Supporting Information

Copper-mediated radical alkylarylation of unactivated alkenes with acetonitrile leading to fluorenes and pyrroloindoles

Xue-Qiang Chu, Zhen-Hua Xing, Hua Meng, Xiao-Ping Xu* and Shun-Jun Ji*

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, People's Republic of China. Fax : (+86)-512-65880307; phone: (+86)- 512-65880307; E-mail: <u>xuxp@suda.edu.cn;</u> <u>shunjun@suda.edu.cn</u>

Table of Contents

General information	page S2
General procedure for rapid assembly of fluorene and pyrroloindole derivatives	page S2
General procedure for the synthesis of compound 10	page S3
General procedure for the synthesis of compound 11	page S3
Optimization of the reaction conditions (Table S1)	page S3-4
The photoluminescence spectra of prepared polycyclics	page S5
Kinetic isotope effects (KIE) experiment (Figure S1)	page S5-S6
The radical trapping experiment (Figure S2)	page S6-S7
Analytical and spectral data for compounds	page S7-22
The ¹ H and ¹³ C spectra of compounds	page S23-61

Experimental Section: General

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All reactions were carried out in air and using undistilled solvent, without need of precautions to exclude air and moisture unless otherwise noted. Melting points were recorded on an Electrothermal digital melting point apparatus. IR spectra were recorded on a FT-IR spectrophotometer using KBr optics. ¹H, ¹³C NMR spectra were recorded in CDCl₃ on 400 MHz spectometers. Tetramethylsilane (TMS) served as internal standard for ¹H NMR and ¹³C NMR. High resolution mass spectra were obtained using a commercial apparatus (ESI or EI Source).

General procedure for rapid assembly of fluorene and pyrroloindole derivatives

Alkene **1a** (0.2 mmol), acetonitrile **2a** (2 mL), $Cu(OTf)_2$ (0.1 mmol), 1,10-phenanthroline (0.2 mmol), K_2CO_3 (0.6 mmol) and di-*tert*-butyl peroxide (0.5 mmol) was stirred at 140 °C under air in a pressure-tight tube. Upon completion of the reaction (indicated by TLC), solvent was removed in vacuum and the residue was purified by flash silica gel column chromatography using petroleum ether/ethyl acetate as eluent, affording pure product **3aa**.

Alkene **1a** (0.3 mmol), acetone **2a** (2 mL), $Cu(OTf)_2$ (0.03 mmol), 1,10-phenanthroline (0.06 mmol), Na₃PO₄ (0.3 mmol) and di-*tert*-butyl peroxide (0.75 mmol) was stirred at 120 °C under air in a pressure-tight tube. Upon completion of the reaction (indicated by TLC), solvent was removed in vacuum and the residue was purified by flash silica gel column chromatography using petroleum ether/ethyl acetate as eluent, affording pure product **5ab**.

General procedure for the synthesis of compound 10

0.25 mmol of 3-(2-methoxy-9-methyl-9*H*-fluoren-9-yl)propanenitrile **3aa** was dissolved in 2.0 mL dry THF. Then 1 mmol of LiAlH₄ was added slowly at 0 °C. After 10 minutes, the cold bath was removed and the reaction mixture was stirred at room temperature for 3 h. The desired product 2-methoxy-9-methyl-9*H*-fluoren-9-ol **10** was obtained after purification by flash chromatography on silica gel (white solid, 35%).

General procedure for the synthesis of compound 11

0.5 mmol of 3-(2-methoxy-9-methyl-9*H*-fluoren-9-yl)propanenitrile **3aa** and 2 mmol of KOH was dissolved in 2.0 mL of 2-methyl-2-propanol. The reaction mixture was stirred at 80 °C for 48 h. The desired product 3-(2-methoxy-9-methyl-9*H*-fluoren-9-yl)propanamide **11** was obtained after purification by flash chromatography on silica gel (white solid, 62%).

Table S1: Optimization of the reaction conditions^a

Entry	Catalyst	Ligand	Oxidant	Base	Time	Temp.	GC-Yeild ^b	
	(equiv)	(equiv)	(x equiv)	(x equiv)	(h)	(°C)	3aa	1a ^c
1	Cu(OTf)2(0.5)	L ₁ (1)	DTBP(2.5)	K ₃ PO ₄ (3)	19	140	76	0
2	Cu(OTf)2(0.5)	L ₂ (1)	DTBP(2.5)	K ₃ PO ₄ (3)	19	140	36	42
3	Cu(OTf)2(0.5)	L ₃ (1)	DTBP(2.5)	K ₃ PO ₄ (3)	19	140	28	20
4	Cu(OTf)2(0.5)	L4(1)	DTBP(2.5)	K ₃ PO ₄ (3)	19	140	12	43
5	Cu(OTf)2(0.5)	L5(1)	DTBP(2.5)	K ₃ PO ₄ (3)	19	140	14	50
6	Cu(OTf) ₂ (0.5)	$L_6(1)$	DTBP(2.5)	K ₃ PO ₄ (3)	19	140	15	88
7	Cu(OTf)2(0.5)		DTBP(2.5)	K ₃ PO ₄ (3)	19	140	0	
8	Cu(OTf)2(0.2)	L ₁ (0.4)	DTBP(2.5)	K ₃ PO ₄ (3)	19	140	10	38
9	Cu(OTf)2(0.5)	L ₁ (0.5)	DTBP(2.5)	K ₃ PO ₄ (3)	19	140	20	28
10	Cu(OTf) ₂ (0.2)	L ₁ (0.2)	DTBP(2.5)	K ₃ PO ₄ (3)	19	140	24	31
11	Cu(OTf) ₂ (0.5)	L ₁ (1)	DTBP(2.5)	K ₂ CO ₃ (3)	19	140	96(78) ^d	0
12	Cu(OTf) ₂ (0.5)	L ₁ (1)	DTBP(2.5)	CS ₂ CO ₃ (3)	19	140	36	40
13	Cu(OTf) ₂ (0.5)	L ₁ (1)	DTBP(2.5)	NaOAc(3)	19	140	49	0
14	Cu(OTf) ₂ (0.5)	L ₁ (1)	DTBP(2.5)	ButOK(3)	19	140	67	trace
15	Cu(OTf)2(0.5)	L ₁ (1)	DTBP(2.5)	KOH(3)	19	140	48	18
16	Cu(OTf)2(0.5)	L ₁ (1)	DTBP(2.5)		19	140	trace	78
17	Cu(OAc) ₂ (0.5)	L ₁ (1)	DTBP(2.5)	K ₂ CO ₃ (3)	19	140	61	0
18	CuOAc(0.5)	L ₁ (1)	DTBP(2.5)	K ₂ CO ₃ (3)	19	140	56	trace
19	Cu ₂ O(0.5)	L ₁ (1)	DTBP(2.5)	K ₂ CO ₃ (3)	19	140	33	9
20	Cu(NO ₃) ₂ (0.5)	L ₁ (1)	DTBP(2.5)	K ₂ CO ₃ (3)	19	140	83	trace
21		L ₁ (1)	DTBP(2.5)	K ₂ CO ₃ (3)	19	140	0	
22	Cu(OTf) ₂ (0.5)	L ₁ (1)	DCP(2.5)	K ₂ CO ₃ (3)	19	140	62	trace
23	Cu(OTf) ₂ (0.5)	L ₁ (1)	TBPB(2.5)	K ₂ CO ₃ (3)	19	140	51	0
24	Cu(OTf) ₂ (0.5)	L1(1)	BPO(2.5)	K ₂ CO ₃ (3)	19	140	23	17
25	Cu(OTf) ₂ (0.5)	L1(1)	DTBP(2.5)	K ₂ CO ₃ (3)	19	130	87	0
26	Cu(OTf) ₂ (0.5)	L ₁ (1)	DTBP(2.5)	K ₂ CO ₃ (3)	12	140	79	0

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (2 mL), catalyst (0.5 equiv), ligand (1 equiv), base (3 equiv) and oxidant (2.5 equiv) at 140 °C under air; DTBP = di-*tert*-butyl peroxide; DCP = dicumyl peroxide; TBPB = *tert*-butylperoxybenzoate; BPO = benzoyl peroxide. ^{*b*}Yields were determined by GC with an internal standard (biphenyl) on the basis of the ratio between the formed products and the initial amount of limiting reactant. ^{*c*}The recovery of **1a**. ^{*d*}Isolated yields.

Figure S2: Kinetic isotope effects (KIE) experiment

Figure S3: Trapping experiment with 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO).

Analytical and spectral data of products:

3-(2-Methoxy-9-methyl-9*H***-fluoren-9-yl)propanenitrile (3aa):** Yield = 78%. Colourless oil. IR (KBr) $v = 2960, 2925, 2866, 2246, 1610, 1459, 1280, 1253, 1036, 822, 736 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): <math>\delta = 7.64-7.59$ (m, 2H), 7.37–7.31 (m, 2H), 7.29–7.25 (m, 1H), 6.94–6.89 (m, 2H), 3.88 (s, 3H), 2.45–2.31 (m, 2H), 1.51 (s, 3H), 1.50–1.47 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 160.3, 151.1, 148.7, 140.4, 133.3, 128.1, 126.8, 122.7, 121.3, 119.9, 119.6, 113.6, 108.8, 55.8, 50.2, 36.5, 26.7, 12.6 ppm. HRMS m/z: calcd for C₁₈H₁₇NNaO [M+Na]⁺ 286.1202, found: 286.1205.$

3-(2,9-Dimethyl-9*H***-fluoren-9-yl)propanenitrile (3ba):** Yield = 72%. Colourless oil. IR (KBr) v = 2959, 2923, 2863, 2245, 1446, 1214, 823, 778, 738 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.67 (dd, J = 5.5, 2.7 Hz, 1H), 7.60 (d, J = 8.2 Hz, 1H), 7.38–7.28 (m, 3H), 7.18 (d, J = 6.7 Hz, 2H), 2.44 (s, 3H), 2.42–2.36 (m, 2H), 1.51 (s, 3H), 1.51–1.46 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 149.4, 149.1, 140.5, 138.1, 137.8, 128.9, 128.0, 127.5, 123.5, 122.8, 120.2, 120.2, 120.0, 50.0, 36.4, 26.7, 22.0, 12.7 ppm. HRMS m/z: calcd for C₁₈H₁₇NNa [M+Na]⁺ 270.1253, found: 270.1262.

3-(9-methyl-2-phenyl-9*H***-fluoren-9-yl)propanenitrile (3ca):** Yield = 50%. White solid. M.p. 108.2–109.3 °C. IR (KBr) v = 2987, 2972, 2246, 1435, 1407, 1251, 1075, 895, 760, 694 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.80–7.72 (m, 2H), 7.67–7.60 (m, 3H), 7.59 (d, *J* = 1.1 Hz, 1H), 7.51–7.45 (m, 2H), 7.43–7.33 (m, 4H), 2.50–2.41 (m, 2H), 1.58 (s, 3H), 1.57–1.53 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 149.9, 149.5, 141.3, 140.1, 139.6, 129.1, 128.2, 128.1, 127.7, 127.4, 127.3, 122.9, 121.5, 120.8, 120.6, 119.8, 50.3, 36.4, 26.7, 12.7 ppm. HRMS m/z: calcd for C₂₃H₁₉NNa [M+Na]⁺ 332.1410, found: 332.1407.

3-(9-methyl-9*H***-fluoren-9-yl)propanenitrile (3da):** Yield = 59%. White solid. M.p. 72.2–74.5 °C. IR (KBr) v = 2955, 2920, 2852, 2242, 1443, 1260, 1076, 1025, 799, 731 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.72$ (dd, J = 6.1, 2.7 Hz, 2H), 7.40–7.33 (m, 6H), 2.47–2.37 (m, 2H), 1.53 (s, 3H), 1.51–1.45 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 149.2$, 140.4, 128.1, 128.0, 122.8, 120.5, 119.9, 50.2, 36.4, 26.6, 12.7 ppm. HRMS m/z: calcd for C₁₇H₁₅NNa [M+Na]⁺ 256.1097,

found: 256.1090.

3-(2-fluoro-9-methyl-9*H***-fluoren-9-yl)propanenitrile (3ea):** Yield = 74%. White solid. M.p. 60.1–61.7 °C. IR (KBr) v = 2957, 2922, 2862, 2246, 1613, 1444, 1265, 1186, 898, 821, 776, 734 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 7.71–7.63 (m, 2H), 7.41–7.30 (m, 3H), 7.11–7.05 (m, 2H), 2.46–2.33 (m, 2H), 1.56–1.50 (m, 5H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 164.4, 162.0, 151.6, 151.6, 149.0, 149.0, 139.6, 136.4, 136.3, 128.3, 127.7, 122.8, 121.7, 121.6, 120.2, 119.6, 115.4, 115.2, 110.5, 110.3, 50.4, 50.4, 36.3, 26.5, 12.7 ppm. HRMS m/z: calcd for C₁₇H₁₄FNNa [M+Na]⁺ 274.1002, found: 274.1008.

3-(2-chloro-9-methyl-9*H***-fluoren-9-yl)propanenitrile (3fa):** Yield = 53%. Colourless oil. IR (KBr) ν = 2959, 2920, 2850, 2245, 1632, 1443, 1263, 1083, 825, 789, 735 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 7.71–7.66 (m, 1H), 7.66–7.61 (m, 1H), 7.41–7.34 (m, 5H), 2.47–2.33 (m, 2H), 1.56–1.48 (m, 5H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 151.1, 149.0, 139.3, 139.0, 133.8, 128.4, 128.3, 123.4, 122.9, 121.5, 120.6, 119.49, 50.4, 36.2, 26.5, 12.7 ppm. HRMS m/z: calcd for C₁₇H₁₄ClNNa [M+Na]⁺ 290.0707, found: 290.0711.

ethyl 9-(2-cyanoethyl)-9-methyl-9H-fluorene-2-carboxylate (3ga): Yield = 61%. White solid. M.p. 134.9–136.6 °C. IR (KBr) ν = 2977, 2965, 2928, 2243, 1707, 1446, 1289, 1257, 1220, 1099, 1026, 860, 757, 740 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 8.11 (dd, J = 8.0, 1.5 Hz, 1H), 8.07–8.05 (m, 1H), 7.80–7.85 (m, 2H), 7.42 (d, J = 2.8 Hz, 3H), 4.46–4.39 (m, 2H), 2.55–2.40 (m, 2H), 1.57 (s, 3H), 1.53–1.47 (m, 2H), 1.47–1.40 (m, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 166.8, 150.3, 149.3, 144.9, 139.3, 130.1, 129.9, 129.2, 128.4, 124.0, 123.1, 121.4, 120.2, 119.5, 61.4, 50.3, 36.1, 26.5, 14.6, 12.7 ppm. HRMS m/z: calcd for C₂₀H₂₀NO₂ [M+H]⁺ 306.1489, found: 306.1499.

9-(2-cyanoethyl)-9-methyl-9H-fluorene-2-carbonitrile (3ha): Yield = 59%. Colourless oil. IR (KBr) v = 2961, 2922, 2850, 2223, 1609, 1447, 1184, 837, 783, 738 cm⁻¹. ¹H NMR (400MHz, CDCl₃): $\delta = 7.85-7.77$ (m, 2H), 7.73–7.66 (m, 2H), 7.48–7.42 (m, 3H), 2.45 (dd, J = 8.8, 7.4 Hz, 2H), 1.56 (s, 3H), 1.55–1.49 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 150.0$, 149.8, 144.9, 138.5, 132.6, 129.9, 128.7, 126.6, 123.2, 121.7, 121.1, 119.3, 119.0, 111.0, 50.5, 35.8, 26.4, 12.7 ppm. HRMS m/z: calcd for C₁₈H₁₅N₂ [M+H]⁺ 259.1230, found: 259.1231.

3-(1,4-dimethoxy-9-methyl-9*H***-fluoren-9-yl)propanenitrile (3ia):** Yield = 65%. Colourless oil. IR (KBr) v = 2965, 2923, 2245, 1503, 1456, 1248, 1051, 1017, 756, 745, 668 cm⁻¹. ¹H NMR (400MHz, CDCl₃): $\delta = 8.10-8.04$ (m, 1H), 7.37–7.29 (m, 3H), 6.84 (d, J = 8.8 Hz, 1H), 6.76 (d, J = 8.8 Hz, 1H), 3.94 (s, 3H), 3.86 (s, 3H), 2.95–2.85 (m, 1H), 2.30–2.20 (m, 1H), 1.57 (s, 3H), 1.55–1.45 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 151.0$, 150.5, 149.6, 139.6, 136.4, 129.7, 127.9, 127.2, 124.4, 121.7, 120.3, 110.9, 110.2, 55.9, 55.8, 51.3, 33.4, 24.3, 12.9 ppm. HRMS m/z: calcd for C₁₉H₁₉NNaO₂ [M+Na]⁺ 316.1308, found: 316.1311.

3-(3,9-dimethyl-9*H*-fluoren-9-yl)propanenitrile (3ja) and 3-(1,9-dimethyl-9*H*-fluoren-9-yl)propanenitrile (3ja'): Yield = 55% (C¹/C² isomers, 3ja/3ja' = 1:1). IR (KBr) v = 2962, 2925, 2866, 2242, 1582, 1453, 1279, 1027, 821, 766, 741 cm⁻¹. The ¹H NMR spectrum of the isolated product showed a 1:1 mixture of **3ja** and its isomer **3ja'**. ¹H NMR (400MHz, CDCl₃) **3ja** and its isomer **3ja'**: δ = 7.72–7.66 (m, 1H), 7.60–7.51 (m, 1H), 7.39–7.30 (m, 3H), 7.27–7.24 (m, 1H), 7.16 (d, *J* = 7.6 Hz, 0.5H), 7.08 (d, *J* = 7.5 Hz, 0.5H), 2.80–2.70 (m, 0.5H), 2.52 (s, 1.5H), 2.44 (s, 1.5H), 2.42–2.33 (m, 1.5H), 1.62 (s, 1.5H), 1.56–1.42 (m, 3.5H) ppm. ¹³C NMR (100 MHz, CDCl₃) **3ja** and its isomer **3ja'**: δ = 149.9, 149.6, 146.3, 145.4, 141.0, 140.5, 140.5, 140.3, 137.9, 134.5, 130.6, 128.9, 128.2, 128.0, 128.0, 127.9, 122.8, 122.5, 122.3, 121.1, 120.4, 120.2, 120.0, 119.9, 118.2, 51.5, 49.8, 36.4, 34.0, 26.7, 24.5, 21.7, 19.2, 12.7, 12.6 ppm. HRMS m/z: calcd for C₁₈H₁₇NNa [M+Na]⁺ 270.1253, found: 270.1256.

3-(9-methyl-3-nitro-9*H***-fluoren-9-yl)propanenitrile (3ka):** Yield = 23%. Yellow oil. IR (KBr) v = 2961, 2923, 2851, 2245, 1519, 1343, 1090, 1025, 782, 728 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 8.55 (d, *J* = 2.0 Hz, 1H), 8.25 (dd, *J* = 8.3, 2.1 Hz, 1H), 7.87–7.79 (m, 1H), 7.56 (d, *J* = 8.3 Hz, 1H), 7.50–7.42 (m, 3H), 2.48 (t, *J* = 8.1 Hz, 2H), 1.65–1.55 (m, 5H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 156.0, 149.4, 148.7, 142.1, 138.2, 129.7, 128.8, 123.6, 123.2, 123.1, 121.4, 119.1, 115.6, 50.7, 35.9, 26.5, 12.7 ppm. HRMS m/z: C₁₇H₁₄N₂NaO₂ [M+Na]⁺ 301.0947, found: 301.0941.

3-(9-methyl-1-nitro-9*H***-fluoren-9-yl)propanenitrile (3ka'):** Yield = 40%. Yellow oil. IR (KBr) $v = 2970, 2921, 2245, 1528, 1458, 1346, 1066, 762, 728 cm⁻¹. ¹H NMR (400MHz, CDCl₃): <math>\delta =$ 8.02 (dd, J = 7.6, 0.9 Hz, 1H), 7.96 (dd, J = 8.1, 0.9 Hz, 1H), 7.81–7.73 (m, 1H), 7.58 (t, J = 7.8Hz, 1H), 7.51–7.41 (m, 3H), 3.27–3.17 (m, 1H), 2.42–2.32 (m, 1H), 1.63 (s, 3H), 1.61–1.49 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 150.5, 148.4, 144.6, 141.1, 137.6, 129.8, 129.7, 128.5,$ 125.3, 123.8, 122.7, 120.6, 119.1, 77.6, 77.2, 76.9, 53.2, 34.5, 23.9, 13.0 ppm. HRMS m/z: calcd for: $C_{17}H_{14}N_2NaO_2$ [M+Na]⁺ 301.0947, found: 301.0938.

3-(4,9-dimethyl-9*H***-fluoren-9-yl)propanenitrile (3la):** Yield = 57%. Colourless oil. IR (KBr) v = 2958, 2924, 2862, 2246, 1453, 1376, 1031, 792, 734 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 7.86 (d, *J* = 7.5 Hz, 1H), 7.42–7.33 (m, 3H), 7.28–7.23 (m, 2H), 7.15 (dd, *J* = 6.5, 1.4 Hz, 1H), 2.70 (s, 3H), 2.44–2.37 (m, 2H), 1.50 (s, 3H), 1.49–1.43 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 149.6, 141.4, 138.4, 133.7, 130.4, 128.0, 127.7, 127.3, 123.6, 122.7, 120.2, 119.9, 49.7, 36.5, 27.0, 21.2, 12.6 ppm. HRMS m/z: calcd for C₁₈H₁₇NNa [M+Na]⁺ 270.1253, found: 270.1245.

3-(4-fluoro-9-methyl-9*H***-fluoren-9-yl)propanenitrile (3ma):** Yield = 76%. Colourless oil. IR (KBr) ν = 2961, 2921, 2850, 2246, 1580, 1454, 1243, 1223, 951, 795, 729 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 7.92 (d, *J* = 6.8 Hz, 1H), 7.43–7.36 (m, 3H), 7.34–7.28 (m, 1H), 7.17 (d, *J* = 7.5 Hz, 1H), 7.10–7.04 (m, 1H), 2.45–2.39 (m, 2H), 1.53 (s, 3H), 1.53–1.48 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 159.9, 157.4, 152.2, 148.6, 137.5, 137.5, 129.3, 129.3, 128.5, 128.2, 124.1, 124.0, 122.6, 119.6, 118.5, 118.5, 115.3, 115.1, 50.9, 36.4, 26.7, 12.7 ppm. HRMS m/z: calcd for C₁₇H₁₄FNNa [M+Na]⁺ 274.1002, found: 274.1009.

3-(4-chloro-9-methyl-9*H***-fluoren-9-yl)propanenitrile (3na):** Yield = 49%. Colourless oil. IR (KBr) ν = 2961, 2925, 2864, 2246, 1570, 1443, 1424, 1128, 797, 730 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 8.43–8.37 (m, 1H), 7.45–7.38 (m, 3H), 7.35 (dd, *J* = 6.8, 2.2 Hz, 1H), 7.31–7.26 (m,

2H), 2.44–2.39 (m, 2H), 1.52 (s, 3H), 1.51–1.46 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 151.8, 149.3, 139.1, 137.2, 129.7, 129.5, 128.6, 128.6, 128.2, 124.4, 122.5, 121.1, 119.6, 50.3, 36.4, 26.9, 12.6 ppm. HRMS m/z: calcd for C₁₇H₁₄ClNNa [M+Na]⁺ 290.0707, found: 290.0716.

3-(9-methyl-9*H***-indeno[2,1-***c***]pyridin-9-yl)propanenitrile (30a): Yield = 56%. White solid. M.p. 93.2–94.7 °C. IR (KBr) v = 2987, 2971, 2901, 2237, 1600, 1407, 1251, 1075, 742 \text{ cm}^{-1}. ¹H NMR (400MHz, CDCl₃): \delta = 8.69 (s, 1H), 8.65 (d, J = 4.8 \text{ Hz}, 1\text{H}), 7.83–7.79 (m, 1H), 7.63 (d, J = 4.9 \text{ Hz}, 1\text{H}), 7.55–7.43 (m, 3H), 2.58–2.42 (m, 2H), 1.61 (s, 3H), 1.59–1.49 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): \delta = 150.1, 149.5, 148.2, 145.0, 143.9, 138.0, 130.6, 128.6, 123.2, 122.2, 119.2, 115.3, 49.9, 35.9, 26.3, 12.8 ppm. HRMS m/z: calcd for C₁₆H₁₄N₂Na [M+Na]⁺ 257.1049, found: 257.1050.**

3-(9-methyl-9*H***-indeno[2,1-***d***]pyrimidin-9-yl)propanenitrile (3pa): Yield = 68%. White solid. M.p. 89.3–90.7 °C. IR (KBr) v = 2967, 2927, 2867, 2246, 1585, 1557, 1396, 1292, 1123, 1000, 809, 755 cm⁻¹. ¹H NMR (400MHz, CDCl₃): \delta = 9.16 (s, 1H), 9.04 (s, 1H), 7.85–7.79 (m, 1H), 7.53–7.44 (m, 3H), 2.70–2.60 (m, 1H), 2.34–2.24 (m, 1H), 1.88–1.75 (m, 2H), 1.56 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): \delta = 177.3, 157.2, 148.4, 147.6, 134.9, 132.2, 130.0, 128.8, 123.5, 122.0, 119.0, 50.8, 34.0, 24.3, 12.9 ppm. HRMS m/z: calcd for C₁₅H₁₄N₃ [M+H]⁺ 236.1182, found: 236.1192.**

3-(8-methyl-8*H***-indeno[1,2-***c***]thiophen-8-yl)propanenitrile (3qa): Yield = 37%. White solid. M.p. 62.4–64.3 °C. IR (KBr) v = 2955, 2922, 2853, 2242, 1605, 1447, 1277, 1117, 1019, 751, 715**

cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 7.50–7.45 (m, 1H), 7.40 (d, *J* = 4.9 Hz, 1H), 7.34–9.29 (m, 2H), 7.25–7.20 (m, 2H), 2.46–2.31 (m, 2H), 1.75–1.62 (m, 2H), 1.57 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 152.8, 151.3, 145.4, 138.2, 129.6, 128.0, 125.7, 122.5, 119.8, 119.7, 119.2, 50.0, 36.6, 26.8, 12.8 ppm. HRMS m/z: calcd for C₁₅H₁₃NNaS [M+Na]⁺ 262.0661, found: 262.0669.

3-(11-methyl-11*H***-benzo[***a***]fluoren-11-yl)propanenitrile (3ra) and 3-(11-methyl-11H-benzo[b]fluoren-11-yl)propanenitrile (3ra'):** Yield = 81% (C¹/C² isomers, **3ra/3ra'** = 4:1). White solid. IR (KBr) v = 2965, 2924, 2851, 2244, 1455, 1255, 1021, 824, 752 cm⁻¹. The ¹H NMR spectrum of the isolated product showed a 4:1 mixture of **3ra** and its isomer **3ra'**. ¹H NMR (400MHz, CDCl₃) **3ra** and its isomer **3ra'**: $\delta = 8.16-8.07$ (m, 1H), 7.97 (d, J = 8.1Hz, 1H), 7.93–7.84 (m, 2H), 7.80 (d, J = 6.7 Hz, 1H), 7.64–7.56 (m, 1H), 7.54–7.40 (m, 2H), 7.45–7.36 (m, 2H), 3.01–2.91 (m, 0.8H), 2.68–2.55 (m, 0.8H), 2.53–2.45 (m, 0.4H), 1.77 (s, 2.4H), 1.61 (s, 0.6H), 1.58–1.50 (m, 0.4H), 1.37–1.31 (m, 1.6H) ppm. ¹³C NMR (100 MHz, CDCl₃) **3ra** and its isomer **3ra'**: $\delta = 151.1$, 149.6, 147.5, 142.6, 140.5, 139.8, 138.9, 138.4, 134.2, 133.8, 133.6, 130.2, 129.9, 129.7, 128.8, 128.4, 128.4, 128.2, 128.1, 127.8, 127.1, 126.2, 126.1, 125.5, 123.2, 123.1, 122.2, 121.6, 121.1, 120.2, 119.8, 119.8, 118.9, 118.7, 52.0, 49.8, 37.2, 35.6, 27.7, 26.0, 12.8, 12.7 ppm. HRMS m/z: calcd for C₂₁H₁₇NNa [M+Na]⁺ 306.1253, found: 306.1251.

3-(13-methyl-13*H***-indeno[1,2-***I***]phenanthren-13-yl)propanenitrile (3sa): Yield = 76%. Coless oil. IR (KBr) ν = 2987, 2971, 2243, 1732, 1455, 1374, 1241, 1066, 885, 776, 749 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 8.70–8.63 (m, 2H), 8.38 (s, 1H), 8.33–8.27 (m, 1H), 7.98–7.92 (m, 1H), 7.79–7.73 (m, 2H), 7.66–7.59 (m, 3H), 7.47–7.40 (m, 2H), 2.64–2.44 (m, 2H), 1.86 (s, 3H), 1.75–1.58 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 139.7, 139.1, 132.1, 131.9, 130.7, 130.5, 129.1, 129.1, 127.7, 127.4, 127.4, 127.2, 127.1, 126.9, 126.8, 124.6, 123.6, 123.0, 121.9, 120.6, 119.9, 43.8,**

42.4, 34.5, 13.4 ppm. HRMS m/z: calcd for C₂₅H₁₉NNa [M+Na]⁺ 356.1410, found: 356.1405.

3-(7-methyl-7*H***-benzo[***d***]fluoreno[4,3-***b***]furan-7-yl)propanenitrile (3ta): Yield = 82%. White solid. M.p. 45–47 °C. IR (KBr) v = 2987, 2971, 2901, 2244, 1579, 1442, 1184, 1075, 826, 731 cm⁻¹. ¹H NMR (400MHz, CDCl₃): \delta = 8.27 (d, J = 7.5 Hz, 1H), 8.00 (d, J = 7.3 Hz, 1H), 7.95 (d, J = 7.8 Hz, 1H), 7.69 (d, J = 8.2 Hz, 1H), 7.53–7.48 (m, 2H), 7.47–7.37 (m, 4H), 2.54–2.47 (m, 2H), 1.62 (s, 3H), 1.55–1.49 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): \delta = 156.9, 151.1, 149.3, 149.0, 138.1, 128.5, 127.9, 127.4, 124.8, 124.6, 124.2, 123.8, 123.3, 122.6, 120.8, 120.0, 119.8, 117.2, 112.2, 51.3, 36.6, 26.9, 12.7 ppm. HRMS m/z: calcd for C₂₃H₁₇NNaO [M+Na]⁺ 346.1202, found: 346.1210.**

3-(7-methyl-7*H***-benzo[***d***]fluoreno[4,3-***b***]thiophen-7-yl)propanenitrile (3ua): Yield = 70%. White solid. M.p. 45–47 °C. IR (KBr) v = 2967, 2923, 2245, 1473, 1396, 1021, 1022, 824, 767, 736 cm⁻¹. ¹H NMR (400MHz, CDCl₃): \delta = 8.26-8.18 (m, 2H), 8.00–7.94 (m, 2H), 7.58–7.41 (m, 6H), 2.58–2.49 (m, 2H), 1.62 (s, 3H), 1.54–1.49 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): \delta = 149.8, 148.2, 139.7, 139.7, 136.6, 135.2, 134.5, 132.7, 128.4, 128.0, 127.1, 125.0, 123.3, 122.7, 122.7, 121.9, 121.2, 119.8, 119.0, 50.9, 36.4, 26.8, 12.7 ppm. HRMS m/z: calcd for C₂₃H₁₇NNaS [M+Na]⁺ 362.0974, found: 362.0985.**

3-(2-(diphenylamino)-9-methyl-9H-fluoren-9-yl)propanenitrile (3va): Yield = 63%. White

solid. M.p. 120.0–121.5 °C. IR (KBr) v = 2956, 2923, 2244, 1584, 1486 ,1446, 1273, 1024, 756, 739, 696 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 7.62 (d, *J* = 7.4 Hz, 1H), 7.55 (d, *J* = 8.2 Hz, 1H), 7.37–7.26 (m, 7H), 7.16–7.10 (m, 5H), 7.08–7.02 (m, 3H), 2.37–2.20 (m, 2H), 1.59–1.55 (m, 2H), 1.44 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 150.6, 149.1, 148.3, 148.0, 140.3, 134.8, 129.6, 128.1, 127.1, 124.6, 123.8, 123.3, 122.7, 121.1, 119.9, 119.8, 118.1, 50.1, 36.2, 26.5, 12.7 ppm. HRMS m/z: calcd for C₂₉H₂₄N₂Na [M+Na]⁺ 423.1832, found: 423.1817.

3-(2-(9*H***-carbazol-9-yl)-9-methyl-9***H***-fluoren-9-yl)propanenitrile (3wa):** Yield = 77%. White solid. M.p. 62.0–63.5 °C. IR (KBr) v = 2989, 2953, 2244, 1595, 1495, 1450, 1334, 1229, 833, 749, 739, 723 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 8.16 (d, *J* = 7.8 Hz, 2H), 7.95–7.89 (m, 1H), 7.79 (d, *J* = 7.1 Hz, 1H), 7.61–7.56 (m, 2H), 7.47–7.39 (m, 7H), 7.33–7.28 (m, 2H), 2.48–2.36 (m, 2H), 1.69–1.63 (m, 2H), 1.58 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 151.2, 149.4, 141.1, 139.7, 139.6, 137.4, 128.4, 128.4, 127.1, 126.3, 123.7, 123.0, 121.7, 121.7, 120.7, 120.6, 120.3, 119.5, 109.9, 50.5, 36.2, 26.6, 12.8 ppm. HRMS m/z: calcd for C₂₉H₂₂N₂Na [M+Na]⁺ 421.1675, found: 421.1680.

3-(9-ethyl-9*H***-fluoren-9-yl)propanenitrile (4aa):** Yield = 46%. White solid. M.p. 78.2–80.1 °C. IR (KBr) v = 2964, 2924, 2853, 2245, 1448, 1363, 1169, 1081, 1021, 760, 733 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 7.74–7.69 (m, 2H), 7.40–7.33 (m, 6H), 2.45–2.38 (m, 2H), 2.06 (q, *J* = 7.4 Hz, 2H), 1.55–1.46 (m, 2H), 0.33 (t, *J* = 7.4 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 147.4, 141.6, 128.0, 127.9, 122.9, 120.3, 120.0, 55.0, 35.8, 33.0, 12.4, 8.4 ppm. HRMS m/z: calcd for C₁₈H₁₇NNa [M+Na]⁺ 270.1253, found: 270.1250.

3-(6-fluoro-2-methoxy-9-methyl-9*H***-fluoren-9-yl)propanenitrile (4ca):** Yield = 66%. Colourless oil. IR (KBr) v = 2988, 2963, 2926, 2245, 1614, 1584, 1487, 1431, 1284, 1172, 1037, 871, 823, 743 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 7.58 (d, *J* = 8.3 Hz, 1H), 7.30–7.26 (m, 2H), 6.99–6.88 (m, 3H), 3.89 (s, 3H), 2.40–2.33 (m, 2H), 1.53–1.51 (m, 1H), 1.50 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 164.6, 162.2, 160.7, 151.9, 144.1, 144.0, 142.5, 142.4, 132.3, 123.8, 123.7, 121.7, 119.7, 113.8, 113.6, 113.4, 108.8, 107.0, 106.7, 55.8, 49.8, 36.4, 26.8, 12.6 ppm. HRMS m/z: calcd for C₁₈H₁₆FNNaO [M+Na]⁺ 304.1108, found: 304.1111.

3-(9-methyl-9*H***-fluoren-9-yl)butanenitrile (4da):** Yield = 57%. IR (KBr) v = 2965, 2925, 2245, 1446, 1383, 1296, 1026, 940, 765, 735 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 7.76–7.68 (m, 2H), 7.45 (d, *J* = 7.5 Hz, 1H), 7.41–7.29 (m, 5H), 2.56–2.47 (m, 1H), 1.81 (dd, *J* = 16.7, 3.4 Hz, 1H), 1.55 (s, 3H), 1.52–1.46 (m, 1H), 1.33 (d, *J* = 6.9 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 150.7, 140.7, 140.3, 128.1, 128.0, 127.6, 124.5, 122.7, 120.5, 120.3, 119.7, 52.9, 40.1, 23.9, 20.4, 15.5 ppm. HRMS m/z: calcd for C₁₈H₁₇NNa [M+Na]⁺ 270.1253, found: 270.1262.

3-(9-methyl-9*H***-pyrrolo[1,2-***a***]indol-9-yl)propanenitrile (5aa): Yield = 35%. Colourless oil. IR (KBr) \nu = 2969, 2922, 2245, 1712, 1614, 1491, 1379, 1258, 1066, 750, 708 cm⁻¹. ¹H NMR (400MHz, CDCl₃): \delta = 7.35–7.27 (m, 2H), 7.24 (d,** *J* **= 7.7 Hz, 1H), 7.16–7.12 (m, 1H), 7.02 (dd,** *J* **= 2.8, 0.9 Hz, 1H), 6.37 (t,** *J* **= 3.1 Hz, 1H), 6.04 (dd,** *J* **= 3.3, 0.9 Hz, 1H), 2.32–2.24 (m, 2H), 1.92–1.84 (m, 1H), 1.76–1.69 (m, 1H), 1.55 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): \delta = 141.8, 141.5, 140.2, 128.6, 124.1, 123.6, 119.7, 113.8, 110.5, 110.2, 101.3, 77.6, 77.2, 76.9, 44.9, 37.0, 26.7, 13.2 ppm.**

HRMS m/z: calcd for C₁₅H₁₅N₂ [M+H]⁺ 223.1230, found: 223.1235.

3-(10-methyl-10*H***-indolo[1,2-***a***]indol-10-yl)propanenitrile (5ba): Yield = 60%. Colourless oil. IR (KBr) v = 2963, 2924, 2865, 2245, 1601, 1489, 1453, 1180, 1010, 785, 744, 694 cm⁻¹. ¹H NMR (400MHz, CDCl₃): \delta = 7.77-7.72 (m, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.57 (d, J = 7.8 Hz, 1H), 7.44–7.38 (m, 1H), 7.35–7.29 (m, 2H), 7.23–7.14 (m, 2H), 6.43 (s, 1H), 2.41–2.35 (m, 2H), 1.96–1.86 (m, 1H), 1.79–1.73 (m, 1H), 1.63 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): \delta = 148.5, 140.5, 140.3, 133.4, 131.0, 129.1, 123.6, 123.4, 122.6, 121.6, 121.1, 119.5, 111.1, 110.8, 95.9, 44.7, 37.2, 27.3, 13.3 ppm. HRMS m/z: calcd for C₁₉H₁₆N₂Na [M+Na]⁺ 295.1206, found: 295.1210.**

3-(2,10-dimethyl-10*H***-indolo[1,2-***a***]indol-10-yl)propanenitrile (5ca):** Yield = 61%. Colourless oil. IR (KBr) v = 2962, 2922, 2855, 2246, 1608, 1572, 1486, 1300, 1019, 790, 746, 693 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 7.62 (d, *J* = 8.4 Hz, 1H), 7.52 (d, *J* = 7.8 Hz, 1H), 7.45–7.36 (m, 2H), 7.32 (d, *J* = 7.4 Hz, 1H), 7.17–7.10 (m, 2H), 6.34 (s, 1H), 2.48 (s, 3H), 2.40–2.33 (m, 2H), 1.94–1.84 (m, 1H), 1.77–1.72 (m, 1H), 1.62 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 148.6, 140.6, 140.2, 133.7, 130.5, 129.2, 129.0, 124.0, 123.5, 123.1, 121.4, 119.5, 110.7, 110.6, 95.4, 44.7, 37.2, 27.3, 21.7, 13.3 ppm. HRMS m/z: calcd for C₂₀H₁₈N₂Na [M+Na]⁺ 309.1362, found: 309.1374.

3-(2-methoxy-10-methyl-10*H***-indolo**[**1**,2*-a*]**indol-10-yl**)**propanenitrile** (**5da**): Yield = 60%. White solid. M.p. 91.4–93.0 °C. IR (KBr) v = 2958, 2928, 2243, 1573, 1485, 1186, 1039, 875, 776,

732 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 7.63 (d, *J* = 8.8 Hz, 1H), 7.50 (d, *J* = 7.8 Hz, 1H), 7.42–7.37 (m, 1H), 7.32 (d, *J* = 7.5 Hz, 1H), 7.17–7.10 (m, 2H), 6.95 (dd, *J* = 8.8, 2.5 Hz, 1H), 6.36 (s, 1H), 3.88 (s, 3H), 2.40–2.33 (m, 2H), 1.95–1.85 (m, 1H), 1.79–1.73 (m, 1H), 1.62 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 155.0, 149.2, 140.5, 140.1, 134.1, 129.0, 126.1, 123.5, 123.1, 119.5, 112.2, 111.6, 110.3, 103.9, 95.6, 56.1, 44.8, 37.1, 27.2, 13.3 ppm. HRMS m/z: calcd for C₂₀H₁₈N₂NaO [M+Na]⁺ 325.1311, found: 325.1318.

3-(**1**,10-dimethyl-10*H*-indolo[1,2-*a*]indol-10-yl)propanenitrile (5ea): Yield = 65%. Colourless oil. IR (KBr) v = 2968, 2922, 2245, 1598, 1499, 1476, 1225, 1076, 1046, 761, 693 cm⁻¹. ¹H NMR (400MHz, CDCl₃): $\delta = 7.61-7.54$ (m, 2H), 7.44–7.38 (m, 1H), 7.34 (d, J = 7.4 Hz, 1H), 7.24–7.19 (m, 1H), 7.18–7.13 (m, 1H), 7.04–6.99 (m, 1H), 6.45 (d, J = 0.5 Hz, 1H), 2.58 (s, 3H), 2.43–2.34 (m, 2H), 1.96–1.86 (m, 1H), 1.78–1.72 (m, 1H), 1.64 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 147.9$, 140.6, 140.3, 133.1, 131.1, 130.6, 129.0, 123.6, 123.4, 122.7, 121.4, 119.6, 110.8, 108.7, 94.3, 77.6, 77.2, 76.9, 44.8, 37.2, 27.4, 19.0, 13.4 ppm. HRMS m/z: calcd for C₂₀H₁₈N₂Na [M+Na]⁺ 309.1362, found: 309.1373.

10-(2-cyanoethyl)-10-methyl-10*H***-indolo**[**1**,**2***-a*]**indole-1-carbonitrile** (**5fa**): Yield = 61%. Colourless oil. IR (KBr) v = 2987, 2971, 2901, 2218, 1617, 1493, 1227, 1074, 774, 748 cm⁻¹. ¹H NMR (400MHz, CDCl₃): $\delta = 7.97$ (d, J = 8.3 Hz, 1H), 7.60 (d, J = 7.9 Hz, 1H), 7.57–7.53 (m, 1H), 7.50–7.44 (m, 1H), 7.42–7.34 (m, 2H), 7.26–7.23 (m, 1H), 6.70 (d, J = 0.5 Hz, 1H), 2.49–2.39 (m, 2H), 1.98–1.90 (m, 1H), 1.84–1.76 (m, 1H), 1.68 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 151.4$, 140.2, 139.7, 134.7, 130.6, 129.3, 126.0, 124.6, 124.0, 122.3, 118.9, 118.4, 115.5, 111.2, 104.1, 95.0, 45.2, 36.8, 27.1, 13.4 ppm. HRMS m/z: calcd for C₂₀H₁₆N₃ [M+H]⁺ 298.1339, found: 298.1343.

4-(2-methoxy-9-methyl-9*H***-fluoren-9-yl)butan-2-one (5ab):** Yield = 46%. Colourless oil. IR (KBr) v = 1712, 1456, 1253, 1036, 823, 736 cm⁻¹. ¹H NMR (400MHz, CDCl₃): $\delta = 7.63$ (dd, J = 7.5, 1.8 Hz, 2H), 7.35–7.30 (m, 2H), 7.23 (dd, J = 7.4, 0.8 Hz, 1H), 6.90 (dd, J = 7.3, 2.1 Hz, 2H), 3.87 (s, 3H), 2.34–2.24 (m, 2H), 1.79 (s, 3H), 1.66 (d, J = 8.1 Hz, 2H), 1.48 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 209.2$, 160.0, 153.0, 150.5, 140.4, 133.3, 127.5, 126.5, 122.9, 121.0, 119.3, 113.2, 108.8, 55.8, 50.1, 38.9, 34.0, 30.1, 27.2 ppm. HRMS m/z: calcd for C₁₉H₂₁O₂ [M+H]⁺ 281.1536, found: 281.1539.

4-(9-methyl-9*H***-fluoren-9-yl)butan-2-one (5db):** Yield = 50%. Colourless oil. IR (KBr) $v = 1713, 1444, 1359, 1158, 765, 735 \text{ cm}^{-1}.$ ¹H NMR (400MHz, CDCl₃): $\delta = 7.73$ (dd, J = 6.8, 1.8 Hz, 2H), 7.39–7.37 (m, 1H), 7.36 (s, 2H), 7.34–7.29 (m, 3H), 2.37–2.30 (m, 2H), 1.77 (s, 3H), 1.66–1.61 (m, 2H), 1.50 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 209.1, 151.0, 140.4, 127.6, 127.5, 123.0, 120.1, 50.1, 38.8, 33.9, 30.1, 27.1 ppm. HRMS m/z: calcd for C₁₈H₁₉O [M+H]⁺ 251.1430, found: 251.1430.$

4-(9-methyl-9*H***-indeno[2,1-***d***]pyrimidin-9-yl)butan-2-one (5pb): Yield = 47%. Colourless oil. IR (KBr) \nu = 1711, 1585, 1556, 1395, 1161, 809, 754 cm⁻¹. ¹H NMR (400MHz, CDCl₃): \delta = 9.15 (s, 1H), 9.03 (s, 1H), 7.81 (dd, J = 5.3, 2.4 Hz, 1H), 7.51–7.41 (m, 3H), 2.52–2.42 (m, 1H), 2.34–2.25 (m, 1H), 1.89 (s, 3H), 1.84–1.78 (m, 2H), 1.54 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): \delta = 207.9, 178.8, 157.0, 149.2, 148.0, 134.8, 132.2, 129.7, 128.2, 123.7, 121.6, 50.8, 38.6, 32.1, 30.0, 24.5 ppm. HRMS m/z: calcd for C₁₆H₁₇N₂O [M+H]⁺ 253.1335, found: 253.1344.**

4-(**13**-methyl-13*H*-indeno[1,2-*I*]phenanthren-13-yl)butan-2-one (5sb): Yield = 54%. Colourless oil. IR (KBr) $v = 1710, 1455, 1159, 776, 750 \text{ cm}^{-1}$. ¹H NMR (400MHz, CDCl₃): $\delta = 8.67-8.61$ (m, 2H), 8.38 (s, 1H), 8.34–8.25 (m, 1H), 7.95 (dd, J = 5.9, 3.3 Hz, 1H), 7.74 (dd, J = 8.5, 6.6 Hz, 2H), 7.65–7.57 (m, 3H), 7.42–7.36 (m, 2H), 2.56–2.48 (m, 1H), 2.46–2.37 (m, 1H), 1.90–1.82 (m, 1H), 1.82 (d, J = 4.4 Hz, 3H), 1.80–1.75 (m, 1H), 1.74 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 209.1$, 141.5, 140.9, 132.1, 131.7, 130.5, 130.5, 129.0, 128.8, 127.8, 127.2, 127.2, 127.1, 126.8, 124.7, 123.3, 123.0, 121.2, 120.1, 42.0, 41.3, 39.9, 35.4, 30.1 ppm. HRMS m/z: calcd for C₂₆H₂₃O [M+H]⁺ 351.1743, found: 351.1736.

2-methoxy-9-methyl-9H-fluoren-9-ol (10): Yield = 35%. White solid. M.p. 121.2–123.0 °C. IR (KBr) v = 3314, 2922, 2852, 1609, 1459, 1261, 1092, 1033, 803, 735 cm⁻¹. ¹H NMR (400MHz, CDCl₃): $\delta = 7.53$ (dd, J = 8.3, 2.6 Hz, 3H), 7.36–7.30 (m, 1H), 7.26–7.22 (m, 1H), 7.12 (d, J = 2.4 Hz, 1H), 6.92–6.88 (m, 1H), 3.87 (s, 3H), 1.98 (s, 1H), 1.73 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 160.5$, 152.0, 149.7, 139.1, 131.6, 129.2, 127.1, 123.3, 121.2, 119.5, 114.9, 109.1, 76.9, 55.8, 26.5 ppm. HRMS m/z: calcd for C₁₅H₁₃O [M–OH]⁺ 209.0961, found: 209.0959.

3-(2-methoxy-9-methyl-9*H***-fluoren-9-yl)propanamide (11):** Yield = 62%. Colourless oil. IR (KBr) v = 3449, 3334, 3189, 2956, 2923, 2854, 1660, 1611, 1458, 1272, 1036, 776, 736 cm⁻¹. ¹H NMR (400MHz, CDCl₃): $\delta = 7.61$ (d, J = 8.3 Hz, 2H), 7.39–7.29 (m, 2H), 7.26–7.22 (m, 1H), 6.97–6.86 (m, 2H), 5.08 (d, J = 99.6 Hz, 2H), 3.87 (s, 3H), 2.44–2.31 (m, 2H), 1.50 (s, 3H), 1.47–1.39 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 175.5$, 160.1, 152.9, 150.4, 140.3, 133.2, 127.5,

126.6, 122.9, 120.9, 119.3, 113.3, 108.8, 55.8, 50.3, 35.6, 30.7, 27.1 ppm. HRMS m/z: calcd for $C_{18}H_{19}NNaO_2$ [M+Na]⁺ 304.1308, found: 304.1317.

