Supporting Information for

An aromatic/aliphatic polyester prepared *via* ringopening polymerisation and its remarkably selective and cyclable depolymerisation to monomer

Jarret P. MacDonald and Michael P. Shaver*

EaStCHEM, School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, EH9 3FJ, Edinburgh, UK. E-mail: michael.shaver@ed.ac.uk; Tel: +44 (0)131 650 4726

Table of Contents

Table S1 Polymerisation of 2,3-DHB using $Sn(oct)_2$	S2
Table S2 Polymerisation of 2,3-DHB using MeAl[salen]	S2
Table S3 Polymerisation of 2,3-DHB using organocatalysts	S2
Table S4 Rate of 2,3-DHB polymerisation	S3
Figure S1 Catalysts attempted for 2,3-DHB polymerisation	S3
Figure S2 ¹ H (bottom) and ${}^{13}C{}^{1}H{}$ (top) NMR spectra of P2HEB	S3
Effect of temperature on polymer-monomer equilibrium	S4
Table S5 Polymerisation of P(L-LA _n -b-2HEB _m)	S4
Table S6 Polymerisation of $P(L-LA_n-b-2HEB_m-L-LA_n)$	S4
Figure S3 P(L-LA) methine region for P(L-LA _n - b -3HES _m - b -L-LA _n) where n	
= 100, m = 40 (top left); n = 100, m = 200 (top right); and n = 20, m = 200	
(bottom). • = residual lactide, \star = residual CH ₂ Cl ₂	S5
Table S7 Thermal decomposition on P2HEB and copolymers	S5
Figure S4 TGA traces for P2HEB and copolymers with L-lactide	S6
Depolymerisation of P2HEB with MeAl[salen]	S6
Figure S5 ¹ H NMR spectra for depolymerisation of P2HEB at 60°C at 0h,	
2h, 6h and 1h.	S7
Table S8 Depolymerisation of P2HEB catalysed by MeAl[salen] at 60°C	S7
Concentration dependent reversible polymerisation of 2,3-DHB	S7
Figure S6 Expanded GPC chromatograms (15 and 30 minutes) for	
concentration dependent reversible polymerisation shown in Figure 1	S 8
Depolymerisation of P(3HB-b-2HEB) with MeAl[salen]	S 8
Figure S7 ¹ H NMR spectra of crude samples for synthesis of P3HB	
(bottom), P(3HB-b-2HEB) (middle) and depolymerisation of copolymer	
(top) in CDCl ₃ , * = residual solvent	S9
Table S9 Determination of [2,3-DHB] _{eq} by ROP with MeAl[salen] at 60°C	
in toluene	S9
Table S10 Determination of [2,3-DHB] _{eq} by depolymerisation of P2HEB	~ ~
with MeAl[salen] at 60° C in C ₆ D ₆	S9
Table S11 Thermal properties of P2HEB and P(1-LA-b-2HEB-b-1-LA)	S10
References	S10

I able SI Polyn	herisation of 2	2,3-DHB using Sn($(oct)_2^a$		
Temperature	Time (h)	Conversion ^b	$M_{n,th}^{c}$	$\mathbf{M_{n}^{b}}$	$\mathbf{\hat{D}}^{d}$
(°C)		(%)			
70	3	0	-	-	-
120	3	58	9060	8300	1.23
120	6	61	10100	11400	1.44
^a Polymerisation of	f 2,3-DHB in tol	luene with [2,3-DHB]	0:[Sn]0:[BnOH	$[]_0 = 100:0.5:1.$	Determined by
¹ H NMR spectrosc	opy. ° $M_{n,th} = ([2$	2,3-DHB] ₀ /:[BnOH] ₀)	× % conversio	$n \times MW_{2,3-DHB}$.	¹ Determined by
gel permeation chro	omatography.			-	

Table S1 Polymerisation of 2,3-DHB using Sn(oct)₂^a

 Table S2 Polymerisation of 2,3-DHB using MeAl[salen]^a

Temperature	Solvent	Time	Conversion ^b	M _{n,th} ^c	M_n^{b}	Ðď
(°C)		(h)	(%)			
120	neat	3	66	10960	11000	1.60
120	toluene	3	56	9230	9310	1.76
70	neat	1	64	10580	10760	1.13
70	toluene	3	75	12370	12510	1.16
70	toluene	3	75	12370	14240	1.17
^a Polymerisation	of 2,3-DHB w	vith [2,3-DH]	B] ₀ :[Al] ₀ :[BnOH] ₀ =	= 100:1:1. ^b	Determined by	y ¹ H NMR

spectroscopy. ° $M_{n,th} = ([2,3-DHB]_0/:[BnOH]_0) \times \%$ conversion × MW_{2,3-DHB}. ^d Determined by gel permeation chromatography.

Catalyst	Solvent	[M] ₀	[M] _{0/}	Temp.	Time	Conv. ^a	M _{n,th} ^b	M _n ^a	Т
			[Al] ₀	(°C)	(min)	(%)			
DBU	toluene	0.52	100	22	180	0	-	-	-
	toluene	1.30	100	22	180	0	-	-	-
DPP	toluene	1.30	100	22	360	0	-	-	-
	toluene	1.30	100	50	360	0	-	-	-
TBD	toluene	0.52	100	22	190	51	7990	6370	1.14
	toluene	1.30	100	22	60	80	13240	13130	1.14
	toluene	2.38	100	22	30	89	14720	14660	1.19
	toluene	1.30	200	22	240	78	24080	22450	1.15
	toluene	1.30	500	22	360	29	23620	14390	1.42
	toluene	1.30	100	50	60	46	7660	8710	1.11
	CH_2Cl_2	1.30	100	22	120	60	9960	9760	1.14
	d by ¹ H NM				DHB] ₀ /:[]	$BnOH]_0) \times$	% convers	sion × MW	7 _{2,3-DHB} .
^c Determine	d by gel perr	neation cl	nromatogra	aphy.					

 Table S3 Polymerisation of 2,3-DHB using organocatalysts

Catalyst	Temperature (°C)	Concentration (M)	Rate (min ⁻¹)
MeAl[salen]	60	5.3	0.010
L J	50	5.3	0.007
	22	5.3	0.005
TBD	22	2.4	0.045
	22	1.4	0.016
	22	0.5	0.003

Table S4 Rate of 2,3-DHB polymerisation

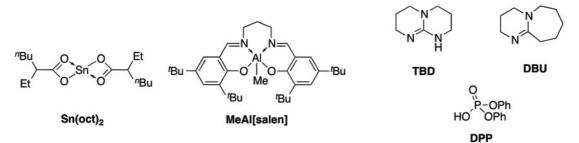


Figure S1 Catalysts attempted for 2,3-DHB polymerisation

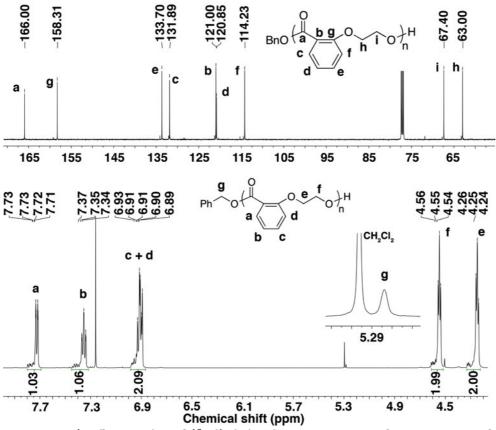
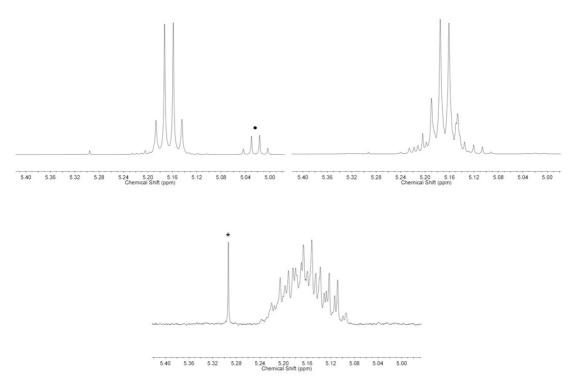


Figure S2 ¹H (bottom) and ¹³C{¹H} (top) NMR spectra of P2HEB in CDCl₃

Effect of temperature on polymer-monomer equilibrium


50
$$(1)^{\circ}$$
 $(1)^{\circ}$ $($

In a glovebox, MeAl[salen] (9.3 mg, 0.02 mmol), 2,3-DHB (140 mg, 0.85 mmol), bensyl alcohol (1.8 μ L, 0.02 mmol) and toluene-d₈ (300 mg) were added to a Young's tap NMR tube. The NMR tube was then left at room temperature for six hours. ¹H NMR spectroscopy revealed that the polymerisation had reached 88% conversion (n = 44). The NMR tube was then heated to 90°C for 10 hours. ¹H NMR spectroscopy revealed that polymer conversion had decreased to 70% (n = 35). Conversion could be increased by leaving the reaction to cool.

Tai	rget	Experi	mental ^a	$\mathbf{M}_{n,th}^{\mathbf{b}}$	$\mathbf{M_{n}^{a}}$	Т		
n	m	n	m					
100	20	100	18	10030	10990	1.10		
100	100	100	93	20830	12380	1.13		
20	100	20	100	15390	10630	1.15		
^a Determined by ¹ H NMR spectroscopy. ^b $M_{n,th} = (n \times \% \text{ conv}_{LA} \times 144.13) + (m \times \% \text{ conv}_{2.3-DHB} \times 144.13)$								
	164.16) + 108.14. ° Determined by gel permeation chromatography.							

Table S5 Polymerisation of P(L-LA_n-*b*-2HEB_m)

Target		Experir	nental ^a	$\mathbf{M}_{\mathbf{n},\mathbf{th}}^{\mathbf{b}}$	M _n ^a	Т
n	m	n	m			
100	20	89	17	15690	17900	1.08
100	100	100	85	28440	22400	1.13
20	100	20	86	16750	13460	1.16
termined by ¹ H	I NMR spe		$_{n,th} = (n \times \% c)$	$onv{LA} \times 144.13$		

Figure S3 P(L-LA) methine region for P(L-LA_n-*b*-3HEB_m-*b*-L-LA_n) where n = 100, m = 40 (top left); n = 100, m = 200 (top right); and n = 20, m = 200 (bottom). • = residual lactide, * = residual CH₂Cl₂.

Polymer	$T_{d,onset}$ (°C)	$T_{d,endpoint}(^{\circ}\mathrm{C})$
P2HEB ₈₂	219.3	262.8
P(L-LA ₁₀₀ - <i>b</i> -2HEB ₁₇₀ - <i>b</i> - L-LA ₁₀₀)	251.2	310.7
P(L-LA ₁₀₀ - <i>b</i> -2HEB ₃₄ - <i>b</i> -L-LA ₁₀₀)	278.7	319.3
P(L-LA ₁₀₀ - <i>b</i> -2HEB ₁₇)	273.3	321.2
P(L-LA ₁₆ - <i>b</i> -2HEB ₈₄)	263.1	307.8
P(3HB ₅₀ - <i>b</i> -2HEB ₅₀)	244.1	338.0

Table S7 Thermal decomposition on P2HEB and copolymers

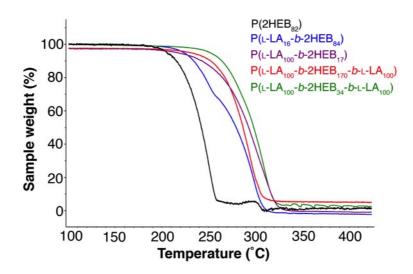
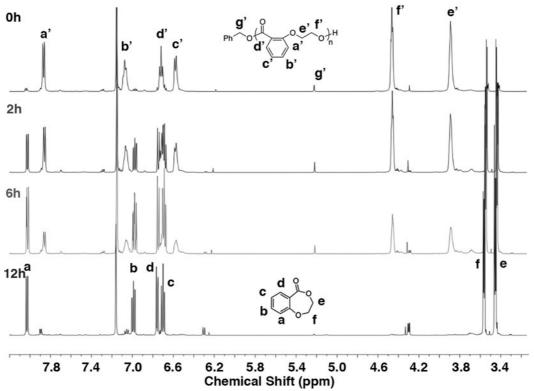



Figure S4 TGA traces for P2HEB and copolymers with L-lactide

Depolymerisation of P2HEB with MeAl[salen]

In a glovebox, P2HEB (41 mg, 0.005 mmol) and MeAl[salen] (2.7 mg, 0.005 mmol) in C6D6 (0.4 mL) were added to a J. Young NMR tube. The NMR tube was sealed and heated at 70°C for 12h. After 12h, the NMR tube was cooled to room temperature and ¹H NMR analysis indicated the solution contained a mixture of 2,3-DHB:P2HEB = 92:8.

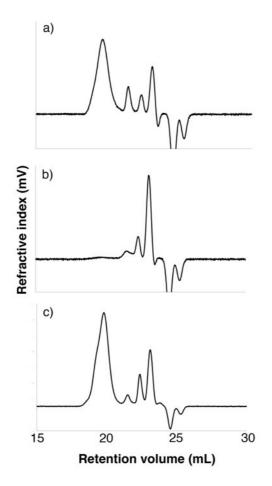


Figure S5 ¹H NMR spectra for depolymerisation of P2HEB at 60°C at 0h, 2h, 6h and 12h.

Table S8 Depolymerisation of P2HEB catalysed by MeAl[salen] at 60°C ^a					
Time (h)	Conversion (%) ^b				
2	39				
4	59				
12	92				
^a Depolymerisation of P2HEB with MeAl[salen] with	ith $[M]0 = 0.17M$ at 60°C in toluene. $[M]_0 = (mass)$				
polymer / MW _{2,3-DHB}) / volume toluene. ^b Determine	d by ¹ H NMR spectroscopy.				

Concentration dependent reversible polymerisation of 2,3-DHB

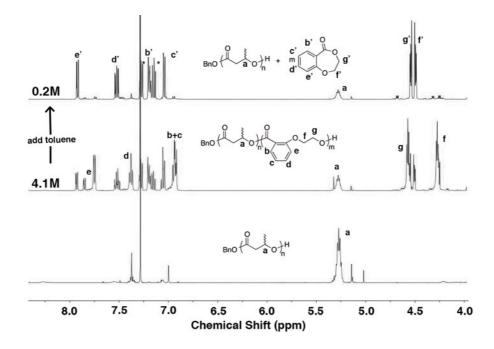

In a glovebox, 2,3-DHB (116 mg, 0.71 mmol), MeAl[salen] (3.8 mg, 0.01 mmol), BnOH (0.7 μ L, 0.01 mmol) and toluene (150 mg) were added to an ampoule. The ampoule was sealed and heated to 60°C for 6h. A sample was removed *via* syringe under nitrogen. GPC and ¹H NMR spectroscopy analysis of the crude sample indicated 82% conversion to polymer. Dry toluene (3 mL) was then added to the ampoule and the reaction was stirred at 60°C for 16h. A sample was removed *via* syringe under nitrogen. GPC and ¹H NMR spectroscopy analysis of the crude sample indicated conversion of 2,3-DHB to polymer had decreased to 6%. The reaction was then concentrated under reduced pressure and toluene (120 μ L) was then added. The reaction was stirred at 60°C for 6h. A sample was removed *via* syringe under nitrogen. GPC and ¹H NMR spectroscopy analysis of the crude sample indicated conversion of 2,3-DHB to polymer had decreased to 6%. The reaction was then concentrated under reduced pressure and toluene (120 μ L) was then added. The reaction was stirred at 60°C for 6h. A sample was removed *via* syringe under nitrogen. GPC and ¹H NMR spectroscopy analysis of the crude sample was then added. The reaction was stirred at 60°C for 6h. A sample was removed *via* syringe under nitrogen. GPC and ¹H NMR spectroscopy analysis of the crude sample was removed *via* syringe under nitrogen. GPC and ¹H NMR spectroscopy analysis of the crude sample was removed *via* syringe under nitrogen. GPC and ¹H NMR spectroscopy analysis of the crude sample indicated 84% conversion to polymer.

Figure S6 Expanded GPC chromatograms (15 and 30 minutes) for concentration dependent reversible polymerisation shown in Figure 1

Depolymerisation of P(3HB-b-2HEB) with MeAl[salen]

P(3HB-*b*-2HEB) was prepared as described previously. In place of quenching, after two hours of 2,3-DHB polymerisation, toluene was added so that apparent [2,3-DHB]₀ = 0.2M and stirred at 60°C for 12 hours. After 12h, several drops of MeOH were added to the reaction and volatiles were removed under reduced pressure. ¹H NMR spectroscopy indicated that P2HEB:2,3-DHB = 0.91:0.09. Analysis by gel permeation showed a decrease in polymer molecular weight, consistent with depolymerisation.

Figure S7 ¹H NMR spectra of crude samples for synthesis of P3HB (bottom), P(3HB*b*-2HEB) (middle) and depolymerisation of copolymer (top) in CDCl₃, * = residual solvent

Table S9 Determination of $[2,3-DHB]_{eq}$ by ROP with MeAl[salen] at 60°C in toluene^a

$[2,3-DHB]_0(M)$	Composition ^b (%)		[2,3-DHB] _{eq} ^c (M)
	2,3-DHB	P2HEB	•
3.6	10	90	0.36
3.9	9	91	0.35
4.5	8	92	0.36
^a Depolymerisation of P	2HEB in toluene at 60	°C for six hours with	$[2,3-DHB]_0:[58]_0:[BnOH]_0 =$

50:1:1. ^b Determined by ¹H NMR spectroscopy. ^c[2,3-DHB]_{eq} = $(100 - \% \text{ conv.})/100 \times [2,3-DHB]_0$.

Table S10 Determination of $[2,3-DHB]_{eq}$ by depolymerisation of P2HEB with MeAl[salen] at 60°C in C₆D₆ ^a

3-DHB	P2HEB	[2,3-DHB] _{eq} ^d (M)
19	81	0.358
26	74	0.355
34	66	0.355
	34	

^a Depolymerisation of P2HEB in C₆D₆ at 60°C for 12 hours wit MeAl[salen]. ^b [2,3-DHB]₀ = (mass P2HEB/164.16)/ volume C₆D₆. ^c Determined by ¹H NMR spectroscopy. ^d [2,3-DHB]_{eq} = [(% conv/100) × (mass P2HEB/164.16)]/volume toluene.

Table S11 Thermal properties of P2HEB and P(1-LA₁₀₀-*b*-2HEB₁₇₀-*b*-1-LA₁₀₀)

Polymer	$T_g(^{\circ}C)$	$T_m(^{\circ}\mathrm{C})$	T _{d,onset} (°C)	T _{d,endpoint} (°C)
P(l-LA ₁₀₀ -b-2HEB ₁₇₀ -b-l-LA ₁₀₀)	51.3	124.8	251.2	310.7
P2HEB ₈₂	-	78.2	219.3	262.8

^a DSC samples were heated at 10°C min⁻¹ to 150°C and held for 10 minutes to remove residual solvent and cooled to room temperature at 10°C min⁻¹. T_g and T_m were obtained on the second heating cycle.

References

- 1. D. A. Atwood, M. S. Hill, J. A. Jegier and D. Rutherford, *Organometallics*, 1997, **16**, 2659-2664.
- 2. P. Hormnirun, E. L. Marshall, V. C. Gibson, R. I. Pugh and A. J. P. White, *Proc. Natl. Acad. Sci. U. S. A.*, 2006, **103**, 15343-15348.