Electronic Supplementary Information for

One-pot synthesis of 3-D dandelions-like architectures constructed by rutile TiO₂ nanorods grown along [001] axis for high-rate lithium ion batteries

Yu Bai,^{*a*} Naiqing Zhang, *,*a*,*b* and Kening Sun*,*a*,*b*

^a Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin, 150001, China.

^b State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.

^{*} To whom correspondence should be addressed. E-mail: keningsunhit@126.com; znqmww@126.com;

Fig. S1 FT-IR spectrum of C16mimBr.

Fig. S2 FT-IR spectrum of the TiO_2 rutile.

Fig. S3 N_2 adsorption/desorption isotherms for the TiO₂ rutile (the inset shows the BJH data).

Fig. S4 XRD of standard anatase TiO_2 (JCPDS. No. 65-5714) and the as-derived TiO_2 without C16mimBr in the synthesizing procedure.

Fig. S5 TEM image of the as-derived anatase TiO_2 without C16mimBr in the synthesizing procedure.

Fig. S6. (a) Representative SEM image of rutile TiO₂ after the cycling process.(b) TEM image of a TiO₂ particle after the cycling proces