Supporting Information

Synthesis and *In Vitro* Properties of Iron Oxide Nanoparticles Grafted with Brushed Phosphorylcholine and Polyethylene Glycol

Thomas Blin,^a Aleksandr Kakinen,^{a,b} Emily H. Pilkington,^a Angela Ivask,^c Feng Ding,^d John F. Quinn,^a Michael R. Whittaker,^a Pu Chun Ke^{a*} and Thomas P. Davis^{a,e*}

 ^aARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
^bLaboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia

^cFuture Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
^dDepartment of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
^eDepartment of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom

* Address correspondence to:

Thomas P. Davis: thomas.p.davis@monash.edu; Pu Chun Ke: pu-chun.ke@monash.edu

Keywords: phosphorylcholine brushes \cdot polyethylene glycol \cdot RAFT synthesis \cdot suspendability \cdot biocompatibility \cdot cell uptake \cdot iron oxide nanoparticles

Figure S1. ¹H NMR spectrum of 2-(2-bromopropionyloxy)ethyl) phosphonate in CDCl₃.

Figure S2. ³¹P NMR spectrum of 2-(2-bromopropionyloxy)ethyl) phosphonate in CDCl₃.

Figure S3. ¹H NMR spectrum of 2-(*n*-butyltrithiocarbonate)-propionic acid 2-(dimethoxyphosphonyl)-ethyl ester (**RA1**) in CDCl₃.

Figure S4. ³¹P NMR spectrum of 2-(*n*-butyltrithiocarbonate)-propionic acid 2-(dimethoxyphosphonyl)-ethyl ester (**RA1**) in CDCl₃.

Figure S5. ¹H NMR spectrum of 4-cyano-4-(phenylcarbonothioylthio) pentanoic acid 2-(dimethoxyphosphonyl)-ethyl ester (**RA2**) in CDCl₃.

Figure S6. ¹³C NMR spectrum of 4-cyano-4-(phenylcarbonothioylthio) pentanoic acid 2-(dimethoxyphosphonyl)-ethyl ester (RA2) in CDCl₃.

Figure S7. ³¹P NMR spectrum of 4-cyano-4-(phenylcarbonothioylthio) pentanoic acid 2-(dimethoxyphosphonyl)-ethyl ester (**RA2**) in CDCl₃.

Figure S8. ¹H NMR spectrum of protected poly(OEGA) in CDCl₃.

Figure S9. ³¹P NMR spectrum of protected poly(OEGA) in CDCl₃.

Figure S10. ¹H NMR spectrum of protected poly(MPC) in D₂O. The inset figure is the expanded region, 7.4 - 8.1 ppm, showing the protons of the benzyl end group.

Figure S11. ³¹P NMR spectrum of protected poly(MPC) in D₂O.