Fluorinated Bottlebrush Polymers Based on Poly(trifluoroethyl methacrylate):

Synthesis and Characterizations

Supporting Information

Yuewen Xu,^{*a} Weiyu Wang,^b Yangyang Wang,^a Jiahua Zhu,^a David Uhrig,^a Xinyi Lu,^b Jong K. Keum,^a Jimmy W. Mays,^b Kunlun Hong^{*a}

^a Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge,

TN 37831, USA

^b Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA

Materials.

2,2,2-trifluoroethyl methacrylate (Matrix Scientific) was passed through a Al₂O₃ column and distilled to remove the inhibitor. 5-norbornene-2-ol, mixture of *endo* and *exo* (Sigma-Aldrich), aluminum oxide (neutral, Fluka), α -bromoisobutyryl bromide (Sigma-Aldrich), cyclohexanone (Sigma-Aldrich), 2,2'-bipyridyl (Sigma-Aldrich), triethylamine (Fisher Scientific), Cl₂(3-BrPy)₂(H₂IMes)RuCHPh (G3, Sigma-Aldrich) were used as received. Copper (I) chloride (Sigma-Aldrich) was recrystallized prior to use. HPLC grade THF (Sigma-Aldrich) was dried in a solvent purification system. HPLC grade ethyl acetate (Sigma-Aldrich) was used as received.

Additional Instrumentation.

GI-SAXS/WAXS measurements were carried out on an Anton Paar SAXSess mc² equipped with a multipurpose VarioStage. The scattered beam was recorded on an imaging plate (Multisensitive Storage Phosphor) and read using a Perkin Elmer cyclone 2D imaging plate reader. For the GI-SAXS/WAXS measurements, X-ray was generated at 40kV/50 mA and the X-ray beam wavelength was l = 1.541 Å (Cu K α radiation). The incidence angle for the measurements was 0.2° and the distance between sample and imaging plate was 261 mm.

Table S1. Experimental Parameters for Rheology.

Sample	<i>T</i> (°C)	γ0	ω (rad/s)
PTFEMA ₂₂	55 - 80	4%-0.03%	100 - 0.1
PNB ₂₁ -g-PTFEMA ₂₂	70 - 120	4%-0.02%	100 - 0.1
PNB ₄₉ -g-PTFEMA ₂₂	70 - 120	4%-0.03%	100 - 0.1
PNB ₂₀₀ -g-PTFEMA ₂₂	70 - 140	4%-0.03%	100 - 0.1

Figure S1. ¹³C NMR of PTFEMA macromonomer 3. In CDCl₃, 125 MHz.

Figure S2. ¹⁹F NMR of PTFEMA macromonomer 3. In CDCl₃, 470 MHz.

Figure S3. ¹³C NMR of PNB-g-PTFEMA bottlebrush polymer 4. In CDCl₃, 125 MHz.

Figure S4. ¹⁹F NMR of PNB-*g*-PTFEMA bottlebrush polymer 4. In CDCl₃, 470 MHz.

Figure S5. Static water contact angle (a) on pure silicon wafer; (b) PTFEMA macromonomer **3**; (c) PNB₂₁-g-TFEMA₂₂ bottlebrush polymer; (d) PNB₄₉-g-TFEMA₂₂ bottlebrush polymer; (e) PNB₂₀₀-g-TFEMA₂₂ bottlebrush polymer.

Figure S6. Linear viscoelastic spectra of the bottlebrush polymer PNB₂₁-*g*-PTFEMA₂₂ (blue), PNB₄₉-*g*-PTFEMA₂₂ (red), and PNB₂₀₀-*g*-PTFEMA₂₂ (orange).

Figure S7. GI-WAXS for polymer thin films. All samples show broad peak at $Q = \sim 12$ nm⁻¹ implying amorphous structure without crystalline order. The spacing of L = 0.5 nm corresponds to short distance correlation on the PTFEMA side chains.¹

Figure S8. GI-SAXS for polymer thin films.

Figure S9. TEM images of three bottlebrush polymers at low and high magnifications. PNB₂₂-*g*-PTFEMA₂₂ (left); PNB₄₉-*g*-PTFEMA₂₂ (middle); PNB₂₀₀-*g*-PTFEMA₂₂ (right).

Reference

1 C. Grigoriadis, A. Nese, K. Matyjaszewski, T. Pakula, H. -J. Butt, G. Floudas, Macromol. Chem. Phys. 2012, 213, 1311–1320.