ m g}$
P1	-	402	1.04	-2.60	-5.80	-2.09	3.71
P2	-	371	1.03	-2.57	-5.80	-2.11	3.70
P3	-	364	1.01	-2.44	-5.80	-2.13	3.67
P4	-	390	0.98	-2.44	-5.80	-2.18	3.62
P5	-	377	1.03	-2.56	-5.81	-2.11	3.69

Table S1. Thermal and electrochemical properties of P1-P5.

Figure S5. EL characteristics of TRCZ and BBT blended PF with the configuration of ITO/PEDOT: PSS/TRCZ and BBT blended in PFB/TPBI/LiF/A1. (a) EL spectrum with different voltages; (b) Brightness-voltage characteristics; (c) Current efficiency-density characteristics; (d) EQE-voltage characteristics.

Figure S7. ¹H NMR spectra of TRCZ in CDCl₃.

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

Figure S9. MALDI-TOF mass spectra of TRCZ.

Figure S11. ¹³C NMR spectra of TRCZ6Br in CDCl₃.

Figure S12. MALDI-TOF mass spectra of TRCZ6Br.

Figure S13. GPC elution curve for TRCZ

Figure S15. ¹³C NMR spectra of BBT in CDCl₃.

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is © The Royal Society of Chemistry 2015

Figure S17. ¹³C NMR spectra of BBT2Br in CDCl₃.

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is @ The Royal Society of Chemistry 2015

Figure S18. MALDI-TOF mass spectra of BBT2Br.