Supplementary Information for

Design, synthesis, and anticancer activities of new compounds bearing the quinone-pyran-lactone tricyclic pharmacophore

Xue Jiang,^a Meining Wang,^b Shanshan Song,^c Youjun Xu, *,^a Zehong Miao,*,^c and Ao Zhang*,^b

Table of Contents

1. Co	opies of NMR data for all new compounds	S2
2. Co	omputational detail of compound 9a	S25
3. Re	ferences	S26

1. Copies of NMR Data for All Compounds.

¹H NMR (300 MHz) and ¹³C NMR (126 MHz) spectra of compound **6b**.

 $^1\mathrm{H}$ NMR (300 MHz) and $^{13}\mathrm{C}$ NMR (126 MHz) spectra of compound 7.

¹H NMR (300 MHz),¹³C NMR (101 MHz) and NOE spectra of compound **9a**.

¹H NMR (300 MHz), ¹³C NMR (126 MHz) and NOE spectra of compound **9a'.**

 $^1\mathrm{H}$ NMR (300 MHz) and $^{13}\mathrm{C}$ NMR (126 MHz) spectra of compound 10a.

 7.11
 7.11

 7.11
 7.11

 7.11
 7.11

 7.11
 7.11

 7.11
 7.11

 7.11
 7.11

 7.11
 7.11

 7.11
 7.11

 7.11
 7.11

 7.11
 7.11

 7.11
 7.11

 7.11
 7.11

 7.12
 7.12

 7.12
 7.12

 7.12
 7.12

 7.12
 7.12

 7.12
 7.12

 7.12
 7.12

 7.12
 7.12

 7.12
 7.12

 7.12
 7.12

 7.12
 7.12

 7.12
 7.12

 7.12
 7.12

 7.12
 7.12

 7.12
 7.12

 7.12
 7.12

 7.11
 7.11

 7.11
 7.11

 7.11
 7.11

 7.12
 7.12

 7.11
 7.11

 7.11</t

S8

 ^1H NMR (300 MHz) and ^{13}C NMR (126 MHz) spectra of compound 10a'.

7.28 7.25 7.25 7.20

5.30-**0.89** 4.5 f1 (ppm) 3.01-] 1.02-] 1.15-1.03<u>⊣</u> 0.99≛ 2.06⊣ 2.09⊣ 0.95-8.03 5.0 9.0 5.5 2.5 1.0 0.0 8.5 8.0 7.5 7.0 6.5 6.0 4.0 3.5 3.0 2.0 1.5 0.5 182.82
182.21
174.19
172.53 -107.95 -151.00 -147.49 -140.77 130.81 128.54 128.54 128.54 70.08 68.64 66.37 -48.21 -36.83 -33.09 -32.49 -29.72 11.00 7.93 7.85 130 120 110 100 90 f1 (ppm) 00 170 160 150 140 80 70 20 10 190 180 60 50 40 30 (

 1H NMR (300 MHz) and ^{13}C NMR (126 MHz) spectra of compound 10b.

 7,7,71
 5,54

 7,7,71
 5,54

 7,7,71
 5,54

 7,7,71
 5,54

 7,7,71
 5,54

 7,7,73
 5,54

 7,74
 5,54

 7,74
 5,54

 7,74
 5,54

 7,74
 5,54

 7,333
 3,333

 2,233
 2,233

 2,223
 2,233

 2,223
 2,233

 ^1H NMR (500 MHz), ^{13}C NMR (126 MHz) and HMBC spectra of compound 10d.

 ^1H NMR (300 MHz) and ^{13}C NMR (151 MHz) spectra of compound 11a.

-5.13 4.85 4.31 4.30 4.30 4.30 226 226 227 226 226 223 223 225 225 225 -1.26

-5.98

 -5.88
 -5.88

 -5.13
 -5.13

 -5.13
 -5.13

 -5.13
 -5.13

 -5.13
 -5.13

 -5.13
 -5.13

 -5.13
 -5.13

 -5.13
 -5.13

 -5.13
 -5.13

 -5.13
 -5.13

 -5.23
 -5.33

-7, 28 -7, 28

 ^1H NMR (300 MHz) and ^{13}C NMR (151 MHz) spectra of compound 13.

-7.45 -7.46 -6.65 -6.65 -6.65 -6.65 -6.65 -6.65 -6.65 -6.65 -6.65 -6.52 -6.65 -6.52 -6.65 -6.52 -6.53 -7.53 -6.53 -6.53 -6.53 -6.53 -6.53 -6.53 -6.53 -6.53 -6.53 -6.53 -6.53 -6.53 -6.53 -6.53 -7.53

55,15 4,57 4,57 4,57 4,57 4,57 4,57 4,55 4,55 2,58 4,55 2,58 2,28 2,28 2,28 2,15 2,28 2,28 2,15 2,15 2,15 2,15 4,55 2,25 5,26 4,55 2,26 4,157 2,26 4,26 4,157 2,26 4,26 4,157 2,26 4,26 4,157 2,26 4,26 4,157 2,26 4,27 2,26 4,27 2,26 4,27 2,26 4,27 2,26 4,27 2,26 4,27 2,26 4,27 2,26 4,27 2,27 2,26 4,27 2,26 4,27 2,26 4,27 2,26 4,27 2,26 4,27 2,26 4,27 2,27 2,26 4,27 2,27 2,26 4,27 2,27 2,26 4,27 2,27 2,26 4,27 2,27 2,26 4,27 2,27 2,26 4,27 2,27 2,26 4,27 2,27 2,26 4,27 2,27 2,26 4,27 2,27 2,26 4,27 2,27 2,26 4,27 2,27 2,26 4,27 2,

 ^1H NMR (300 MHz) and ^{13}C NMR (126 MHz) spectra of compound 14c.

 ^1H NMR (300 MHz) and ^{13}C NMR (126 MHz) spectra of compound 14d.

2. Computational method of compound 9a

Gaussian 09¹ was performed at the B3LYP² level of density functional theory (DFT) for geometry optimizations. 6-31(g) basis set was used for C, H, O.³

Cartesian coordinates

9a

0 1 (charge, spin multiplicity)

С	-3.26200000	1.15200000	0.60000000
С	-3.22400000	-0.18000000	0.63300000
С	-1.94800000	-0.91500000	0.56400000
С	-0.69900000	-0.12100000	0.40700000
С	-0.73900000	1.22400000	0.38200000
С	-2.03100000	1.95400000	0.49200000
С	0.58800000	-0.90100000	0.32300000
С	1.85800000	-0.03900000	0.44000000
С	0.49000000	2.07800000	0.23300000
0	-2.09300000	3.17700000	0.49200000
0	-1.94400000	-2.13800000	0.63600000
С	2.96200000	-0.90200000	-0.18200000
Н	-4.19300000	1.70400000	0.65500000
Н	-4.12200000	-0.78000000	0.71800000
Н	0.61500000	-1.64800000	1.13000000
Н	2.08700000	0.16200000	1.49400000
Н	0.73000000	2.52100000	1.20800000
Н	3.52200000	-1.42000000	0.60600000
Н	3.68500000	-0.30800000	-0.75200000
С	2.26500000	-1.93800000	-1.06500000
0	2.79535839	-2.85374640	-1.68663939
0	0.77800000	-1.61000000	-1.02200000
0	1.70200000	1.30200000	-0.28600000
С	0.22177700	3.24217208	-0.73878176
Н	-0.49713624	2.93760978	-1.47042755
Н	-0.15737798	4.08140627	-0.19396301
С	1.53395143	3.63681590	-1.44167188
Н	2.33162268	3.64649755	-0.72856120
Н	1.75305533	2.92756815	-2.21229572
С	1.38272927	5.03831176	-2.06178576
С	1.69621933	6.17114440	-1.31019704
С	0.93247569	5.17518948	-3.37482968
С	1.55881321	7.44055833	-1.87138291
Н	2.05043191	6.06292922	-0.27479146
С	0.79591264	6.44487647	-3.93666183
Н	0.68552182	4.28243917	-3.96740009

С	1.10885649	7.57750316	-3.18515671
Н	1.80529176	8.33354302	-1.27882642
Н	0.44127706	6.55247366	-4.97209926
Н	1.00065149	8.57849064	-3.62743726

NBO (Natural Bond Orbital) charge values

Atom	NBO charge values
O ₁	-0.531
O ₄	-0.591
O ₃ ,	-0.524
O ₄ ,	-0.484
O ₅ ,	-0.473
C ₂	0.773
C ₃	-0.593
C _{3a}	0.054
C ₅	0.059
C _{5a}	-0.040
C ₆	0.463
C ₇	-0.246
C ₈	-0.236
C ₉	0.465
C _{9b}	-0.076
C _{9a}	0.012

3. References

Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J.

B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

- (2) Becke, A. D. J. Chem. Phys., 1993, 98, 5648.
- (3) Wadt, W. R.; Hay, P. J. J. Chem. Phys., 1985, 82, 299.