Pd-Catalyzed Cross-Coupling of Aromatic Compounds with Carboxylic Acids via C-H Bond Activation

Junliang Wu, Kim Le Mai Hoang, Minli Leow, Xue-Wei Liu*

Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371

E-mail: Xuewei@ntu.edu.sg.

Contents

General considerations	3
Experimental procedure	4
General coupling procedure	4
Characterization data for theproducts	4
KIE experiment	10
References	10
NMR spectra of the isolated products	11

General considerations

Unless otherwise specified, all reactions were carried out under air atmosphere. The reagents and solvents were directly used from Sigma-Aldrich, Alfa Aesar and TCI without further purification unless noted. Reactions were monitored through thin layer chromatography [Merck 60 F254 precoated silica gel plate (0.2 mm thickness)]. Subsequent to elution, spots were visualized using UV radiation (254 nm) on Spectroline Model ENF-24061/F 254 nm. Flash chromatography was performed using silica gel 60 with distilled solvents. HRMS spectra were recorded on a Waters Q-Tofpermier TM mass Spectrometer. ¹H NMR and ¹³C NMR spectra were recorded using Bruker Avance 400 MHz spectrometers. Chemical shifts for ¹H NMR spectra are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-d (δ 7.260, singlet). Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet); dd (doublets of doublet); td (triplet of doublet); m (multiplets) and etc. Coupling constants are reported as a J value in Hz. Carbon nuclear magnetic resonance spectra (¹³C NMR) are reported as δ in units of parts per million (ppm) downfield from $SiMe_4$ (δ 0.0) and relative to the signal of chloroform-d (δ 77.00, triplet). Compound numbers used in the experimental section correspond to those employed in the main paper.

Experimental Procedure

General coupling procedure (Table 2)

Condition A

0.5 mmol carboxylic acid, 1 mmol iodosobenzene and 5mol% $Pd(OAc)_2$ and 2 mL benzene were added into the Schlenk tube. The mixture was stirred at 120 °C for 40 h and cooled down to room temperature, quenched with saturated sodium bicarbonate solution (50 mL) and extracted thrice with ethyl acetate (30 mL) and the combined organic phase was dried over Na₂SO₄. After evaporation of the solvents the residue was purified by silica gel chromatography or thin layer chromatography (TLC).

Condition B

0.5 mmol benzoic acid, 1 mmol aromatic compound, 1mmol iodosobenzene, 0.75 mmol CSA and 2 mL DCE were added into the Schlenk tube. The mixture was heated at 120 \degree for 40 h and cooled down to room temperature, quenched with saturated sodium bicarbonate solution (50 mL) and extracted thrice with ethyl acetate (30 mL) and the combined organic phase was dried over Na₂SO₄. After evaporation of the solvents the residue was purified by silica gel chromatography or thin layer chromatography (TLC).

Phenyl benzoate 3a¹

White solid: ¹H NMR (400 MHz, CDCl₃) ppm: 8.21 (d, *J* = 7.20 Hz, 2H), 7.64 (t, *J* = 7.60 Hz, 1H), 7.51 (t, *J* = 7.60 Hz, 2H), 7.43 (t, *J* = 7.60 Hz, 2H), 7.27 (t, *J* = 7.60 Hz,

1H), 7.23 (d, J = 7.60 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): 165.17, 150.98, 133.55, 130.16, 129.61, 129.48, 128.56, 125.87, 121.71. HRMS (ESI) Calcd. for C₁₃H₁₀O₂: [M+H]⁺, 199.0759. Found: m/z 199.0760.

Phenyl 4-chlorobenzoate 3b²

White solid: ¹H NMR (400 MHz, CDCl₃) ppm: 8.14 (d, J = 8.80 Hz, 2H), 7.49 (d, J = 8.80 Hz, 2H), 7.44 (t, J = 7.60 Hz, 2H), 7.29 (t, J = 7.60 Hz, 1H), 7.21 (d, J = 8.40 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): 164.31, 150.77, 140.11, 131.52, 129.52, 128.93, 128.03, 126.02, 121.59. HRMS (ESI) Calcd. for C₁₃H₉ClO₂: [M+H]⁺, 233.0369. Found: m/z 233.0372.

Phenyl 4-fluorobenzoate 3c²

Pale yellow solid: ¹H NMR (400 MHz, CDCl₃) ppm: 8.25-8.22 (m, 2H), 7.44 (t, J = 7.60 Hz, 2H), 7.29 (t, J = 7.20 Hz, 1H), 7.23-7.17 (m, 41H). ¹³C NMR (100 MHz, CDCl₃):167.41, 164.88, 164.19, 150.83, 132.82, 129.51, 125.84, 121.64, 115.88.¹⁹F NMR (100 MHz, CDCl₃): -104.45. HRMS (ESI) Calcd. for C₁₃H₉FO₂: [M+H]⁺, 217.0665. Found: m/z 217.0666.

Phenyl 2-bromobenzoate 3d

Yellow oil: ¹H NMR (400 MHz, CDCl₃) ppm: 8.00 (dd, J = 7.60 Hz, 2.00 Hz, 1H), 7.74 (dd, J = 7.60 Hz, 1.20 Hz, 1H), 7.47-7.38 (m, 4H), 7.31-7.26 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): 164.56, 150.67, 134.59, 133.10, 131.76, 131.44, 129.52, 127.30, 126.11, 122.23, 121.55. HRMS (ESI) Calcd. for C₁₃H₉BrO₂: [M+H]⁺, 276.9864. Found: m/z 276.9857.

Phenyl isonicotinate 3e³

White solid: ¹H NMR (400 MHz, CDCl₃) ppm: 8.67 (s, 2H), 7.64 (d, J = 6.80 Hz, 2H), 7.52-7.44 (m, 5H). ¹³C NMR (100 MHz, CDCl₃): 150.23, 148.41, 138.16, 129.12, 129.06, 127.00, 121.68. HRMS (ESI) Calcd. for C₁₂H₉NO₂: [M+H]⁺, 200.0712. Found: m/z 200.0709.

Phenyl nicotinate 3f³

Pale yellow oil: ¹H NMR (400 MHz, CDCl₃) ppm: 9.37 (s, 1H), 8.85-8.83 (m, 1H), 8.46-8.41 (m, 1H), 7.47-7.41 (m, 3H), 7.30-7.21 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): 163.81, 153.95, 151.32, 150.48, 137.50, 129.55, 126.18, 125.55, 123.41, 121.50. HRMS (ESI) Calcd. for $C_{12}H_9NO_2$: $[M+H]^+$, 200.0712. Found: m/z 200.0709.

Phenyl picolinate 3g³

Yellow solid:¹H NMR (400 MHz, CDCl₃) ppm: 8.70 (d, J = 4.80 Hz, 1H), 8.00 (d, J = 6.80 Hz, 2H), 7.76-7.72 (m, 2H), 7.50-7.40 (m, 3H), 7.25-7.22 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): 157.48, 149.66, 139.39, 136.74, 128.94, 128.73, 126.90, 122.08, 120.56. HRMS (ESI) Calcd. for C₁₂H₉NO₂: [M+H]⁺, 200.0712. Found: m/z 200.0709.

Phenyl 4-nitrobenzoate 3h⁴

Pale yellow solid: ¹H NMR (400 MHz, CDCl₃) ppm: 8.43-8.38 (m, 4H), 7.50 (t, J = 7.60 Hz, 2H), 7.35 (t, J = 7.20 Hz, 1H), 7.28 (d, J = 8.80 Hz, 2H). ¹³C NMR (100

MHz, CDCl₃): 163.29, 150.88, 150.49, 134.96, 131.26, 129.65, 126.38, 123.69, 121.38. HRMS (ESI) Calcd. for C₁₃H₉NO₄: [M+H]⁺, 244.0610. Found: m/z 244.0609.

Phenyl 2-methylbenzoate 3i⁵

Pale yellow oil: ¹H NMR (400 MHz, CDCl₃) ppm: 8.17 (d, J = 7.60 Hz, 1H), 7.51-7.43 (m, 3H), 7.35-7.28 (m, 3H), 7.23-7.21 (m, 2H), 2.69 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): 165.83, 150.92, 141.30, 132.69, 131.95, 131.15, 129.47, 128.57, 125.90, 125.80, 121.82, 21.93. HRMS (ESI) Calcd. for C₁₄H₁₂O₂: [M+H]⁺, 213.0916. Found: m/z 213.0920.

Phenyl 4-methoxybenzoate 3j⁶

Pale yellow solid: ¹H NMR (400 MHz, CDCl₃) ppm: 8.17 (d, J = 9.20 Hz, 2H), 7.43 (t, J = 7.20 Hz, 2H), 7.27 (t, J = 7.20 Hz, 1H), 7.21 (d, J = 8.40 Hz, 2H), 6.99 (d, J = 9.20 Hz, 2H), 3.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): 164.87, 163.86, 151.05, 132.25, 129.39, 125.67, 121.86, 121.77, 113.80, 55.47. HRMS (ESI) Calcd. for C₁₄H₁₂O₃: [M+H]⁺, 229.0865. Found: m/z 229.0869.

Phenyl 1-methyl indole-3-carboxylate 3l⁷

Colorless oil: ¹H NMR (400 MHz, CDCl₃) ppm: 8.29-8.27 (m, 1H), 8.27 (s, 1H), 7.48-7.26 (m, 8H), 3.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): 163.07, 150.92, 137.26, 136.07, 129.31, 126.73, 125.37, 123.01, 122.19, 122.02, 121.62, 109.89, 105.99, 33.45. HRMS (ESI) Calcd. for $C_{16}H_{13}NO_2$: [M+H]⁺, 252.1024. Found: m/z 252.1020.

3-Bromo-4-methoxyphenyl benzoate 3m

Pale yellow solid: ¹H NMR (400 MHz, CDCl₃) ppm: 8.18 (d, J = 8.00 Hz,2H), 7.64 (t, J = 7.20 Hz, 1H), 7.51 (t, J = 7.60 Hz, 2H), 7.45 (d, J = 2.40 Hz, 1H), 7.16 (dd, J = 8.80 Hz, 2.40 Hz, 1H), 6.94 (d, J = 8.80 Hz, 1H), 3.92 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): 165.17, 153.95, 144.40, 133.70, 130.16, 129.23, 128.60, 126.71, 121.45, 111.95, 111.59, 56.61. HRMS (ESI) Calcd. for C₁₄H₁₁BrO₃: [M+H]⁺, 306.9970. Found: m/z 306.9972.

3-chloro-4-methoxyphenyl benzoate 3n

White solid: ¹H NMR (400 MHz, CDCl₃) ppm: 8.18 (d, J = 7.20 Hz, 2H), 7.64 (t, J = 7.60 Hz, 1H), 7.51 (t, J = 8.00 Hz, 2H), 7.29 (d, J = 2.80 Hz, 1H), 7.12 (dd, J = 8.80 Hz, 2.80 Hz, 1H), 6.96 (d, J = 8.80 Hz, 1H), 3.92 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): 165.18, 153.06, 144.14, 133.72, 130.16, 129.22, 128.60, 123.81, 122.78, 120.74, 112.18, 56.50. HRMS (ESI) Calcd. for C₁₄H₁₁ClO₃: [M+H]⁺, 263.0475. Found: m/z 263.0471.

3-Iodo-4-methoxyphenyl benzoate 3o

Pale yellow solid: ¹H NMR (400 MHz, CDCl₃) ppm: 8.18 (dd, J = 8.40 Hz, 1.2 Hz, 2H), 7.66-7.62 (m, 2H), 7.51 (t, J = 8.00 Hz, 2H), 7.20 (dd, J = 8.80 Hz, 2.80 Hz, 1H), 6.85 (d, J = 8.80 Hz, 1H), 3.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): 165.20, 156.16, 144.63, 133.68, 132.44, 130.13, 129.21, 128.58, 122.42, 110.67, 85.31, 56.75. HRMS (ESI) Calcd. for C₁₄H₁₁IO₃: [M+H]⁺, 354.9831. Found: m/z 354.9831.

4-Methoxyphenyl benzoate 3p²

White solid: ¹H NMR (400 MHz, CDCl₃) ppm: 8.22 (dd, J = 8.00 Hz, 1.6 Hz, 2H), 7.64 (t, J = 7.60 Hz, 1H), 7.51 (t, J = 8.00 Hz, 2H), 7.14 (d, J = 8.80 Hz, 2H), 6.95 (d, J = 9.20 Hz, 2H), 3.83 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): 165.49, 157.30, 144.42, 133.45, 130.10, 129.65, 128.50, 122.41, 114.50, 55.58. HRMS (ESI) Calcd. for C₁₄H₁₂O₃: [M+H]⁺, 229.0865. Found: m/z 229.0869.

2, 4, 6-Trimethoxyphenyl benzoate 3q⁸

Yellow solid: ¹H NMR (400 MHz, CDCl₃) ppm: 8.24 (d, J = 7.20 Hz, 2H), 7.61 (t, J = 7.20 Hz, 1H), 7.50 (t, J = 8.00 Hz, 2H), 6.23 (s, 2H), 3.82 (2, 3H), 3.79 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): 164.79, 158.27, 152.74, 133.20, 130.28, 129.46, 128.35, 122.80, 91.45, 56.06, 55.49. HRMS (ESI) Calcd. for C₁₆H₁₆O₅: [M+H]⁺, 289.1076. Found: m/z 289.1067.

1-Methyl-1H-indol-3-yl benzoate 3s

White solid: ¹H NMR (400 MHz, CDCl₃) ppm: 8.30-8.28 (m, 2H), 7.69-7.63(m, 2H), 7.55 (t, J = 8.00 Hz, 2H), 7.45 (s, 1H), 7.34 (d, J = 8.00 Hz, 1H), 7.30-7.26 (m, 1H), 7.19-7.15 (m, 1H), 3.80 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): 164.22, 133.73, 133.33, 130.04, 129.71, 129.25. 128.55, 122.36, 120.26, 119.33, 118.02, 117.61, 109.28, 32.86. HRMS (ESI) Calcd. for C₁₆H₁₃NO₂: [M+H]⁺, 252.1025. Found: m/z 252.1023.

Phenyl phenylacetate 3t⁹

White solid: ¹H NMR (400 MHz, CDCl₃) ppm: 7.42-7.32 (m, 7H), 7.24 (m, 1H), 7.06 (d, J = 8.40 Hz, 2H), 3.87 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): 169.96, 150.72, 133.45, 129.35, 129.28, 127.32, 125.82, 121.41, 41.42. HRMS (ESI) Calcd. for C₁₄H₁₂O₂: [M+H]⁺, 213.0916. Found: m/z 213.0920.

KIE experiment

0.5 mmol carboxylic acid, 1 mmol iodosobenzene and 5mol% $Pd(OAc)_2$, 0.5 mL benzene and 0.5 mL benzene-d₆ were added into the Schlenk tube. The mixture was stirred at 120 \mathbb{C} for 10 h and cooled down to room temperature, quenched with saturated sodium bicarbonate solution (50 mL) and extracted thrice with ethyl acetate (30 mL) and the combined organic phase was dried over Na₂SO₄. After evaporation of the solvents the residue was purified by silica gel chromatography.

References

- 1. Z. Liu, Q. Ma, Y. Liu and Q. Wang, Org. Lett., 2014, 16, 236.
- 2. W. Yin, H. He, Y. Zhang and T. Long, *Chem. Asian J.* 2014, **9**, 2402.
- 3. K. Amaike, K. Muto, J. Yamaguchi and K. Itami, *J. Am. Chem. Soc.* 2012, **134**, 13573.
- 4. T. Yokozawa, M. Ogawa, A. Sekino, R. Sugi and A. Yokoyama. *J. Am. Chem. Soc.* 2002, **124**, 15158.
- 5. T. Ueda, H. Konishi and K. Manabe, Org. Lett., 2012, 14, 3100.
- 6. J. Meng, M. Gao, Y. Wei and W. Zhang, *Chem. Asian J.* 2012, **7**, 872.
- 7. J. Wu, J. Lan, S. Guo and J. You, Org. Lett., 2014, 16, 5862.
- 8. H. Rao, P. Wang and C. Li, Eur. J. Org. Chem. 2012, 33, 6503.

9. L. Zhang, G. Zhang, M. Zhang and J. Cheng. J. Org. Chem., 2010, 75, 7472.

