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Synthesis and Characterizations
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Materials. 

2,2,2-trifluoroethyl methacrylate (Matrix Scientific) was passed through a Al2O3 column 

and distilled to remove the inhibitor. 5-norbornene-2-ol, mixture of endo and exo (Sigma-

Aldrich), aluminum oxide (neutral, Fluka), α-bromoisobutyryl bromide (Sigma-Aldrich), 

cyclohexanone (Sigma-Aldrich), 2,2’-bipyridyl (Sigma-Aldrich), triethylamine (Fisher 

Scientific), Cl2(3-BrPy)2(H2IMes)RuCHPh (G3, Sigma-Aldrich) were used as received. 

Copper (I) chloride (Sigma-Aldrich) was recrystallized prior to use. HPLC grade THF 

(Sigma-Aldrich) was dried in a solvent purification system. HPLC grade ethyl acetate 

(Sigma-Aldrich) was used as received.
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Additional Instrumentation.

GI-SAXS/WAXS measurements were carried out on an Anton Paar SAXSess 

mc2 equipped with a multipurpose VarioStage. The scattered beam was recorded on an 

imaging plate (Multisensitive Storage Phosphor) and read using a Perkin Elmer cyclone 

2D imaging plate reader. For the GI-SAXS/WAXS measurements, X-ray was generated 

at 40kV/50 mA and the X-ray beam wavelength was l = 1.541 Å (Cu Kα radiation). The 

incidence angle for the measurements was 0.2° and the distance between sample and 

imaging plate was 261 mm.

Table S1. Experimental Parameters for Rheology.

Sample T (°C) 0 (rad/s)

PTFEMA22 55 – 80 4% – 0.03% 100 – 0.1

PNB21-g-PTFEMA22 70 – 120 4% – 0.02% 100 – 0.1

PNB49-g-PTFEMA22 70 – 120 4% – 0.03% 100 – 0.1

PNB200-g-PTFEMA22 70 – 140 4% – 0.03% 100 – 0.1
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Figure S1. 13C NMR of PTFEMA macromonomer 3. In CDCl3, 125 MHz.
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Figure S2. 19F NMR of PTFEMA macromonomer 3. In CDCl3, 470 MHz.
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Figure S3. 13C NMR of PNB-g-PTFEMA bottlebrush polymer 4. In CDCl3, 125 MHz.
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Figure S4. 19F NMR of PNB-g-PTFEMA bottlebrush polymer 4. In CDCl3, 470 MHz.
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Figure S5. Static water contact angle (a) on pure silicon wafer; (b) PTFEMA 

macromonomer 3; (c) PNB21-g-TFEMA22 bottlebrush polymer; (d) PNB49-g-TFEMA22 

bottlebrush polymer; (e) PNB200-g-TFEMA22 bottlebrush polymer.
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Figure S6. Linear viscoelastic spectra of the bottlebrush polymer PNB21-g-PTFEMA22 

(blue), PNB49-g-PTFEMA22 (red), and  PNB200-g-PTFEMA22 (orange).
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Figure S7. GI-WAXS for polymer thin films. All samples show broad peak at Q = ~ 12 

nm-1 implying amorphous structure without crystalline order. The spacing of L = 0.5 nm 

corresponds to short distance correlation on the PTFEMA side chains.1
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Figure S8. GI-SAXS for polymer thin films.
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Figure S9. TEM images of three bottlebrush polymers at low and high magnifications. 

PNB22-g-PTFEMA22 (left); PNB49-g-PTFEMA22 (middle); PNB200-g-PTFEMA22 (right).
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