ESI

Selective Fluorescence Sensing of Salicylic Acids Using a Simple Pyrenesulfonamide Receptor

Ashwani Kumar ^a, Manik Kumer Ghosh ^b, Cheol-Ho Choi ^b and Hong-Seok Kim ^{a*}

^aDepartment of Applied Chemistry, Kyungpook National University, Daegu 702-701,

^bDepartment of Chemistry, and Green-Nano Materials Research Center, College of Natural

Sciences, Kyungpook National University, Daegu 702-701,

Republic of Korea

Corresponding author: Tel.:+82 53 9505588; fax: +82 53 9506594.

E-mail address: <u>kimhs@knu.ac.kr</u>

Table of Contents

1.	¹ H NMR of probe 2 in $CDCl_3$.	4-5
2.	13 C NMR of probe 2 in CDCl ₃ .	6
3.	HRMS of probe 2 .	7-8
4.	¹ H NMR of probe 3 in DMSO- d_6 .	9-11
5.	¹³ C NMR of probe 3 in DMSO- d_6 .	12
6.	HRMS of probe 3 .	13-14
7.	¹ H NMR of probe 4 in DMSO- d_6 .	15-17
8.	13 C NMR of probe 4 in DMSO-d ₆ .	18
9.	HRMS of probe 4.	19-20
10.	¹ H NMR of probe 5 in CDCl ₃ .	21-22
11.	13 C NMR of probe 5 in CDCl ₃ .	23

- 12. HRMS of probe 5.
- **13.** Fig. SI 1: Fluorescence study of probe **2** (1 μ M, EtOH) with different salicylic 26 derivatives/similar moieties, $\lambda_{ex} = 336$ nm, slit width 3,3.
- Fig. SI 2: Fluorescence titration of probe 2 (1 μM, EtOH) with 3,5- 26-27 Dinitrosalicylic acid, λ_{ex} = 336 nm, slit width 3,3.
 Fig. SI 3: Fluorescence spectral fitting of probe 2 (1 μM, EtOH) with [3,5- Dinitrosalicylic Acid] at 379 nm and association constant.
- 15. Fig. SI 4: Relative fluorescence intensity bar diagram of probe 3 (1 μ M, EtOH) 27 with different aromatic carboxylic acids, $\lambda_{ex} = 336$ nm.
- 16. Fig. SI 5: Relative fluorescence bar diagram of probe 4 (1 μ M, EtOH) with 28 different carboxylic acids, $\lambda_{ex} = 336$ nm.
- 17. Fig. SI 6: Relative fluorescence bar diagram of probe 5 (1 μ M, EtOH) with 28 different carboxylic acids, $\lambda_{ex} = 336$ nm.
- Fig. SI 7: Partial ¹H NMR spectra of aromatic region of 5-NSA and probe 3 on 29 addition of 1 eq. of 5-NSA in DMSO-d₆.
 Fig. SI 8: Partial ¹H NMR spectra of aliphatic region of 5-NSA and probe 3 on addition of 1 eq. of 5-NSA in DMSO-d₆.
- Fig. SI 9: Partial ¹H NMR spectra of aromatic region of 5-ISA and probe 3 on 30 addition of 1 eq. of 5-ISA, 2 eq. of 5-ISA in DMSO-d₆.
 Fig. SI 10: Partial ¹H NMR spectra of aliphatic region 5-ISA and probe 3 on addition of 1 eq. of 5-ISA, 2 eq. of 5-ISA in DMSO-d₆.

- 20. Fig. SI 11: Partial ¹H NMR spectra of aromatic region of SA and probe 3 on 31 addition of 1 eq. of SA, 2 eq. of SA in DMSO-d₆.
 Fig. SI 12: Partial ¹H NMR spectra of aliphatic aromatic region of SA and probe 3 on addition of 1 eq. of SA, 2 eq. of SA in DMSO-d₆.
- Fig. SI 13: The lifetimes of samples (Compo 1 = probe 3 (black), Compo 2 = 1:1 32 complex with 3,5-dinitrobenzoic acid (red) and Compo 3 = 1:10 complex with 3,5-dinitrobenzoic acid (blue)) are almost similar.
 Fig. SI 14: The lifetimes of samples (Compo 1 = probe 3 (black), Compo 2 = 1:1 complex with 3,5-dinitrosalicylic acid (red) and Compo 3 = 1:10 complex with 3,5-dinitrosalicylic acid (blue)) are slightly different.
- Fig. SI 15: Partial ¹H NMR spectra of aromatic region of 3,5-DNSA and probe 4
 on addition of 1 eq. of 3,5-DNSA, 2 eq. of 3,5-DNSA in DMSO-d₆.
 Fig. SI 16: Partial ¹H NMR spectra of aliphatic region of 3,5-DNSA and probe 4
 on addition of 1 eq. of 3,5-DNSA, 2 eq. of 3,5-DNSA in DMSO-d₆.
- Fig. SI 17: Partial ¹H NMR spectra of aromatic region of 3,5-DNSA and probe 5 34 on addition of 1 eq. of 3,5-DNSA in DMSO-d₆.
 Fig. SI 18: Partial ¹H NMR spectra of aliphatic region of 3,5-DNSA and probe 5 on addition of 1 eq. of 3,5-DNSA in DMSO-d₆.
- 24. SI Table 1: The contributions of each electronic oscillator (orbital transitions) to 35 the lowest energy transition.
 Fig. SI 19: B3LYP/6-31G* calculated molecular orbitals of 5-NSA, 3,5-DNSA and probe 3.
- **25.** Fig. SI 20: B3LYP/6-31G* calculated molecular orbitals of probe 3 + 5-NSA 36

and probe 3 + 3,5-DNSA.

26. Fig. SI 21: Fluorescence emission spectra of probe 3 and its complexes with 3,5- 37DNSA and 5-NSA, obtained by using B3LYP/6-31G*.

Fig. SI 22: Fluorescence intensity at λ_{max} of probe **3** and [**3**•3,5-DNSA] (1 μ M, 37

EtOH-H₂O 10%) vs pH, λ_{ex} = 336 nm, slit width 3,3.

¹H NMR of probe **2** CDCl₃.

 $^1\mathrm{H}$ NMR of probe $\boldsymbol{2}$ aliphatic reigion in CDCl_3

¹H NMR of probe **2** aromatic reigion in CDCl₃

 ^{13}C NMR of probe $\boldsymbol{2}$ in CDCl_3

HRMS of probe 2

HRMS of probe 2

¹ H NMR of probe **3** in DMSO- d_6 .

¹H NMR of probe **3** aliphatic reigion in DMSO-d_{6.}

¹H NMR of probe **3** aromatic reigion in DMSO-d₆

¹H NMR of probe **4** in DMSO-d₆.

¹H NMR of probe **4** aliphatic reigion in DMSO-d₆.

 $^1\mathrm{H}$ NMR of probe 4 aromatic reigion in DMSO-d_6

 13 C NMR of probe 4 in DMSO-d₆.

HRMS of probe 4

¹H NMR of probe **5** in CDCl₃.

¹H NMR of probe **5** aromatic region in CDCl₃.

¹³C NMR of probe **5** in CDCl₃.

Fig. SI 1: Fluorescence study of probe **2** (1 μ M, EtOH) with different salicylic derivatives/similar moieties, $\lambda_{ex} = 336$ nm, slit width 3,3.

Fig. SI 2: Fluorescence titration of probe 2 (1 μ M, EtOH) with 3,5-Dinitrosalicylic acid, $\lambda_{ex} = 336$ nm.

Fig. SI 3: Fluorescence spectral fitting of probe 2 (1 μ M, EtOH) with [3,5-Dinitrosalicylic Acid] and association constant.

Fig. SI 4: Relative fluorescence intensity bar diagram of probe **3** (1 μ M, EtOH) with different aromatic carboxylic acids, $\lambda_{ex} = 336$ nm.

Fig. SI 5: Relative fluorescence intensity bar diagram of probe 4 (1 μ M, EtOH) with different carboxylic acids, $\lambda_{ex} = 336$ nm, slit width 3,3.

Fig. SI 6: Relative fluorescence intensity bar diagram of probe 5 (1 μ M, EtOH) with different carboxylic acids, $\lambda_{ex} = 336$ nm, slit width 3,3.

Fig. SI 7: Partial ¹H NMR spectra of aromatic region of 5-NSA and probe **3** on addition of 1 eq. of 5-NSA in DMSO- d_6 .

Fig. SI 8: Partial ¹H NMR spectra of aliphatic region of 5-NSA and probe **3** on addition of 1 eq. of 5-NSA in DMSO- d_6 .

Fig. SI 9: Partial ¹H NMR spectra of aromatic region of 5-ISA and probe **3** on addition of 1 eq. of 5-ISA, 2 eq. of 5-ISA in DMSO- d_6 .

Fig. SI 10: Partial ¹H NMR spectra of aliphatic region 5-ISA and probe **3** on addition of 1 eq. of 5-ISA, 2 eq. of 5-ISA in DMSO- d_6 .

Fig. SI 11: Partial ¹H NMR spectra of aromatic region of SA and probe **3** on addition of 1 eq. of SA, 2 eq. of SA in DMSO- d_6 .

Fig. SI 12: Partial ¹H NMR spectra of aliphatic aromatic region of SA and probe **3** on addition of 1 eq. of SA, 2 eq. of SA in DMSO- d_6 .

Fig. SI 13: The lifetimes of samples (Compo 1 = probe 3 (black), Compo 2 = 1:1 complex with 3,5-dinitrobenzoic acid (red) and Compo 3 = 1:10 complex with 3,5-dinitrobenzoic acid (blue)) are almost similar.

Fig. SI 14: The lifetimes of samples (Compo 1 = probe 3 (black), Compo 2 = 1:1 complex with 3,5-dinitrosalicylic acid (red) and Compo 3 = 1:10 complex with 3,5-dinitrosalicylic acid (blue)) are slightly different.

Fig. SI 15: Partial ¹H NMR spectra of aromatic region of 3,5-DNSA and probe 4 on addition of 1 eq. of 3,5-DNSA, 2 eq. of 3,5-DNSA in DMSO-d₆.

Fig. SI 16: Partial ¹H NMR spectra of aliphatic region of 3,5-DNSA and probe 4 on addition of 1 eq. of 3,5-DNSA, 2 eq. of 3,5-DNSA in DMSO-d₆.

Fig. SI 17: Partial ¹H NMR spectra of aromatic region of 3,5-DNSA and probe **5** on addition of 1 eq. of 3,5-DNSA in DMSO-d₆.

Fig. SI 18: Partial ¹H NMR spectra of aliphatic region of 3,5-DNSA and probe **5** on addition of 1 eq. of 3,5-DNSA in DMSO-d₆.

Molecule/Complex	State	Absorption	Coefficient	$-\Delta E_{ m HOMO/LUMO}$
5-NSA	S_4	H → L	0.95	4.391
3,5-DNSA	S_6	$\mathbf{H} \mathbf{L} + 1$	0.89	4.480
Probe 3	\mathbf{S}_1	H → L	0.95	3.537
Probe 3 + 5-NSA	S_2	H → L	0.91	3.530
Probe 3 + 3,5-DNSA	S_7	$H \xrightarrow{} L + 2$	0.95	3.518

SI Table 1: The contributions of each electronic oscillator (orbital transitions) to the lowest energy transition.

Fig. SI 19: B3LYP/6-31G* calculated molecular orbitals of 5-NSA, 3,5-DNSA and probe 3.

Fig. SI 20: B3LYP/6-31G* calculated molecular orbitals of probe 3 + 5-NSA and probe 3 + 3,5-DNSA.

Fig. SI 21: Fluorescence emission spectra of probe **3** and its complexes with 3,5-DNSA and 5-NSA, obtained by using B3LYP/6-31G*.

Fig. SI 22: Fluorescence intensity at $\lambda_{max} = 379$ nm of probe **3** and [**3**•3,5-DNSA] (1 μ M, EtOH-H₂O 10%) vs pH, $\lambda_{ex} = 336$ nm, slit width 3,3.