Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2015

Cover Page for Supporting Information

Manuscript Title:

Combining $Pd(\pi-allyl)Cp$ and PPh_3 as a unique Catalyst for Efficient Synthesis of Alkyliodo Indoles via C(sp3)-I Reductive Elimination

Authors:

Wei Hao, Han Wang, Patrick J. Walsh,* and Zhenfeng Xi*

Contents:

1) Experimental Details and Characterization Data	S2–S5
2) References 3) Scanned ¹ H NMR and ¹³ C NMR Spectra of All Compounds	S5 S5-S12

1) Experimental Details and Characterization Data

General Information

Unless otherwise noted, all starting materials were commercially available and were used without further purification. Solvents were purified by a Mbraun SPS-800 Solvent Purification System. *n*BuLi, palladium catalyst and phosphine ligand was obtained from Aldrich, TCI, Alfa, Acros, Adamas-beta, J&K and others. All reactions were carried out under a dry and oxygen-free nitrogen atmosphere in slight positive pressure by using Schlenk techniques, unless otherwise noted.

¹H and ¹³C NMR spectra were recorded on a Bruker ARX400 spectrometer (FT, 400 MHz for ¹H; 100 MHz for ¹³C) or Bruker ARX500 spectrometer (FT, 500 MHz for ¹H, 125 MHz for ¹³C, 202 MHz for ³¹P) at room temperature, unless otherwise noted. For ³¹P NMR, chemical shifts are referenced to 85% H₃PO₄ as an external standard. High-resolution mass spectra (HRMS) were recorded on a Bruker Apex IV FTMS mass spectrometer using ESI (electrospray ionization). GC analyses were recorded on SHIMADZU GC-2010 spectrometer using FID.

Procedures and Characterization Data

Typical procedure for the preparation of 2: Under an atmosphere of nitrogen, $Pd(\pi-allyl)(Cp)$ (5 mol %), PPh₃ (10 mol %) and LiO'Bu (0.36 mmol), were added in 2 mL cyclohexane. The reaction mixture was then stirred at room temperature for 5 min and **1** (0.3 mmol) and alkyne (0.36 mmol) were added under nitrogen. The reaction mixture was stirred at 130 °C for 12 h (aliphatic alkynes) or 48 h (aromatic alkynes). The reaction mixture was cooled to room temperature, quenched with water and extracted with Et₂O. The combined organic layer was washed with brine and dried over MgSO₄. The solvent was then evaporated in vacuo and the residue was purified by silica gel column chromatography with petroleum ether and ethyl acetate (10:1) as eluent to afford the final products. Products **2a-c** and **2e-f** are known compounds and their NMR spectra are in consistence with those in the literature.¹

2a¹: Yellow oil, isolated yield 90% (100 mg). ¹H NMR (400 MHz, CDCl₃, Me₄Si): δ 1.19-1.25 (m, 6H, CH₃), 1.44-1.52 (m, 2H, CH₂), 1.73-1.87 (m, 4H, CH₂), 2.70-2.79 (m, 4H, CH₂), 3.16 (t, J = 6.9,

2H, CH₂), 4.05 (t, J = 7.6 Hz, 2H, CH₂), 7.06 (t, J = 7.4 Hz, 1H, CH), 7.13 (t, J = 7.5 Hz, 1H, CH), 7.24 (d, J = 8.8 Hz, 1H, CH), 7.54 (d, J = 7.8 Hz, 1H, CH).

2b¹: Yellow oil, isolated yield 72% (100 mg). ¹H NMR (400 MHz, CDCl₃, Me₄Si): δ 1.21-1.28 (m, 2H, CH₂), 1.60-1.71 (m, 4H, CH₂), 3.02 (t, J = 7.0 Hz 2H, CH₂), 4.10 (t, J = 7.5 Hz, 2H, CH₂), 7.23-7.33 (m, 9H, CH), 7.38-7.40 (m, 4H, CH), 7.80 (d, *J* = 7.9 Hz , 1H, CH).

2c¹: Yellow oil, isolated yield 88% (105 mg). ¹H NMR (400 MHz, CDCl₃, Me₄Si): δ 0.95-1.03 (m, 6H, CH₃), 1.43-1.50 (m, 2H, CH₂), 1.56-1.68 (m, 4H, CH₂), 1.71-1.77 (m, 2H, CH₂), 1.79-1.86 (m, 2H,

CH₂), 2.65-2.71 (m, 4H, CH₂), 3.16 (t, J = 6.9 Hz, 2H, CH₂), 4.04 (t, J = 7.6 Hz, 2H, CH₂), 7.03-7.07 (m, 1H, CH), 7.10-7.14 (m, 1H, CH), 7.23 (d, J = 8.6 Hz, 1H, CH), 7.52 (d, J = 7.7 Hz, 1H, CH).

2d¹: Yellow oil, isolated yield 82% (87 mg). ¹H NMR (500 MHz, Et CDCl₃, Me₄Si): δ 1.20-1.25 (m, 6H, CH₃), 1.87-1.89 (m, 4H, CH₂), 2.71-2.79 (m, 4H, CH₂), 3.17 (t, J = 6.5 Hz, 2H, CH₂), 4.08 (t, J = 7.0Hz, 2H, CH₂), 7.04-7.08 (m, 1H, CH), 7.12-7.15 (m, 1H, CH), 7.25 (s, 1H, CH), 7.54 (d, J = 7.5 Hz, 1H, CH).

2e: Yellow oil, isolated yield 66% (89 mg). ¹H NMR (400 MHz, Ph CDCl₃, Me₄Si): δ 1.60-1.67 (m, 2H, CH₂), 1.75-1.82 (m, 2H, CH₂), 2.96 (t, *J* = 6.8 Hz, 2H, CH₂), 4.12 (t, *J* = 7.2 Hz, 2H, CH₂), 7.14-7.20 (m, 2H, CH), 7.23-7.34 (m, 7H, CH), 7.37-7.43 (m, 4H, CH), 7.80 (d, J = 7.9 Hz, 1H, CH); 13 C NMR (100 MHz, CDCl₃): δ 5.6 (CH₂), 30.6 (CH₂), 30.7 (CH₂), 42.6 (CH₂), 109.8 (CH), 115.6 (quat. C), 119.9 (CH), 120.2 (CH), 122.2 (CH), 125.5 (CH), 127.3 (quat. C), 128.1 (2 CH), 128.2 (CH), 128.5 (2 CH), 129.8 (2 CH), 131.2 (2 CH), 132.1 (quat. C), 135.0 (quat. C), 136.3 (quat. C), 137.4 (quat. C). HRMS calcd. for C24H23IN [M+H]⁺: 452.0870, found 452.0876.

2f¹: Yellow oil, isolated yield 75% (107 mg). ¹H NMR (400 MHz, CDCl₃, Me₄Si): δ 1.32-1.40 (m, 2H, CH₂), 1.70-1.80 (m, 4H, CH₂), 3.10 (t, J = 6.9 Hz, 2H, CH₂), 4.10 (t, J = 7.6 Hz, 2H, CH₂), 6.99-7.03 (m, 2H, CH), 7.15-7.23 (m, 4H, CH), 7.29-7.33 (m, 1H,

CH), 7.38 (d, *J* = 8.2 Hz, 1H, CH), 7.52-7.54 (m, 1H, CH), 7.93 (d, *J* = 8.0 Hz, 1H, CH).

2g: Yellow oil, isolated yield 62% (89 mg). ¹H NMR (400 MHz, C₆D₆, Me₄Si): δ 0.68-0.76 (m, 2H, CH₂), 1.04-1.11 (m, 2H, CH₂), 1.12-1.19 (m, 2H, CH₂), 2.43 (t, *J* = 7.1 Hz, 2H, CH₂), 3.58 (t, *J* = 7.4 Hz, 2H, CH₂), 6.75-6.77 (m, 1H, CH), 6.84-6.86 (m, 2H, CH),

6.90-6.92 (m, 1H, CH), 6.99-7.00 (m, 1H, CH), 7.09-7.11 (m, 1H, CH), 7.17 (s, 1H, CH), 7.23-7.34 (m, 2H, CH), 7.95 (d, J = 7.7 Hz, 1H, CH); ¹³C NMR (100 MHz, CDCl₃): δ 6.3 (CH₂), 27.7 (CH₂), 28.9 (CH₂), 32.7 (CH₂), 43.6 (CH₂), 109.7 (CH), 111.2 (quat. C), 119.9 (CH), 120.2 (CH), 120.8 (CH), 122.2 (CH), 124.5 (CH), 126.0 (CH), 126.1 (CH), 126.9 (quat. C), 128.5 (CH), 129.5 (CH), 132.2 (quat. C), 132.3 (quat. C), 135.2 (quat. C), 136.2 (quat. C). HRMS calcd. for C₂₁H₂₁INS₂ [M+H]⁺: 478.0155, found 478.0152.

Procedure for the preparation of 4: Under an atmosphere of nitrogen, Pd(-allyl)(Cp) (5 mol %), PPh₃ (10 mol %) and LiO^{*t*}Bu (0.36 mmol), were added to 2 mL cyclohexane After this reaction mixture was stirred at room temperature for 5 min, **3** (0.3 mmol) and 3-hexyne (0.36 mmol) were added and the reaction mixture was stirred at 130 °C for 12 h. The reaction mixture was quenched with water and extracted with Et₂O. The combined organic layer was washed with brine and dried over MgSO₄. The solvent was then evaporated in vacuo and the residue was purified by silica gel column chromatography with petroleum ether and ethyl acetate as eluent to afford the final product **4**.

4: Yellow oil, isolated yield 32% (31 mg). ¹H NMR (400 MHz, C₆D₆): δ 0.91-0.99 (m, 2H, CH2), 1.03 (t, *J* = 7.6 Hz, 3H, CH₃), 1.20-1.29 (m, 7H, CH₃+2CH₂), 2.48 (q, *J* = 7.5 Hz, 2H, CH₂),

2.70-2.78 (m, 4H, CH₂), 3.53 (t, J = 7.5 Hz, 2H, CH₂), 7.09-7.12 (m, 1H, CH), 7.21-7.29 (m, 2H, CH), 7.65-7.67 (m, 1H, CH); ¹³C NMR (100 MHz, C₆D₆): 15.5 (CH₃), 16.5 (CH₃), 17.8 (CH₂), 18.1 (CH₂), 25.7 (CH₂), 29.6 (CH₂), 32.4 (CH₂), 33.2 (CH₂), 42.8

(CH₂), 109.4 (CH), 113.3 (quat. C), 118.9 (CH), 119.2 (CH), 121.0 (CH), 128.6 (quat. C), 136.6 (quat. C), 137.0 (quat. C). HRMS calcd. for C₁₇H₂₅BrN [M+H]+: 322.1165, found 322.1174.

2) Reference:

1. Hao, W.; Wei, J.; Zhang, W.-X.; Xi, Z. Angew. Chem. Int. Ed. 2014, 53, 14533.

3) Scanned ¹H NMR and ¹³C NMR Spectra of All Compounds

S9

